JPS6351849A - Medical nuclear magnetic resonance diagnostic apparatus - Google Patents

Medical nuclear magnetic resonance diagnostic apparatus

Info

Publication number
JPS6351849A
JPS6351849A JP61195249A JP19524986A JPS6351849A JP S6351849 A JPS6351849 A JP S6351849A JP 61195249 A JP61195249 A JP 61195249A JP 19524986 A JP19524986 A JP 19524986A JP S6351849 A JPS6351849 A JP S6351849A
Authority
JP
Japan
Prior art keywords
refrigerator
resonance diagnostic
magnetic resonance
nuclear magnetic
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61195249A
Other languages
Japanese (ja)
Other versions
JPH0427856B2 (en
Inventor
勝記 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61195249A priority Critical patent/JPS6351849A/en
Publication of JPS6351849A publication Critical patent/JPS6351849A/en
Publication of JPH0427856B2 publication Critical patent/JPH0427856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷凍機を搭載した医療用核磁気共鳴診断装置に
係り、冷凍機の振動に起因する騒音の低減を可能にした
医療用核磁気共鳴診断装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a medical nuclear magnetic resonance diagnostic apparatus equipped with a refrigerator, and enables reduction of noise caused by vibrations of the refrigerator. The present invention relates to a medical nuclear magnetic resonance diagnostic apparatus.

(従来の技術) 医療用核磁気共鳴診装@(通称MRI装置)において医
学的測定を行うには、均一でしかも高磁界が必要とされ
る。このため、近年のMRI装置には超電導磁石が使用
される。
(Prior Art) To perform medical measurements in a medical nuclear magnetic resonance diagnostic system (commonly known as an MRI apparatus), a uniform and high magnetic field is required. For this reason, superconducting magnets are used in recent MRI apparatuses.

超電導磁石は、超電感性線材をコイル状に巻いたもので
、この超電導電磁コイルを約4°にの温度に保持する必
要がある。
A superconducting magnet is a superconducting electromagnetic coil wound into a coil, and it is necessary to maintain this superconducting electromagnetic coil at a temperature of approximately 4°.

このようなことから従来のMRI装置は第4図、第5図
に示すような構造となっている。
For this reason, conventional MRI apparatuses have structures as shown in FIGS. 4 and 5.

第4図はMRI装置の全体断面図であり、(3(1)は
MHI装置の試料を挿入する軸心である。
FIG. 4 is an overall sectional view of the MRI apparatus, and (3(1) is the axis into which the sample of the MHI apparatus is inserted.

超電導電磁コイル(31)は液体ヘリウム(32)を充
填する液体ヘリウム容器(33)の中に約4°にの温度
状態で納められる。液体ヘリウム容器(33)は、円筒
形状の中間シールド筒(34)で囲まれている。中間シ
ールド筒(34)は約80″にの温度の液体窒素(35
)を充填した液体窒素容器(36)に囲まれ、さらに液
体窒素容器(36)は真空容器(37)で囲まれている
。おのおの中間室(38)は排気され真空気密となり、
熱シールドする。液体窒素容器(36)は真空容器(3
7)に、また液体ヘリウム容器(33)と中間シールド
筒(34)は液体窒素容器(36)に、それぞれ熱伝導
性の低いチタン環の吊り棒(301)、 (302) 
、 (303)により吊り下げられ、しかも、フレキシ
ブルに支持される構造となっている。
The superconducting electromagnetic coil (31) is housed in a liquid helium container (33) filled with liquid helium (32) at a temperature of about 4°. The liquid helium container (33) is surrounded by a cylindrical intermediate shield tube (34). The intermediate shield tube (34) is filled with liquid nitrogen (35
), and the liquid nitrogen container (36) is further surrounded by a vacuum container (37). Each intermediate chamber (38) is evacuated and made vacuum tight;
Heat shield. The liquid nitrogen container (36) is a vacuum container (3
7), and the liquid helium container (33) and intermediate shield cylinder (34) are connected to the liquid nitrogen container (36), respectively, with titanium ring hanging rods (301) and (302) having low thermal conductivity.
, (303), and has a structure that is supported flexibly.

