JPS6351721B2 - - Google Patents

Info

Publication number
JPS6351721B2
JPS6351721B2 JP13204981A JP13204981A JPS6351721B2 JP S6351721 B2 JPS6351721 B2 JP S6351721B2 JP 13204981 A JP13204981 A JP 13204981A JP 13204981 A JP13204981 A JP 13204981A JP S6351721 B2 JPS6351721 B2 JP S6351721B2
Authority
JP
Japan
Prior art keywords
group
fluoroalkyl group
present
compounds
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13204981A
Other languages
Japanese (ja)
Other versions
JPS5834005A (en
Inventor
Yutaka Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP13204981A priority Critical patent/JPS5834005A/en
Priority to US06/409,305 priority patent/US4486391A/en
Priority to DE19823231403 priority patent/DE3231403A1/en
Publication of JPS5834005A publication Critical patent/JPS5834005A/en
Publication of JPS6351721B2 publication Critical patent/JPS6351721B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フルオロアルキル基含有化合物をイ
オノフオアとして使用することを特徴とする、水
溶液あるいは有機溶剤中に溶存する金属イオン等
のイオン性物質を、選択的かつ能率的に捕集する
方法に関するものである。 従来、金属イオン等のイオン性物質を、配位あ
るいは包接により捕捉するものとして、キレート
樹脂、イオン交換樹脂、また最近ではクラウンエ
ーテル、クリプタンドなどの包接性能を有する化
合物(以下、包接性化合物という)、さらにそれ
らの高分子化物などが知られている。 一般に、包接性化合物は、イオン性物質に限ら
ず各種の化合物を包接して包接化合物を形成する
能力を有する化合物を意味するが、そのうちイオ
ン性物質に対する包接能を有するものは、イオノ
フオアと呼ばれる。 キレート樹脂やイオン交換樹脂等の高分子は、
水に不溶であり、捕捉した金属を回収することが
容易であるなどの利点を有するが、一般に金属イ
オンに対する選択性は少なく、形状の変化や劣化
を生じるという欠点がある。 また、高分子化の意味は、イオン性物質との相
互作用に関与する配位子等を一定の空間内に配置
し、局部的に配位子の濃度を高めるなどの高分子
効果の発現にあるが、配位子が主鎖に不規則に配
置された一次構造のみだれ、あるいは高分子主鎖
または側鎖のコンホメーシヨンの変化に基づく二
次構造の不規則性から、金属イオン等を選択的に
捕獲するための緻密な空間を効果的に確保すると
いう点では不充分な点がある。 選択性に主眼を置いたものとして、クラウンエ
ーテルやクリプタンド等の環状包接性化合物が開
発されてきたが、これらの場合には一般的に合成
の工程が多く、工業的に不利な点がある。また、
このような包接性化合物を高分子の側鎖に導入し
て、金属イオンの捕集の高能率化を計つたものも
開発されているが、上記の高分子化捕集剤の場合
と同様に、高選択性の発現という観点からは難点
がある。 金属イオン等のイオン性物質を選択的に包接す
る空隙の形成、並びに包接に関与する官能基の濃
度を局部的に増加させる方法として、上記の高分
子化または環状化という方法とは別に、分子集合
化の方法が考えられる。 本発明者は、このような考えのもとに、疎水性
であり、また疎油性でもあるフルオロアルキル基
が、水やほとんどの有機溶剤中で会合するという
特徴に着目し、フルオロアルキル基含有化合物の
イオノフオアとしての可能性を検討してきた。そ
の結果、以下に説明するように、広範囲のフルオ
ロアルキル基含有化合物が金属イオン等のイオン
性物質の好適なイオノフオアであることを見い出
し、これを使用して金属イオン等を選択的かつ効
率的に分離することを可能にし、本発明を完成す
るに至つた。 尚、ここで述べる包接の意味は、カルボキシレ
ートの如きアニオンと、Ca2の如きカチオンと
の間で生じる有機塩の形成のような現象を含まな
い。 本発明の目的は、フルオロアルキル基含有化合
物を金属イオン等のイオン性物質の捕集剤として
使用することにある。 本発明のもう1つの目的は、フルオロアルキル
基含有化合物によつて、水溶液あるいは有機溶剤
中に溶存するイオン性物質を選択的かつ高能率的
に捕集する方法を提供することにある。 本発明に係るフルオロアルキル基含有化合物
は、一般式 {R―(A)a}―oYX () 〔但し式中において、 Rは炭素数3〜20のフルオロアルキル基、 Aは2価以上の多価連結基 aは0または1、 nは1以上の整数、 Yはイオン性物質を包接しうる残基、 Xはイオン性物質との相互作用を阻害しない残
基であり、X基はY基を介して {R―(A)a}―o基と結合していてもよいし、ま
たY基がX基を介して{R(A)a}―o基と結合
していてもよい。〕 で表わされる化合物である。 一般式の化合物は、フルオロアルキル基R
の存在により有機溶剤に対する親和性が著しく低
いので、分子内あるいは分子間で互いに会合し、
その結果金属イオンを包接し得る残基Yの中の官
能基が接近し、環状イオノフオアと同様の包接場
を形成する。 会合が緻密で安定であるためには、R基は炭
素数3以上のパーフロロアルキル基であることが
好しいが、構造は直鎖状、分岐状、環状(例えば
シクロヘキシル基のような基)またはそれらを組
み合わせたもののいずれでもよく、さらに主鎖中
に酸素原子が介入した(CF32CFOCF2CF2―な
どでもよい。 一般式において、2価以上の多価連結基Aの
例は、―O―,―S―,―CO―,―SO2―,―
N<,―CON<,―SO2N<などや、―(CH2p
The present invention relates to a method for selectively and efficiently collecting ionic substances such as metal ions dissolved in an aqueous solution or an organic solvent, which is characterized by using a fluoroalkyl group-containing compound as an ionophore. be. Conventionally, compounds with inclusion properties (hereinafter referred to as inclusion properties) such as chelate resins, ion exchange resins, and recently crown ethers and cryptands have been used to capture ionic substances such as metal ions by coordination or inclusion. compounds), and their polymerized products are also known. In general, clathrate compounds refer to compounds that have the ability to include not only ionic substances but also various other compounds to form clathrate compounds. It is called. Polymers such as chelate resins and ion exchange resins are
