JPS6351432A - Friction material and production thereof - Google Patents

Friction material and production thereof

Info

Publication number
JPS6351432A
JPS6351432A JP19515886A JP19515886A JPS6351432A JP S6351432 A JPS6351432 A JP S6351432A JP 19515886 A JP19515886 A JP 19515886A JP 19515886 A JP19515886 A JP 19515886A JP S6351432 A JPS6351432 A JP S6351432A
Authority
JP
Japan
Prior art keywords
resin
composite material
fiber
carbon fiber
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19515886A
Other languages
Japanese (ja)
Inventor
Tetsuo Ito
哲夫 伊藤
Koichi Nozaki
野崎 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP19515886A priority Critical patent/JPS6351432A/en
Publication of JPS6351432A publication Critical patent/JPS6351432A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To obtain a friction material having excellent friction properties, strength, heat resistance, flame retardance, etc., by impregnating a matrix resin into a pitch based carbon fiber having a specific fiber diameter and molding the impregnated fiber, and if necessary, carbonizing the resultant moldings. CONSTITUTION:Pitch based carbon fiber having >=10mum fiber diameter is impregnated with a matrix resin (preferably polystyrylpyridine based resin or said resin-containing resins) and the impregnated fiber is molded normally by hot curing to provide a friction material consisting of carbon fiber-reinforced composite material. Further, the above-mentioned composite material is carbonized to afford a friction material consisting of carbon fiber-reinforced carbon composite material. The process consisting of above-mentioned impregnation of resin and carbonization is carried out at <=3 times. The above-mentioned polystyrylpyridine based resin is, e.g. obtained by polycondensing terephthal aldehyde with 2,6-lutidine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、糸径10μm以上のピッチ系炭素繊維を強化
材とし、かつマトリックス樹脂とからなる炭素f11.
維強化複合材料又は該複合材料を炭化した炭素繊維強化
炭素複合材料を用いてなる摩擦材及びその製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides carbon f11.
The present invention relates to a friction material using a fiber-reinforced composite material or a carbon fiber-reinforced carbon composite material obtained by carbonizing the composite material, and a method for producing the same.

(従来の技術及びその問題点) 一般に糸径10μm未満の炭素繊維を強化材とする摩擦
材が航空機やレーシングカー等のブレーキ材料々どに使
用されている。
(Prior Art and its Problems) Generally, friction materials reinforced with carbon fibers having a thread diameter of less than 10 μm are used in brake materials for aircraft, racing cars, and the like.

しかし、輸送機器の高速化及び軽量化が進行[2つつあ
るため、その要求に見合うより高性能の摩擦材の開発が
望まれている。
However, as transportation equipment continues to become faster and lighter, there is a desire to develop friction materials with higher performance that meet these demands.

(問題点を解決するための手段) 本発明者らは、特に摩擦特性、強度等に優れた炭素繊維
強化成形材料からなる摩擦材を鋭意検討した結果、糸径
が10μm以上のピッチ系炭素繊維を強化材とする複合
材料を用いることにより本発明に至っ念。
(Means for Solving the Problems) As a result of intensive research into friction materials made of carbon fiber-reinforced molding materials particularly excellent in friction properties, strength, etc., the present inventors found that pitch-based carbon fibers with a thread diameter of 10 μm or more The present invention has been achieved by using a composite material having as a reinforcing material.

即ち、本発明は、糸径10 trm以上のピッチ系炭素
繊維とマトリックス樹脂とを含む炭素〒・哉維強化複合
材料又は該複合材料を炭化した炭素繊維強化炭素複合材
料からなることを特徴とする摩擦材、及び糸径10μm
以上のピッチ系炭素D 4にマ) IJソックス脂を含
浸し、次いで炭化し、該樹脂の含浸及び炭化からなる工
程を3回以下行なうことを特徴とする摩擦材の製造性に
関する。
That is, the present invention is characterized by comprising a carbon fiber-reinforced composite material containing pitch-based carbon fibers with a thread diameter of 10 trm or more and a matrix resin, or a carbon fiber-reinforced carbon composite material obtained by carbonizing the composite material. Friction material and thread diameter 10μm
The present invention relates to the manufacturability of a friction material characterized in that the above pitch-based carbon D4 is impregnated with IJ sock fat, then carbonized, and the process of impregnating and carbonizing the resin is performed three times or less.