超電導電磁コイル(31)は超電導性が保持される限り
超電導電磁コイル(31)中で電流が無限に長時間流れ
ることができる。
As long as the superconducting electromagnetic coil (31) maintains superconductivity, current can flow through the superconducting electromagnetic coil (31) for an infinitely long time.

したがって、MRI装置に必要な均一でしかも高磁界が
得られる。しかし、超電導性を保持するために液体ヘリ
ウム(32)が必要となり、また、液体ヘリウム(32
)の保持が特に問題となり、前記したような構造にて複
雑な熱シールドを必要とする。
Therefore, a uniform and high magnetic field required for an MRI apparatus can be obtained. However, liquid helium (32) is required to maintain superconductivity, and liquid helium (32
) is particularly problematic, requiring complex heat shielding in structures such as those described above.

さて、この種の超電導磁石を保持する経費は前記液体窒
素(35)及び液体ヘリウム(32)の使用量によって
決定的に定められる。この場合、この液体窒素(35)
及び液体ヘリウム(32)の蒸発速度を低く維持するこ
とができると、この種の経費は低く維持することができ
る。
Now, the cost of maintaining this type of superconducting magnet is determined decisively by the amounts of liquid nitrogen (35) and liquid helium (32) used. In this case, this liquid nitrogen (35)
And if the evaporation rate of liquid helium (32) can be kept low, such costs can be kept low.

液体窒素や液体ヘリウムの蒸発速度を低く維持するため
に冷凍機(41)が真空容器(37)の一部のフランジ
(39)に取付けられる。
A refrigerator (41) is attached to a part of the flange (39) of the vacuum container (37) in order to maintain a low evaporation rate of liquid nitrogen or liquid helium.

この冷凍機(41)は真空容器(37)、液体窒素容器
(36)、中間シールド筒(34)を貫通して延び、1
段網板熱伝導体(47)を介して液体窒素容器(36)
を冷却し、2段網板熱伝導体(48)を介して中間シー
ルド筒(34)を積極的に冷却する。
This refrigerator (41) extends through a vacuum container (37), a liquid nitrogen container (36), and an intermediate shield cylinder (34).
Liquid nitrogen container (36) via the mesh board heat conductor (47)
and actively cools the intermediate shield cylinder (34) via the two-stage mesh plate heat conductor (48).

次に冷凍機の構成およびMRI装置への取付子段につい
て第5図を用いて説明する。
Next, the configuration of the refrigerator and the mounting stage for the MRI apparatus will be explained using FIG. 5.

冷凍機(41)は冷却器頭部(42)、1段冷却部(4
5)、2段冷却部(46)から成り、ガス配管(304
)を介して圧縮機(4(1)からガスヘリウムの供給を
受ける。
The refrigerator (41) has a cooler head (42) and a first-stage cooling section (4
5), consists of a two-stage cooling section (46), and gas piping (304).
Gas helium is supplied from the compressor (4(1)) via the compressor (4(1)).

冷却部(45)、 (46)は例えばギフオード・マク
マホン冷凍機(GM冷凍機)の場合1段冷却部(45)
、2段冷却部(46)ともに内部にデイスプレッサーが
ある。このディスプレッサーはピストン運動をして、低
温膨張室を圧縮・膨張サイクルさせている。
For example, in the case of a Gifford-McMahon refrigerator (GM refrigerator), the cooling sections (45) and (46) are the first stage cooling section (45).
, a two-stage cooling section (46) both have a depressor inside. This compressor uses piston motion to cycle the compression and expansion of the cold expansion chamber.

一方、冷却器頭部(42)は]、 RP M程度で回転
するステッピングモータおよび回転運動から往復運動に
変換する例えばカム機構から構成されている。
On the other hand, the cooler head (42) is composed of a stepping motor that rotates at approximately RPM and a cam mechanism that converts rotational motion into reciprocating motion, for example.