Although it has the advantage of being insoluble in water and making it easy to recover captured metals, it generally has low selectivity for metal ions and has the disadvantage of causing shape changes and deterioration. In addition, the meaning of polymerization is to place ligands involved in interaction with ionic substances in a certain space, and to express polymer effects such as locally increasing the concentration of the ligands. However, due to the irregularity of the primary structure in which ligands are irregularly arranged in the main chain, or the irregularity of the secondary structure due to changes in the conformation of the polymer main chain or side chains, metal ions, etc. can be selectively removed. However, it is insufficient in terms of effectively securing a precise space for capturing. Cyclic inclusion compounds such as crown ethers and cryptands have been developed with a focus on selectivity, but these generally require a large number of synthesis steps, which is an industrial disadvantage. . Also,
Products have been developed in which such inclusion compounds are introduced into the side chains of polymers to improve the efficiency of collecting metal ions, but this is similar to the case of the polymerized collection agents mentioned above. However, there are difficulties in achieving high selectivity. In addition to the above-mentioned methods of polymerization or cyclization, as a method for forming voids that selectively include ionic substances such as metal ions and locally increasing the concentration of functional groups involved in inclusion, A possible method is molecular aggregation. Based on this idea, the present inventor focused on the characteristic that fluoroalkyl groups, which are both hydrophobic and lipophobic, associate in water and most organic solvents, and developed compounds containing fluoroalkyl groups. The possibility of this as an ionophore has been investigated. As a result, as explained below, we found that a wide range of fluoroalkyl group-containing compounds are suitable ionophores for ionic substances such as metal ions. This enabled the separation and completed the present invention. Note that the meaning of inclusion as described herein does not include phenomena such as the formation of organic salts between an anion such as a carboxylate and a cation such as Ca2. An object of the present invention is to use a fluoroalkyl group-containing compound as a scavenger for ionic substances such as metal ions. Another object of the present invention is to provide a method for selectively and highly efficiently collecting ionic substances dissolved in an aqueous solution or an organic solvent using a fluoroalkyl group-containing compound. The fluoroalkyl group-containing compound according to the present invention has the general formula {R-(A) a }- o YX () [In the formula, R is a fluoroalkyl group having 3 to 20 carbon atoms, and A is a divalent or higher fluoroalkyl group. The polyvalent linking group a is 0 or 1, n is an integer of 1 or more, Y is a residue that can include an ionic substance, X is a residue that does not inhibit interaction with an ionic substance, and the X group is Y It may be bonded to the {R-(A) a } -o group via the group, or the Y group may be bonded to the {R(A) a } -o group via the X group. . ] It is a compound represented by The compound of the general formula has a fluoroalkyl group R
Due to the presence of
As a result, the functional groups in the residue Y that can include metal ions come close to each other, forming an inclusion field similar to that of a cyclic ionophore. In order for the association to be dense and stable, the R group is preferably a perfluoroalkyl group having 3 or more carbon atoms, but the structure may be linear, branched, or cyclic (for example, a group such as a cyclohexyl group). Alternatively, it may be a combination of these, or it may be one in which an oxygen atom intervenes in the main chain, such as (CF 3 ) 2 CFOCF 2 CF 2 -. In the general formula, examples of the polyvalent linking group A having a valence of two or more are -O-, -S-, -CO-, -SO 2 -, -
N<, -CON<, -SO 2 N<, etc., -(CH 2 ) p ,