本発明で用いられる糸径10μm以上、好ましくは12
〜18μmのピッチ系炭素繊維強化材は、−般的に石油
、石炭ピッチを用い、溶融紡糸、溶融遠心紡糸、渦流法
などにより容易に製造されうる連続繊維、短繊維を使用
することができる。1念これら連続繊維、短繊維は更に
チョツプドファイバー、ミルドファイバー、編織物、フ
ェルト、マット、不織布等に加工することにより使用す
ることができる。
The thread diameter used in the present invention is 10 μm or more, preferably 12 μm or more.
The pitch-based carbon fiber reinforcement of ~18 μm generally uses petroleum or coal pitch, and continuous fibers or short fibers that can be easily produced by melt spinning, melt centrifugal spinning, eddy current method, etc. can be used. These continuous fibers and short fibers can be used by further processing them into chopped fibers, milled fibers, knitted fabrics, felts, mats, nonwoven fabrics, etc.

工業的に生産されるピッチ系炭素繊維の連続繊維及びそ
の加工品も当然のこととして本発明に使用されうるが、
これら連続繊維は価格的に極めて高い段階にあるため汎
用性のある摩擦材料に用いる場合においては安価な短繊
維を用いることが有利である。
Naturally, industrially produced continuous fibers of pitch-based carbon fibers and processed products thereof can also be used in the present invention, but
Since these continuous fibers are extremely expensive, it is advantageous to use inexpensive short fibers when used in general-purpose friction materials.

本発明者らは、本発明に先だち熱可塑性樹脂と種々の糸
径の炭素繊維を組合せることによりその耐摩擦、摩耗特
性を測定した。結果として糸径が10μm以上の比較的
太いものが細いものに比し耐摩擦、摩耗特性が良いこと
を見出している。
Prior to the present invention, the present inventors combined a thermoplastic resin with carbon fibers of various thread diameters and measured their friction resistance and wear characteristics. As a result, it has been found that relatively thick yarns with a diameter of 10 μm or more have better friction resistance and wear characteristics than thinner yarns.

本発明で用いられるマトリックス樹脂としては。The matrix resin used in the present invention includes:

ポリスチリルピリジン系樹脂(以下、PSP樹脂と表わ
す)、二月?キシ樹脂、フェノール樹脂、ポリイミド樹
脂、ビニルエステル樹脂、フラン樹脂、ピッチ等が挙げ
られるが、特にPSP樹脂の単独若しくは該樹脂を含む
ものが好ましい。
Polystyrylpyridine resin (hereinafter referred to as PSP resin), February? Examples include oxy resin, phenol resin, polyimide resin, vinyl ester resin, furan resin, pitch, etc., but PSP resin alone or containing PSP resin is particularly preferable.

上記PSP樹脂は、フランス特許第2261296号及
び第2378052号に記載されているように、テレフ
メルアルデヒドのような芳香族ジアルデヒドと2,6−
ルチジン、2,4,6−コリジンのよう々少々くとも2
個の反応性メチル基によって置換されたピリジン誘導体
との重縮合により得られる。
The above-mentioned PSP resins are combined with aromatic dialdehydes such as terephmeraldehyde and 2,6-
Lutidine, 2,4,6-collidine, and at least 2
It is obtained by polycondensation with a pyridine derivative substituted with reactive methyl groups.

かかる樹脂は通常一般式 %式%(1) ここでRI R1は同一もしくは相違した炭化水素基か
らなり、ヘテロ原子を含むことができるセグメントを示
し、A 、 A1は同一もしくは相違したエーテル基、
スルフォン基のような立体移動結合基を示し、R、R1
とスチリルピリジン鎖の芳香族環との間の僑を形成する
原子または基を示し、R2は水素またはメチル基、エチ
ル基を示し、k l tlmは零に等しくてもよい整数
を示す。〕で表わされるものである。
Such resins usually have the general formula % (1) where RI R1 represents a segment consisting of the same or different hydrocarbon groups and may contain heteroatoms, A and A1 are the same or different ether groups,
Indicates a steric transfer bonding group such as a sulfone group, R, R1
and the aromatic ring of the styrylpyridine chain, R2 represents hydrogen, a methyl group, or an ethyl group, and k l tlm represents an integer that may be equal to zero. ].