この往復運動に連結してディスプレッサーを往復運動さ
せる。
Connected to this reciprocating motion, the dispressor is caused to reciprocate.

次に冷凍機(41)の従来の搭載手段は、冷凍機側の取
付はフランジ(43)を真空容器の取付フランジ(39
)にOリング(44)を介入させてボルトで完全に締め
付けている。
Next, the conventional mounting means for the refrigerator (41) is to attach the flange (43) on the refrigerator side to the mounting flange (39) on the vacuum container.
) is completely tightened with a bolt by intervening an O-ring (44).

一方、内部の結合は前述したように1段網板熱伝導体(
47)および2段網板伝導体(48)で結合し、−4= 液体窒素容器(36)および中間シールド筒(34)を
冷却する。ところが、この熱伝導体(47)、 (4g
)は鋼材の平網板を使用し、真空容器(37)と液体窒
素容器(36)、中間シールド筒(34)の相対変位を
吸収できるようフレキシブルに結合している。
On the other hand, the internal connection is made using the one-stage mesh plate heat conductor (
47) and a two-stage mesh plate conductor (48), -4 = cools the liquid nitrogen container (36) and the intermediate shield cylinder (34). However, this thermal conductor (47), (4g
) is flexibly connected to the vacuum container (37), liquid nitrogen container (36), and intermediate shield cylinder (34) by using a flat mesh plate made of steel so as to absorb relative displacement.

このような構成で真空容器(37)に冷凍機を搭載する
と真空容器(37)から、MHI装置の許容値具−Fの
騒音が発生する問題点が生じた。原因を調査すると1次
のことが判った。
When a refrigerator is mounted on the vacuum vessel (37) with such a configuration, a problem arises in that the vacuum vessel (37) generates noise at the tolerance level of the MHI device -F. When we investigated the cause, we found the following.

冷凍機の構成の一部であるステッピングモータの振動(
2f、4f、6f、・・・・・・fニスチッピングモー
タ駆動周波数)およびディスプレッサーの往復動に伴う
機械的振動が外筒を形成する真空容器(37)に直接伝
達されていた。つまり第5図の振動伝達経路(49)の
ような形態である。冷凍機の振動が真空容器(37)に
伝達すると、真空容器(37)は振動し、表面から音の
放射が発生する形態であった。
Vibration of the stepping motor, which is part of the refrigerator configuration (
2f, 4f, 6f, . . . f (varnish chipping motor drive frequency) and mechanical vibrations accompanying the reciprocating motion of the dispressor were directly transmitted to the vacuum container (37) forming the outer cylinder. In other words, it has a form similar to the vibration transmission path (49) in FIG. When the vibrations of the refrigerator were transmitted to the vacuum container (37), the vacuum container (37) vibrated and sound was emitted from the surface.

また、真空容器(37)は金属性材料であるため、振動
の減衰が少なく、しかも単純な円筒形状であり、非常に
振動しやすい構造になっている。真空容器(37)が振
動し、音を発生すると、MRI装置を使用するとき、直
接、身体への影響があり医療環境上大きな問題となって
いた。
Furthermore, since the vacuum container (37) is made of a metallic material, vibrations are less attenuated, and it has a simple cylindrical shape, making it highly susceptible to vibration. When the vacuum container (37) vibrates and generates sound, it has a direct effect on the body when using an MRI apparatus, posing a major problem in the medical environment.

医療環境騒音は、特にきびしく規制され、その騒音値は
非常に低い。また従来の騒音は恐怖心を感じ特に低騒音
化が望まれる。
Medical environment noise is particularly strictly regulated and its noise level is very low. In addition, conventional noise creates fear, and it is especially desirable to reduce the noise level.

(発明が解決しようとする問題点) 以上のように従来の冷凍機搭載構造のMRI装置におい
ては冷凍機の振動に起因する騒音が身体へ影響し、医療
環境上大きな問題であった。
(Problems to be Solved by the Invention) As described above, in the conventional MRI apparatus equipped with a refrigerator, the noise caused by the vibration of the refrigerator affects the human body, which is a major problem in the medical environment.