【式】(但し、pは1〜5の整数を 表わす。)、[Formula] (where p is an integer from 1 to 5 represent ),

【式】【formula】

【式】―CH2CH2N<,―CH2CH2S ―,―CH2CH2SO2N<,―CH2CH2CON<など
の脂肪族基やヘテロ原子を含有する脂肪族基であ
り、
[Formula] Aliphatic groups such as -CH 2 CH 2 N<, -CH 2 CH 2 S -, -CH 2 CH 2 SO 2 N<, -CH 2 CH 2 CON<, or aliphatic groups containing heteroatoms. and

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】などの芳香族基を含 むものでもよい。 イオン性物質を包接しうる残基Yを構成する官
能基の例は、スルホニル基、スルホンアミド、カ
ルボニル基、カルボニルエステル基、ウレタン結
合基、尿素結合基、エーテル結合基などである。 イオン性物質の包接には、2価以上の多価連結
基Aの或るものも関与する場合があり、Yに含ま
れることがある。その意味で、aは0または1で
ある。 X残基は、包接に直接関与しないが、一般式
で示される化合物の有機溶剤に対する溶解性や、
包接場の構造に影響を及ぼすものであり、例えば
アルキル基や芳香族基などである。 表―1に、本発明に係るフルオロアルキル基含
有化合物の具体例を示す。
It may also contain an aromatic group such as [Formula]. Examples of functional groups constituting the residue Y that can include an ionic substance include a sulfonyl group, a sulfonamide, a carbonyl group, a carbonyl ester group, a urethane bonding group, a urea bonding group, and an ether bonding group. Some of the polyvalent linking groups A having a valence of two or more may also be involved in the inclusion of the ionic substance, and may be included in Y. In that sense, a is 0 or 1. The X residue is not directly involved in inclusion, but it affects the solubility of the compound represented by the general formula in organic solvents,
It affects the structure of the inclusion field, such as alkyl groups and aromatic groups. Table 1 shows specific examples of the fluoroalkyl group-containing compounds according to the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明に係る、フルオロアルキル基含有化合物
をイオノフオアとするイオン性物質の具体的な分
離法は幾通りも存在するが、大別すると次の3つ
の態様で表現できる。 第1の態様は、金属イオン等のイオン性物質が
溶存する水溶液あるいは有機溶剤溶液に、フルオ
ロアルキル基含有化合物を投入し、液―固界面で
イオン性物質を包接し、分離する方法である。例
えば、フルオロアルキル基含有化合物の水および
有機溶剤に対する溶解度が1×10-4重量%以下で
ある様に、その溶解性が著しく低い場合に実施さ
れる。 第2の態様は、水とほとんど混り合わない有機
溶剤にフルオロアルキル基含有化合物を溶解し、
斯かる有機溶剤溶液をイオン性物質が溶存してい
る水溶液と接触させ、イオン性物質を分離する方
法である。この場合には、フルオロアルキル基含
有化合物が、水に対する溶解度において2×10-2
重量%以下、有機溶剤に対する溶解度において1
×10-4重量%以上であることが望ましい。液―液
抽出法や液体膜法などがこの態様に含まれる。 第3の態様は、イオン性物質が溶存している有
機溶剤溶液に、本発明に係るフルオロアルキル基
含有化合物を溶解し、しかる後に沈澱してくる包
接化合物を回収する方法である。 本発明に係るフルオロアルキル基含有化合物を
有機溶剤に溶解させた場合、その会合状態は有機
溶剤の種類で変化し、それに応じてイオン性物質
に対する選択性も若干変化する。従つて、用いる
溶剤の性質によつて選択性を或る程度制御するこ
とができ、フルオロアルキル基含有化合物のイオ
ノフオアとしての適用範囲は広い。 本発明に係るフルオロアルキル基含有化合物
の、イオノフオアとしての特性を充分に発揮させ
るためには、一般に溶解パラメーδ値が7.5以上
の溶剤が好ましく、さらに8.5以上のものが最も
好ましい。具体例として、クロロホルム、ジクロ
ルメタン、ジクロルエタン、テトラヒドロフラ
ン、酢酸エチル、ニトロメタンなどが挙げられ
る。 本発明の捕集方法の対象となるイオン性物質
は、無機金属塩、有機金属塩、アミノ酸などであ
り、特に金属塩は好適な捕集対象物である。 包接されたイオン性物質は、塩酸、硫酸、硝酸
などの鉱酸、あるいは炭酸アンモニウム、重炭酸
ソーダ、炭酸ソーダ、苛性ソーダなどの水溶液
(溶離液)と接触させることにより、容易に回収
することができ、フルオロアルキル基含有化合物
を繰り返し再使用することが可能である。例えば
液―液抽出では、イオン性物質を抽出した有機層
を、溶離液と接触させて逆抽出することができ、
有機層は再使用可能である。この意味で、本発明
に係るフルオロアルキル基含有化合物は、抽出お
よび回収工程が一体となつた液体膜法のキヤリヤ
ーとして好適である。 次に、本発明の物質分離方法の実施例を示し、
本発明をさらに具体的に説明する。 実施例 1 各フルオロアルキル基含有化合物のクロロホル
ム溶液(7.0×10-4M、20ml)および各金属塩
(酢酸ウラニル、NaCl、BaCl2、CoCl2、NiCl2
CuCl2、ZnCl2、HgCl2)の水溶液(7.0×10-4M、
20ml)をそれぞれ個別に調製し、金属塩の液―液
抽出を、37℃で24時間マグネチツクスターラーで
撹拌して行つた。抽出量は、水溶液中に残存して
いる金属イオンを定量(ウラニルイオン:アルセ
ナゾ法、他の金属イオン:原子吸光法)して求
めた。表―2にその結果を示す。
[Table] Although there are many specific methods for separating ionic substances using fluoroalkyl group-containing compounds as ionophores according to the present invention, they can be broadly classified into the following three aspects. The first embodiment is a method in which a fluoroalkyl group-containing compound is added to an aqueous solution or an organic solvent solution in which an ionic substance such as a metal ion is dissolved, and the ionic substance is included and separated at the liquid-solid interface. For example, this is carried out when the solubility of the fluoroalkyl group-containing compound in water and organic solvents is extremely low, such as 1 x 10 -4 % by weight or less. In the second embodiment, a fluoroalkyl group-containing compound is dissolved in an organic solvent that is almost immiscible with water,