PSP樹脂は優れた耐熱性、耐炎性、低発煙性を有し、
またフェノール樹脂、ポリイミド樹脂等と比し高い炭化
率を再する。表1に樹脂別に炭化率を比較した結果を示
す。
PSP resin has excellent heat resistance, flame resistance, and low smoke generation.
It also has a higher carbonization rate than phenol resins, polyimide resins, etc. Table 1 shows the results of comparing the carbonization rate for each resin.

表  1 (注)表中の温度は炭化温度。Table 1 (Note) The temperatures in the table are carbonization temperatures.

尚、PSP樹脂の不活性雰囲気中1000℃における炭
化率は依然として65壬あり、ピッチやフェノール樹脂
を利用するよりも有利であ#)結果として含浸敢密化炭
化工程を少なくすることが可能となる。
Furthermore, the carbonization rate of PSP resin at 1000°C in an inert atmosphere is still 65 mm, which is more advantageous than using pitch or phenol resin.As a result, it is possible to reduce the impregnation, densification, and carbonization steps. .

本発明で用いられるPSP樹脂は本発明の目的を損々わ
ない範囲でフェノール樹脂、ポリイミド樹脂等の比較的
炭化率の高い樹脂を併用することができる。これら樹脂
との併用は、PSP樹脂の底形時間、キュア温度の低減
という点で大きな利点がある。PSP樹脂単独での成形
条件は使用する基材、成形方法、樹脂のグレード等によ
シ異なるが概ね200℃において3時間以上必要とする
。本発明において炭化率が比較的高く、かつPsP樹脂
の底形条件を改善する効果のある樹脂としては、レゾー
ル型又はノボラック型フェノール樹脂、ノブラックフェ
ノール型エポキシ樹脂、BOOTS−TECHNOCH
EMI E社iM′″CO野IMIDE”に代表される
ようなビスマレイミド樹脂、あるいはビスマレイミドと
σ、θ′−ジアリルビスフェノールAに代表されるアリ
ルフェノール化合物との組合せなどを例として挙げるこ
とができる。
The PSP resin used in the present invention may be used in combination with a resin having a relatively high carbonization rate, such as a phenol resin or a polyimide resin, as long as the purpose of the present invention is not impaired. The combined use of these resins has a great advantage in terms of reducing the bottom shape time and curing temperature of the PSP resin. Molding conditions for PSP resin alone vary depending on the base material used, molding method, resin grade, etc., but generally require 3 hours or more at 200°C. In the present invention, resins that have a relatively high carbonization rate and are effective in improving the bottom shape conditions of PsP resins include resol type or novolak type phenolic resin, noblack phenol type epoxy resin, BOOTS-TECHNOCH
Examples include bismaleimide resins such as EMI E's iM'''CO IMIDE'', or combinations of bismaleimide and allylphenol compounds such as σ, θ'-diallyl bisphenol A. .

psp樹脂に併用し得るこれら樹脂の量は通常。The amount of these resins that can be used in combination with the PSP resin is normal.

PSP樹脂に対して1〜70重1係、好ましくは5〜5
0重量係重量当である。
1 to 70 parts by weight for PSP resin, preferably 5 to 5 parts
0 weight related weight equivalent.

本発明における炭化されて込ない炭素繊維強化複合材料
(以下、非炭化複合材料と込う)は、糸径10μm以上
のピッチ系炭素繊維基材を通常10〜70重量憾含宥し
てなるものである。かかる複合材料の作表は用いる基材
の形状により異なるが、樹脂含浸法あるいはこの変形と
して適当々溶剤を用いることなく樹脂を基材に均一に付
着させる等の方法をとることができる。又、該非炭化複
合材料は最終摩擦材の形状、必要性Rヒ、必要個数等に
より使いわけられ、射出底形、ホットプレス成形、オー
トクレーブ成形、トランスファー成形等の各種方法で成
形される。これら各種の底形条件に適し比ようにピッチ
系炭素Rmの形状とマトリックス樹脂種類を選択するこ
とで、例えばベレット犬射出成形材料、繊維表面に樹脂
分を被覆して半硬化状態にした短繊維状の射出成形用及
びホットプ1’スl1iK形材料、シートモールディン
グコンノマウンド、バルクモールディングコンパウンド
、フリテレグ等の非炭化複合材料(成形用材料)とする
ことができる。
The carbon fiber reinforced composite material that is not carbonized in the present invention (hereinafter referred to as non-carbonized composite material) is made by containing a pitch-based carbon fiber base material with a thread diameter of 10 μm or more in an amount of usually 10 to 70% by weight. It is. The tabulation of such a composite material varies depending on the shape of the base material used, but it is possible to use a resin impregnation method or a modified method in which the resin is uniformly adhered to the base material without using an appropriate solvent. The non-carbonized composite material can be used depending on the shape of the final friction material, the required R, the required number, etc., and can be molded by various methods such as injection bottom molding, hot press molding, autoclave molding, and transfer molding. By selecting the shape of the pitch-based carbon Rm and the type of matrix resin to suit these various bottom shape conditions, it is possible to create, for example, pellet dog injection molding materials, short fibers whose fiber surfaces are coated with a resin component and made into a semi-hardened state. It can be used as a non-carbonized composite material (molding material) such as injection molding and hot paste type material, sheet molding compound, bulk molding compound, flitereg, etc.