そこで本発明は上記問題点を解決するために、簡単な構
造変更を施すことにより、低騒音の医療用核磁気共鳴診
断装置(MRI装置)を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide a low-noise medical nuclear magnetic resonance diagnostic apparatus (MRI apparatus) by making simple structural changes.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は」二記目的を達成するために冷凍機(41)と
真空容器(37)の結合を従来の完全締結方法から、例
えばベローズのような弱弾性結合にし、冷凍機の自重お
よび真空圧力荷重は液体窒素容器(36)または中間シ
ールド筒(34)のような内筒の一部で完全結合して支
持する構造にすることにより、冷凍機(4])から外筒
となる真空容器(37)への振動伝達力を大幅に低減し
、これによって真空容器(37)の振動による放射音を
小さくする。
(Means for Solving the Problems) In order to achieve the second object, the present invention replaces the conventional complete fastening method for connecting the refrigerator (41) and the vacuum container (37) with a weakly elastic one such as a bellows. By creating a structure in which the weight and vacuum pressure load of the refrigerator are fully connected and supported by a part of the inner cylinder such as the liquid nitrogen container (36) or the intermediate shield cylinder (34), the refrigerator (4) can be fully connected and supported. ]) to the vacuum container (37) serving as the outer cylinder is significantly reduced, thereby reducing the radiated sound due to the vibration of the vacuum container (37).

(作 用) 本発明は冷凍機と真空容器の結合をベローズで弱弾性結
合とし、真空を保ち、しかも、大幅に振動伝達を低減で
きる。
(Function) The present invention connects the refrigerator and the vacuum container with a weakly elastic connection using a bellows, thereby maintaining a vacuum and, moreover, being able to significantly reduce vibration transmission.

そして、冷凍機の自重および真空圧力荷重は液体窒素容
器または中間シールド筒のような内筒で支持する。こう
することにより冷凍機の振動は内筒(例えば液体窒素容
器、または中間シールド筒)に伝達し、内筒は振動する
。しかし、内筒が振動しても、その表面は真空の中にあ
るので、その板面からの音は真空容器へは放射されない
。すなわち、内筒の面からの音の放射があっても真空容
器の中にあるので完全に近い程遮音され、MRI装置の
騒音を低下する。
The weight and vacuum pressure load of the refrigerator are supported by an inner cylinder such as a liquid nitrogen container or an intermediate shield cylinder. By doing so, the vibrations of the refrigerator are transmitted to the inner cylinder (for example, the liquid nitrogen container or the intermediate shield cylinder), and the inner cylinder vibrates. However, even if the inner cylinder vibrates, its surface is in a vacuum, so the sound from the plate surface is not radiated into the vacuum container. That is, even if sound is emitted from the surface of the inner cylinder, since it is inside the vacuum container, the sound is almost completely insulated, reducing the noise of the MRI apparatus.

(実施例) =7− 以下、本発明の一実施例について第1図および第2図を
参照して説明する。尚、第4図、第5図の従来構造に説
明した同一部分には、同一符号を用い、説明は一部省略
する。
(Example) =7- Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. Note that the same reference numerals are used for the same parts described in the conventional structure of FIGS. 4 and 5, and some explanations are omitted.

第1図および第2図において、冷凍機(41)は、冷凍
機のフランジ(43)とベローズ(11)のフランジ(
12)で0リング(44)を介してボルトで結合する。
In Figures 1 and 2, the refrigerator (41) has a flange (43) of the refrigerator and a flange (11) of the bellows (11).
At 12), connect with bolts via the O-ring (44).

さらに、真空容器(37)との結合も、真空容器側のフ
ランジ(39)とベローズ(11)のフランジ(13)
がOリング(44)を介してボルトで結合する。このベ
ローズ(11)のばね定数は1〜10kgf/鵬とし、
この実施例では3kg/ 画とした。
Furthermore, the connection with the vacuum container (37) is also made between the flange (39) on the vacuum container side and the flange (13) of the bellows (11).
are connected with bolts via an O-ring (44). The spring constant of this bellows (11) is 1 to 10 kgf/peng,
In this example, the weight was 3 kg/image.