This is a method for separating the ionic substances by bringing such an organic solvent solution into contact with an aqueous solution in which ionic substances are dissolved. In this case, the fluoroalkyl group-containing compound has a solubility in water of 2×10 -2
1% by weight or less, solubility in organic solvents
It is desirable that the content is ×10 -4 % by weight or more. This embodiment includes a liquid-liquid extraction method, a liquid membrane method, and the like. The third embodiment is a method of dissolving the fluoroalkyl group-containing compound according to the present invention in an organic solvent solution in which an ionic substance is dissolved, and then recovering the precipitated clathrate compound. When the fluoroalkyl group-containing compound according to the present invention is dissolved in an organic solvent, its association state changes depending on the type of organic solvent, and the selectivity for ionic substances also changes slightly accordingly. Therefore, the selectivity can be controlled to some extent by the nature of the solvent used, and the range of applications of fluoroalkyl group-containing compounds as ionophores is wide. In order to fully exhibit the properties of the fluoroalkyl group-containing compound according to the present invention as an ionophore, a solvent with a solubility parameter δ value of 7.5 or more is generally preferred, and a solvent with a solubility parameter δ value of 7.5 or more is most preferred. Specific examples include chloroform, dichloromethane, dichloroethane, tetrahydrofuran, ethyl acetate, and nitromethane. Ionic substances targeted by the collection method of the present invention include inorganic metal salts, organic metal salts, amino acids, etc., and metal salts are particularly suitable targets for collection. The clathrated ionic substances can be easily recovered by contacting them with mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid, or aqueous solutions (eluents) such as ammonium carbonate, sodium bicarbonate, soda carbonate, and caustic soda. It is possible to repeatedly reuse compounds containing fluoroalkyl groups. For example, in liquid-liquid extraction, the organic layer from which ionic substances have been extracted can be brought into contact with an eluent and back extracted.
The organic layer is reusable. In this sense, the fluoroalkyl group-containing compound according to the present invention is suitable as a carrier for a liquid film method in which extraction and recovery steps are integrated. Next, an example of the substance separation method of the present invention will be shown,
The present invention will be explained in more detail. Example 1 A chloroform solution (7.0×10 -4 M, 20 ml) of each fluoroalkyl group-containing compound and each metal salt (uranyl acetate, NaCl, BaCl 2 , CoCl 2 , NiCl 2 ,
CuCl 2 , ZnCl 2 , HgCl 2 ) aqueous solution (7.0×10 -4 M,
Liquid-liquid extraction of the metal salts was performed by stirring with a magnetic stirrer at 37°C for 24 hours. The extraction amount was determined by quantifying the metal ions remaining in the aqueous solution (uranyl ion: arsenazo method, other metal ions: atomic absorption method). Table 2 shows the results.