尚、本発明で用いられるピッチ系炭素繊維基材には無機
充填剤、例えば、ガラス繊維、金(4繊維、セラミック
繊維、アス〆スト、炭化ケイ素、窒化ケイ素、カオリン
、ゼオライト、マイカ、メルク、酸化チタン、二硫化モ
リブデン、黒鉛、石こう、石英などを目的に応じて1〜
20重量係添加することができる。
Incidentally, the pitch-based carbon fiber base material used in the present invention contains inorganic fillers, such as glass fiber, gold (4 fibers, ceramic fibers, asbestos, silicon carbide, silicon nitride, kaolin, zeolite, mica, Merck, Titanium oxide, molybdenum disulfide, graphite, gypsum, quartz, etc., depending on the purpose.
20% by weight can be added.

また本発明において該繊維基材に樹脂を含浸させる際、
樹脂の粘度を下げ含浸を容易にする目的で必要に応じて
各種の溶剤が樹脂に添加できる。
Further, in the present invention, when impregnating the fiber base material with a resin,
Various solvents can be added to the resin as necessary for the purpose of reducing the viscosity of the resin and facilitating impregnation.

本発明での非炭化複合材料は、通常100〜300℃、
好ましくは150〜270℃で硬化、成形される。かか
る硬化処理後、更に200〜270℃で1時間以上のポ
ストキーアをするのが好ましい。
The non-carbonized composite material in the present invention is usually heated at a temperature of 100 to 300°C.
It is preferably cured and molded at 150 to 270°C. After such curing treatment, it is preferable to further perform post-curing at 200 to 270° C. for one hour or more.

本発明の非炭化複合材料を炭化した炭素繊維強化炭素複
合材料(C/Cコンポソフト)は上記成形材料を用途、
目的、基材の形状、マトリックス樹脂の炭化率などによ
り炭化処理条件を選ぶことができる。
The carbon fiber-reinforced carbon composite material (C/C Composoft) obtained by carbonizing the non-carbonized composite material of the present invention is used for the above molding material,
The carbonization treatment conditions can be selected depending on the purpose, shape of the base material, carbonization rate of the matrix resin, etc.

本発明の摩擦材は、使用温度域が約300℃以下である
ような場合は成形後炭化処理を施していない非炭化複合
材料を用いてなるものでも食込。
If the friction material of the present invention is used in a temperature range of about 300°C or lower, it will bite even if it is made of a non-carbonized composite material that has not been carbonized after forming.

又、300℃を超える温度での使用におりては、マ) 
IJフックス脂を還元雰囲気下で概ね1000℃以下に
て炭化したC/Cコンポジットによる摩擦材が用いられ
る。更に500℃を超え1000℃程度迄の温度域で使
用される場合は、耐酸化温度を、好ましくは800℃以
上とすることが必要となるので1000℃〜3000℃
での炭化処理が必要となる。このような高温での炭化処
理を行う場合は、既に知られているようにリン、ホウ素
化合物等で処理することで更に耐酸化性を向上させるこ
とも可能である。又、このようにして得られるc/c:
1ンポジツトから々る摩擦材は通常炭素繊維基材の含M
iまが10〜85重量優、好ましくは20〜80重量係
である。
Also, when using at temperatures exceeding 300℃,
A friction material made of a C/C composite obtained by carbonizing IJ Fuchs fat at approximately 1000° C. or lower in a reducing atmosphere is used. Furthermore, when used in a temperature range exceeding 500°C and up to about 1000°C, it is necessary to set the oxidation resistance temperature to preferably 800°C or higher, so 1000°C to 3000°C.
Carbonization treatment is required. When performing carbonization treatment at such high temperatures, it is also possible to further improve oxidation resistance by treating with phosphorus, boron compounds, etc., as is already known. Also, c/c obtained in this way:
1. Friction materials from the base usually have a carbon fiber base material containing M.
The weight range is 10-85% by weight, preferably 20-80% by weight.