一方、1段、2段冷却部(45)、 <46)と液体窒
素容器(36)および中間シールド筒(34)との結合
は次のような構造である。
On the other hand, the connection between the first-stage and second-stage cooling sections (45), <46), the liquid nitrogen container (36), and the intermediate shield cylinder (34) has the following structure.

まず、2段冷却部(46)と中間シールド筒(34)の
結合は従来と同じように網板形状の熱伝導体(48)で
結合し、熱移動させる。
First, the two-stage cooling section (46) and the intermediate shield cylinder (34) are connected by a net plate-shaped heat conductor (48), as in the conventional case, to transfer heat.

次に、1−段冷却部(45)と液体窒素容器(36)と
の結合は平板形状の熱伝導体(14)で結合し、熱移動
させ、しかも、冷凍機(41)の荷重を全面的に受ける
構造である。
Next, the first stage cooling section (45) and the liquid nitrogen container (36) are connected by a flat plate-shaped heat conductor (14), which transfers heat and absorbs the load of the refrigerator (41) over the entire surface. It is a structure that is well received.

そして真空容器(37)より外側に出ている冷凍機部分
を非磁性金属板製の遮音カバー(21)で全体的に囲む
。遮音カバー(21)の内面には鉛板などの比重の大き
い遮音材(202)を貼り、さらにその内面にはセラミ
ックファイバーなどの吸音材(203)を貼る。尚、遮
音材(202)は遮音カバー(21)の内面でなく、外
面でも良い。
The refrigerator portion protruding outside the vacuum container (37) is entirely surrounded by a sound insulating cover (21) made of a non-magnetic metal plate. A sound insulating material (202) with a high specific gravity such as a lead plate is attached to the inner surface of the sound insulating cover (21), and a sound absorbing material (203) such as ceramic fiber is further attached to the inner surface of the sound insulating material (202). Note that the sound insulation material (202) may be formed not only on the inner surface but also on the outer surface of the sound insulation cover (21).

さらにガス配管(304)も」二記のような図示しない
遮音カバーで囲う。
Furthermore, the gas pipe (304) is also surrounded by a sound insulating cover (not shown) as shown in 2.

次に」;記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

冷凍機(41)の自重および真空圧力荷重は1段冷却部
(45)と液体窒素容器(36)とを結合する平板熱伝
導体(14)で剛に支持するので、各円筒状部材部ち、
真空容器(37)、液体窒素容器(36)、中間シール
ド筒(34)の相対変位はベローズ(11)およびフレ
キシブルな網板熱導体(48)で吸収される。従って、
冷凍機(41)の振動は外筒であるところの真空容器(
37)に対してベローズ(11)により伝達しにくくな
り、はとんど全部が液体窒素容器(36)に伝達して、
液体窒素容器(36)を振動させる。この液体窒素 (
36)は真空容器(37)の内部に位置し、しかも周囲
が真空であるので、この液体窒素容器が振動しても、真
空容器(37)への音圧の伝播は生じない。
Since the dead weight and vacuum pressure load of the refrigerator (41) are rigidly supported by the flat heat conductor (14) that connects the first-stage cooling section (45) and the liquid nitrogen container (36), each cylindrical member part ,
Relative displacements among the vacuum container (37), liquid nitrogen container (36), and intermediate shield tube (34) are absorbed by the bellows (11) and the flexible mesh heat conductor (48). Therefore,
The vibration of the refrigerator (41) is caused by the vacuum container (which is the outer cylinder).
37), the bellows (11) makes it difficult to transmit, and almost all of the liquid nitrogen is transmitted to the liquid nitrogen container (36),
Vibrate the liquid nitrogen container (36). This liquid nitrogen (
36) is located inside the vacuum container (37) and is surrounded by a vacuum, so even if this liquid nitrogen container vibrates, no sound pressure is propagated to the vacuum container (37).