【表】 示す。
以上のように本発明の物質分離法によれば、ウ
ラニルイオン等の有用金属を回収することが可能
である。 実施例 2 酢酸ウラニルの人工海水溶液(7.0×0-4M、20
ml)を調製し、化合物のクロロホルム溶液
(7.0×10-4M、20ml)で液―液抽出を、実施例1
と同様の条件下で行つた。表―3に抽出結果を示
す。
[Table] Shown.
As described above, according to the substance separation method of the present invention, useful metals such as uranyl ions can be recovered. Example 2 Artificial seawater solution of uranyl acetate (7.0×0 -4 M, 20
Example 1
It was carried out under similar conditions. Table 3 shows the extraction results.

【表】【table】

【表】 この結果から解るように、本発明の方法によれ
ば、共存する金属イオンの影響を受けずに、ウラ
ニルイオンを捕集することができる。 次に、抽出が完了したクロロホルム層を、20%
炭酸アンモニウム水溶液10mlに20分間撹拌下で接
触させ、逆抽出を行つた。その結果、99.7%のウ
ラニルイオンが分離された。
[Table] As can be seen from this result, according to the method of the present invention, uranyl ions can be collected without being affected by coexisting metal ions. Next, remove the extracted chloroform layer by 20%
Back extraction was performed by contacting with 10 ml of ammonium carbonate aqueous solution for 20 minutes with stirring. As a result, 99.7% of uranyl ions were separated.