(発明の効果) 本発明の組成物は耐熱性、難燃性、加熱時の機械的強度
、1iiit摩擦・摩耗特性に優れたものであり、機械
の摺動部品、航空機、レーシングカー等のブレーキ材料
等の摩擦材に有用である。
(Effects of the Invention) The composition of the present invention has excellent heat resistance, flame retardancy, mechanical strength when heated, and 1III friction and wear properties, and is used as a brake for sliding parts of machines, aircraft, racing cars, etc. It is useful for friction materials such as materials.

(実施例) 次いで、本発明を実施例、参考例によりさらに説明する
。尚、例中の部及び係は重量基準である。
(Example) Next, the present invention will be further explained with reference to Examples and Reference Examples. In addition, parts and units in the examples are based on weight.

参考例1 マトリックス樹脂としてポリアミド6.6及びポリフェ
ニレンスルフィド(pps )を用い、これに糸径の異
なる炭素繊維を30優混入させ之ものについてその摩耗
特性を比較した。結果を表2に示した。
Reference Example 1 Polyamide 6.6 and polyphenylene sulfide (pps) were used as matrix resins, and more than 30 carbon fibers with different thread diameters were mixed therein, and their wear characteristics were compared. The results are shown in Table 2.

実施例1 糸径12〜15μmのピッチ系炭素繊維短繊維マット状
物(大臼木インキ化学工業■試作品、糸長:10〜20
σ)ラニードルパンチによりフェルトとj−た。フェル
トの嵩比重は約0.045g/(7)3であり念。PS
P 6022M (PSP樹脂、5NPE社製、固型分
75壬メチルエチルケトン溶液)をマトリックス樹脂と
し、このものをメチルエチルケトン(〜fEK ) K
より十分希釈し、浸漬法によりフェルトに含浸させた。
Example 1 Pitch-based carbon fiber short fiber mat with a thread diameter of 12 to 15 μm (Ousuki Ink Chemical Industry ■Prototype, thread length: 10 to 20
σ) Made with felt by needle punch. Please note that the bulk specific gravity of felt is approximately 0.045g/(7)3. P.S.
P 6022M (PSP resin, manufactured by 5NPE, solid content 75 ml methyl ethyl ketone solution) was used as a matrix resin, and this was used as methyl ethyl ketone (~fEK) K
It was diluted more thoroughly and impregnated into felt by the dipping method.

更に温風乾燥機中110℃にて6分間乾燥した。その後
8枚(見かけ厚さ:約15 cm )重ね合せ、プレス
盤にはさみ、200℃にて30分間保持し、次に220
℃にて約20跋/m’、10分加熱加圧し、引き続き2
50℃に昇温し、110 kg/crn2にて1時間加
圧成形した。得られ念成形物の厚さは約8.0 +m、
密度は1.45g/crnIであった。このものの摩擦
特性は、表3の如くであった。
Further, it was dried for 6 minutes at 110° C. in a hot air dryer. Thereafter, 8 sheets (apparent thickness: approx. 15 cm) were stacked, placed on a press plate, held at 200°C for 30 minutes, and then heated to 220°C.
Heat and pressurize at approximately 20 mm/m' for 10 minutes at
The temperature was raised to 50°C, and pressure molding was performed at 110 kg/crn2 for 1 hour. The thickness of the resulting preformed product is approximately 8.0 + m,
The density was 1.45 g/crnI. The friction characteristics of this product were as shown in Table 3.

表  3 このものは300℃以下の使用に際しては何ら高温での
熱処理を要しなかった。
Table 3 This product did not require any heat treatment at high temperatures when used at temperatures below 300°C.