液体窒素容器(36)の振動の真空容器(37)への伝
達はそれらを結ぶ吊り捧’301)のみである。しかし
この吊り捧(301)はフレキシブルに結合し、吊り捧
(30i)の軸方向の力のみが作用する。また、この吊
り捧(301)は振動感度の低い(振動しにくい所)部
所、つまり真空容器の端板(37a)近くに設けられて
いるので真空容器(37)を振動させる力は微弱である
The vibrations of the liquid nitrogen container (36) are transmitted to the vacuum container (37) only by the suspension 301) that connects them. However, this hanging rod (301) is connected flexibly, and only the force in the axial direction of the hanging rod (30i) acts. In addition, since this hanging rod (301) is installed in a location with low vibration sensitivity (a place where vibration is difficult to occur), that is, near the end plate (37a) of the vacuum container, the force that causes the vacuum container (37) to vibrate is weak. be.

つまり、液体窒素容器(36)は、冷凍機(41)の振
動を受けて振動し、自分自身の弾性エネルギーや、液体
の運動エネルギーに変って消費され、外部の真空容器(
37)はほとんど振動しない。
In other words, the liquid nitrogen container (36) vibrates in response to the vibrations of the refrigerator (41), and is consumed by converting into its own elastic energy and kinetic energy of the liquid, and the external vacuum container (
37) hardly vibrates.

また、ベローズ(11)は、ばね定数が3kgf/ m
m程度にしたが、ベローズのばね定数を柔らかくすると
それに比例して振動伝達率が小さくなるので、結果的に
MRI装置の騒音を一段と低減できる。
In addition, the bellows (11) has a spring constant of 3 kgf/m.
However, if the spring constant of the bellows is made softer, the vibration transmission rate decreases in proportion to it, and as a result, the noise of the MRI apparatus can be further reduced.

ベローズのばね定数を柔らかにするためには、ベローズ
の段数を多くするか、あるいは、板厚を薄くしなければ
ならず、結果的に振動に対する疲労強度不足となる。し
たがって1両者を考慮して、1〜10kgf/ mm程
度のばね定数を有するベローズが最も実用的である。
In order to soften the spring constant of the bellows, it is necessary to increase the number of stages of the bellows or reduce the plate thickness, which results in insufficient fatigue strength against vibration. Therefore, taking both factors into consideration, a bellows with a spring constant of about 1 to 10 kgf/mm is most practical.

しかも、冷凍機頭部(42)を遮音材(202)や吸音
材(203)を貼りつけた遮音カバー(21)で全体的
に囲んでおりガス配管(304)も上記と同様な図示し
ない遮音カバーで囲んでいるので、冷凍機(41)や、
ガス配管(304)から発生する騒音も外部へ伝播する
のを防止している。
Moreover, the refrigerator head (42) is entirely surrounded by a sound insulation cover (21) to which sound insulation material (202) and sound absorption material (203) are attached, and the gas piping (304) is also sound insulation (not shown) similar to the above. Since it is surrounded by a cover, the refrigerator (41),
Noise generated from the gas pipe (304) is also prevented from propagating to the outside.

このことによりMRI装置の冷凍機振動に起因する騒音
を大幅に低減できる。
As a result, noise caused by refrigerator vibration of the MRI apparatus can be significantly reduced.

他の実施例として、第3図に示すように遮音板およびそ
の付属装置を除去した構造にしてもよい。
As another embodiment, the structure may be such that the sound insulating plate and its attached devices are removed, as shown in FIG.

このようにしても第1図、第2図の実施例に準じた作用
効果が得られる。
Even in this case, effects similar to those of the embodiments shown in FIGS. 1 and 2 can be obtained.