Claims (1)

【特許請求の範囲】[Claims] 1 液体媒質中に存在するイオン性物質を、フル
オロアルキル基含有化合物であつて該イオン性物
質を包接することができる化合物によつて、前記
媒質中から選択的かつ高能率的に捕集することを
特徴とする物質分離方法。
1. To selectively and highly efficiently collect an ionic substance present in a liquid medium from the medium using a compound containing a fluoroalkyl group and capable of clathrating the ionic substance. A substance separation method characterized by:
JP13204981A 1981-08-25 1981-08-25 Capturing of substance by using fluoroalkyl group containing compound Granted JPS5834005A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13204981A JPS5834005A (en) 1981-08-25 1981-08-25 Capturing of substance by using fluoroalkyl group containing compound
US06/409,305 US4486391A (en) 1981-08-25 1982-08-18 Separation and recovery of ionic substances by fluorine-containing compound
DE19823231403 DE3231403A1 (en) 1981-08-25 1982-08-24 SEPARATION AND RECOVERY OF IONIC SUBSTANCES BY FLUORINE COMPOUNDS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13204981A JPS5834005A (en) 1981-08-25 1981-08-25 Capturing of substance by using fluoroalkyl group containing compound

Publications (2)

Publication Number Publication Date
JPS5834005A JPS5834005A (en) 1983-02-28
JPS6351721B2 true JPS6351721B2 (en) 1988-10-14

Family

ID=15072323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13204981A Granted JPS5834005A (en) 1981-08-25 1981-08-25 Capturing of substance by using fluoroalkyl group containing compound

Country Status (1)

Country Link
JP (1) JPS5834005A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981204B2 (en) * 2012-04-17 2016-08-31 メタウォーター株式会社 Element separation and recovery method
FR3031738B1 (en) * 2015-01-19 2018-10-05 Adionics DEVICE AND METHOD FOR DESALINATION OF WATER BY THERMAL DIVIDING AND LIQUID ION EXTRACTION LIQUID APPLICABLE TO THIS DEVICE

Also Published As

Publication number Publication date
JPS5834005A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
KR900701664A (en) Method for removing soluble platinum metal catalyst from liquid product mixtures
EP2430058A1 (en) Sulfur functionalized polymers for separation of metals from gas and liquid and methods for preparation thereof
KR102202180B1 (en) Apparatus and method for thermal deionization and desalting of water by liquid-phase ion extraction liquid
US5071563A (en) Method for removing sulfate ions from aqueous solution of alkali metal chloride
US5348712A (en) Use of carbonates in metal ion extraction
JPS6351721B2 (en)
CN101128410B (en) Method for recovery of fluorinated alcohol
Smid Ion-binding properties of crown ether and cryptand containing polymers
JP4919447B2 (en) Photoresponsive metal ion adsorbing material and metal ion recovery method
BR112020002542A2 (en) methods to separate uranium
EP1825027A2 (en) Process for the recovery of acids
US4383980A (en) Process for extracting tungsten and molybdenum values from solution
Muhammad et al. Synthesis of Thiosalicylate based Hydrophobic Ionic Liquids and their Applications in Metal Extraction from aqueous solutions.
WO2020226522A1 (en) Process for the synthesis of the ionic liquid tetraoctylammonium di(2-ethylhexyl)-oxamate (il-5), product obtained and its use in selective metal extraction
JPH02235863A (en) Recovery of n-methyl-2-pyprolidone
US3826808A (en) Process for recovering tungsten from alkaline brine
JPH0675673B2 (en) Uranium adsorbent
JPS62275183A (en) Metal trapping method
JP4016645B2 (en) Method for extracting and purifying perfluoroalkanoic acid
JP3095494B2 (en) Carbon dioxide absorbent
US4276235A (en) Method for purifying bidentate organophosphorous compounds
US3812238A (en) Extraction of boron from aqueous solutions with salicyc acid derivatives and isoamyl alcohol
JPH09173832A (en) Production of porous resin carried with copper hexacyanoferrate (ii)
Ahmad et al. Chelation properties of some condensation polymers toward some trivalent lanthanide ions
JP2879648B2 (en) Selective metal ion separating agent containing kempimide derivative and method for treating aqueous solution containing metal ions using selective ion separating agent