更にこの成形物を400℃にて2時間、空気中にて熱処
理した。強化材として用いたフェルト自体を空気中40
0℃にて2時間放置するとその大部分が劣化してしまう
のに対し成形物は何らの外形変化を起さなかり念。この
場合のM量減少量は約4.7係であった。
Furthermore, this molded product was heat-treated in air at 400° C. for 2 hours. The felt itself used as a reinforcing material was exposed to air for 40 minutes.
If left at 0°C for 2 hours, most of the molded product would deteriorate, but the molded product did not change in appearance. In this case, the M amount decrease was approximately 4.7 times.

実施例2 実ガq例1で得られた成形物をコークス中に埋込んだ窒
素雰囲気中にて1000℃迄の熱処理を施した。更にそ
のものを2000℃迄の熱処理を行った。
Example 2 The molded product obtained in Example 1 was heat treated at up to 1000° C. in a nitrogen atmosphere embedded in coke. Furthermore, the material was heat-treated up to 2000°C.

それらの摩擦特性等を表4に示した。Their friction characteristics are shown in Table 4.

2000℃迄焼成したものの成形物の小片(3×3m)
をTGAにより空気中での重量減少を測定し念。
Small piece of molded product (3 x 3 m) fired to 2000℃
We measured the weight loss in air using TGA.

結果として約850℃にて10チの重量減少があった〇 実施例3 糸径12〜15μmのピッチ系炭素繊維短繊維マット状
物(大日本インキ化学工業((7)試作品、糸長;10
〜20m)をミキサーにより糸長21以下のミルドファ
イバーとした。
As a result, there was a weight decrease of 10 cm at about 850°C. Example 3 Pitch-based carbon fiber short fiber mat with a thread diameter of 12 to 15 μm (Dainippon Ink and Chemicals (7) Prototype, thread length; 10
~20m) was made into milled fibers with a yarn length of 21 or less using a mixer.

PSP6022PC(5NPE社製)とCOMPIMI
DE 795(Boors−TEcHNocI(EMr
g社製)を70:30の升、量割合で混合し、マトリッ
クス樹脂として用いた。
PSP6022PC (manufactured by 5NPE) and COMPIMI
DE 795 (Boors-TEcHNocI (EMr
(manufactured by Company G) were mixed at a ratio of 70:30 and used as a matrix resin.

PSP 6022 P Cを単独で1トリツクス樹脂と
して用いることも当然乍も何ら問題はないがC(Mvi
PIMIDEを混入させることで成形時間を短縮できた
There is naturally no problem in using PSP 6022 PC alone as a 1-trix resin, but C (Mvi
By mixing PIMIDE, the molding time could be shortened.

ミルドファイバー30係、該マトリックス樹脂70係を
均一に混合し、そのものを150℃の金型に充てんし、
次に180℃に昇温し2〜3分間保持し、次に200℃
に昇温し、20 kg/口25分間加圧し、続いて22
0℃に昇温し、50にり/、海25分間加圧し、更に2
50℃に昇温し、100〜200 kg/cm2にで4
0分間加圧することで成形物’を壱次。得られた成形物
を250℃にて3〜5時間のポストキュアを行った。該
成形物の物性を表5に示した。
Mix 30 parts of the milled fiber and 70 parts of the matrix resin uniformly, fill it into a mold at 150°C,
Next, raise the temperature to 180℃ and hold for 2-3 minutes, then raise the temperature to 200℃
20 kg/mouth for 25 minutes, followed by 22
Raise the temperature to 0℃, pressurize at 50℃ for 25 minutes, and then pressurize for 25 minutes.
Raise the temperature to 50℃ and increase the temperature to 100-200 kg/cm2.
The molded product is formed by applying pressure for 0 minutes. The obtained molded product was post-cured at 250°C for 3 to 5 hours. Table 5 shows the physical properties of the molded product.

表  5 実施例4 実施例1と同じフェルトを用い、マトリックス樹脂とし
てPSP6022MとCOMPIMIDE 795金6
0:40の重量割合で混合1〜、MEKにより希釈した
ものを用い浸漬法により含浸させた。
Table 5 Example 4 Using the same felt as Example 1, PSP6022M and COMPIMIDE 795 gold 6 as matrix resin
The mixture was diluted with MEK at a weight ratio of 0:40 and was impregnated by the dipping method.

実施例1とほぼ同様の操作により成形物を得た。A molded product was obtained by almost the same operation as in Example 1.