また、他の実施例として、1段冷却部(45)を液体窒
素容器(36)に弱結合にし、2段冷却部(46)を中
間シールド筒(34)に剛結合にすることも可能である
In addition, as another embodiment, it is also possible to weakly connect the first stage cooling section (45) to the liquid nitrogen container (36) and rigidly connect the second stage cooling section (46) to the intermediate shield cylinder (34). be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば冷凍機と真空容器の結合をベローズで弱
弾性に結合し、冷凍機自重および真空圧力荷重を内筒で
あるところの液体窒素空温または中間シールド筒で支持
するよう剛結合したので、冷凍機の振動はベローズで振
動絶縁され、外筒であるところの真空容器には振動伝達
されず、内筒に大部分が振動伝達され、内筒のみが振動
し、弾性エネルギーや液体の運動エネルギーに変わって
消費される。
According to the present invention, the refrigerator and the vacuum container are weakly elastically connected with a bellows, and rigidly connected so that the refrigerator's own weight and vacuum pressure load are supported by the liquid nitrogen air temperature or intermediate shield cylinder, which is the inner cylinder. Therefore, the vibration of the refrigerator is isolated by the bellows, and the vibration is not transmitted to the vacuum container, which is the outer cylinder, but most of the vibration is transmitted to the inner cylinder. Only the inner cylinder vibrates, and elastic energy and liquid It is consumed instead of kinetic energy.

このように真空容器の振動を大幅に低減する冷凍機支持
構造となっているので、低騒音の医療用核磁気共鳴診装
置を得ることができる。
As described above, since the refrigerator support structure significantly reduces the vibration of the vacuum container, a low-noise medical nuclear magnetic resonance diagnostic apparatus can be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例の上半部を示す縦断面図、第
2図は第1図の要部を示す拡大図、第3図は他の実施例
の要部を示す第2図相当図、第4図は従来例のL半部を
示す縦断面図、第5図は第4図の要部を示す拡大図であ
る。 11・・・ベローズ、    14・・・平板熱伝導体
、21・・・遮音カバー、   31・・・超電導電磁
コイル、34・・・中間シールド筒、 36・・・液体
窒素容器、37・・真空容器、    41・・・冷凍
機、202・・遮音材、     203・・吸音材。
[Brief Description of the Drawings] Fig. 1 is a vertical sectional view showing the upper half of an embodiment of the present invention, Fig. 2 is an enlarged view showing the main part of Fig. 1, and Fig. 3 is another embodiment. FIG. 4 is a longitudinal sectional view showing the L half of the conventional example, and FIG. 5 is an enlarged view showing the main part of FIG. 4. DESCRIPTION OF SYMBOLS 11... Bellows, 14... Flat heat conductor, 21... Sound insulation cover, 31... Superconducting electromagnetic coil, 34... Intermediate shield tube, 36... Liquid nitrogen container, 37... Vacuum Container, 41... Freezer, 202... Sound insulation material, 203... Sound absorbing material.

Claims (4)

【特許請求の範囲】[Claims] (1)超電導電磁コイルで磁界を発生させ、その磁界を
使って医学的測定を行なう医療用核磁気共鳴診断装置に
おいて、超電導電磁コイルを超電導状態に長時間維持す
るために用いられる冷凍機の搭載手段を、外側筒状の真
空容器に対してはベローズで弱弾性結合し、冷凍機の荷
重は内側筒状の液体窒素容器又は中間シールド筒に剛結
合支持したことを特徴とする医療用核磁気共鳴診断装置
(1) In medical nuclear magnetic resonance diagnostic equipment that generates a magnetic field with a superconducting electromagnetic coil and performs medical measurements using the magnetic field, a refrigerator is installed to maintain the superconducting electromagnetic coil in a superconducting state for a long time. Medical nuclear magnetism characterized in that the means is weakly elastically coupled to an outer cylindrical vacuum container by a bellows, and the load of the refrigerator is rigidly coupled and supported to an inner cylindrical liquid nitrogen container or an intermediate shield cylinder. Resonance diagnostic device.
(2)真空容器より外側に出している冷凍機部分を囲う
遮音カバーを設けたことを特徴とする特許請求の範囲第
1項記載の医療用核磁気共鳴診断装置。
(2) The medical nuclear magnetic resonance diagnostic apparatus according to claim 1, further comprising a sound insulating cover that surrounds a portion of the refrigerator exposed outside the vacuum container.
(3)ベローズのばね定数を1〜10kgf/mmとし
たことを特徴とする特許請求の範囲第1項又は第2項記
載の医療用核磁気共鳴診断装置。
(3) The medical nuclear magnetic resonance diagnostic apparatus according to claim 1 or 2, wherein the bellows has a spring constant of 1 to 10 kgf/mm.
(4)遮音カバーは非磁性金属板製とし、その内面に鉛
などの比重の大きな遮音材を貼り、さらにその内面にセ
ラミックファイバーなどの吸音材を貼りつけたことを特
徴とする特許請求の範囲第2項記載の医療用核磁気共鳴
診断装置。
(4) Claims characterized in that the sound insulating cover is made of a non-magnetic metal plate, a sound insulating material with a high specific gravity such as lead is attached to the inner surface, and a sound absorbing material such as ceramic fiber is further attached to the inner surface. 2. Medical nuclear magnetic resonance diagnostic apparatus according to item 2.
JP61195249A 1986-08-22 1986-08-22 Medical nuclear magnetic resonance diagnostic apparatus Granted JPS6351849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61195249A JPS6351849A (en) 1986-08-22 1986-08-22 Medical nuclear magnetic resonance diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61195249A JPS6351849A (en) 1986-08-22 1986-08-22 Medical nuclear magnetic resonance diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS6351849A true JPS6351849A (en) 1988-03-04
JPH0427856B2 JPH0427856B2 (en) 1992-05-12

Family

ID=16337983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61195249A Granted JPS6351849A (en) 1986-08-22 1986-08-22 Medical nuclear magnetic resonance diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS6351849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281486A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Cryostat equipped with refrigerator
DE4019816A1 (en) * 1989-06-21 1991-01-10 Hitachi Ltd Cryostat with cryocooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281486A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Cryostat equipped with refrigerator
DE4019816A1 (en) * 1989-06-21 1991-01-10 Hitachi Ltd Cryostat with cryocooler
US4986077A (en) * 1989-06-21 1991-01-22 Hitachi, Ltd. Cryostat with cryo-cooler

Also Published As

Publication number Publication date
JPH0427856B2 (en) 1992-05-12

Similar Documents

Publication Publication Date Title
US5129232A (en) Vibration isolation of superconducting magnets
US4959964A (en) Cryostat with refrigerator containing superconductive magnet
JP2005024184A (en) Cryogenic cooling device
JPH0418189B2 (en)
US5864273A (en) Cryocooler vibration isolation and noise reduction in magnetic resonance imaging
JP2012143566A (en) Electrically conductive shield for superconducting electromagnet system
CN106763469A (en) A kind of damping of NMR imaging device
US5181385A (en) Cryostat and nuclear magnetic resonance imaging apparatus including a cryostat
JP3901217B2 (en) Vibration isolation cryogenic equipment
US5103647A (en) Dynamically balanced Gifford-McMahon refrigerator cold head
US7112966B2 (en) Magnetic resonance imaging apparatus
JPS6351849A (en) Medical nuclear magnetic resonance diagnostic apparatus
CA1307313C (en) Linear motor compressor with stationary piston
JP3678793B2 (en) Superconducting magnet
JP5120648B2 (en) Cryogenic cooling device
CN216928214U (en) Superconducting magnet device
JP2000022226A (en) Cooling apparatus for low temperature container
JPH02218184A (en) Cryostat with refrigerator
JPH1187131A (en) Magnetic field fluctuation suppressing helium-free superconducting magnet device
JP2005095479A (en) Magnetic resonance imaging apparatus and the receiving coil thereof
JP2741875B2 (en) Cryostat with refrigerator
JP2024510764A (en) NMR magnet system with Stirling cooler
JPH0674819A (en) Freezing device
Dang et al. On the Development of a Non-metallic and Non-magnetic Miniature Pulse Tube Cooler
JPH0278208A (en) Superconducting magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term