ただこの場合は成形時間は1時間で行った。成形物を窒
素雰囲気中200℃/時で]000cまで昇温し、10
00℃で30分間保ち、冷却することによシマトリック
ス樹脂を炭化させた。このものを更に高濃度のPSP 
6022 P C/COMPIMIDE 795のME
K溶液に浸漬し炭化を行った。得られたC/Cコンポジ
ットの密度は1.4697cm”であった。更にこのも
のを窒素雰囲気中2000℃迄の熱処理を行い、3 %
 IJン酸水溶液に浸漬・乾燥することで耐酸化性に優
れた成形物を得た。物性を表6に示[7た。
However, in this case, the molding time was 1 hour. The molded product was heated to 200°C/hour in a nitrogen atmosphere to 100°C.
The cymatrix resin was carbonized by keeping at 00° C. for 30 minutes and cooling. This is an even higher concentration of PSP
6022 P C/COMPIMIDE 795 ME
Carbonization was performed by immersing it in a K solution. The density of the obtained C/C composite was 1.4697cm''.This material was further heat-treated at up to 2000°C in a nitrogen atmosphere to reduce the density to 3%.
A molded product with excellent oxidation resistance was obtained by immersing it in an IJ acid aqueous solution and drying it. The physical properties are shown in Table 6 [7].

表  6 TGAによる耐酸化温度を測定すると約870℃にて1
0壬の重量減少があった。
Table 6 The oxidation resistance temperature measured by TGA was 1 at approximately 870℃.
There was a weight loss of 0.

Claims (1)

【特許請求の範囲】 1、糸径10μm以上のピッチ系炭素繊維とマトリック
ス樹脂とを含む炭素繊維強化複合材料又は該複合材料を
炭化した炭素繊維強化炭素複合材料からなることを特徴
とする摩擦材。 2、マトリックス樹脂がポリスチリルピリジン系樹脂で
ある特許請求の範囲第1項記載の摩擦材。 3、糸径10μm以上のピッチ系炭素繊維にマトリック
ス樹脂を含浸し、次いで炭化し、該樹脂の含浸及び炭化
からなる工程を3回以下行なうことを特徴とする摩擦材
の製造法。
[Claims] 1. A friction material comprising a carbon fiber-reinforced composite material containing pitch-based carbon fibers with a thread diameter of 10 μm or more and a matrix resin, or a carbon fiber-reinforced carbon composite material obtained by carbonizing the composite material. . 2. The friction material according to claim 1, wherein the matrix resin is a polystyrylpyridine resin. 3. A method for producing a friction material, which comprises impregnating pitch-based carbon fibers with a thread diameter of 10 μm or more with a matrix resin, then carbonizing the fibers, and performing the steps of impregnating and carbonizing the resin three times or less.
JP19515886A 1986-08-22 1986-08-22 Friction material and production thereof Pending JPS6351432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19515886A JPS6351432A (en) 1986-08-22 1986-08-22 Friction material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19515886A JPS6351432A (en) 1986-08-22 1986-08-22 Friction material and production thereof

Publications (1)

Publication Number Publication Date
JPS6351432A true JPS6351432A (en) 1988-03-04

Family

ID=16336393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19515886A Pending JPS6351432A (en) 1986-08-22 1986-08-22 Friction material and production thereof

Country Status (1)

Country Link
JP (1) JPS6351432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257733A (en) * 1988-08-23 1990-02-27 Petoka:Kk Brake disc
JPH02138528A (en) * 1988-11-18 1990-05-28 Tokico Ltd Brake frictional material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257733A (en) * 1988-08-23 1990-02-27 Petoka:Kk Brake disc
JPH02138528A (en) * 1988-11-18 1990-05-28 Tokico Ltd Brake frictional material

Similar Documents

Publication Publication Date Title
KR100525304B1 (en) Carbon-based composites derived from phthalonitrile resins
Rahmani et al. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix
US5057254A (en) Process for producing carbon/carbon composites
CN104629365A (en) Method for preparing carbon fiber-polyimide composite material
CN102775614A (en) Double-decker-shaped silsesquioxane-containing benzoxazine resin
Ren et al. Design of the phthalonitrile‐based composite laminates by improving the interfacial compatibility and their enhanced properties
Quan et al. Bio‐inspired metal ion coordination cross‐linking synergistic strategy to enhance the interfacial properties of carbon fiber composites
JPH03150266A (en) Production of carbon/carbon composite material
JPS6351432A (en) Friction material and production thereof
JPS60200860A (en) Manufacture of high strength acid-resistance carbon/carbon composite material
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
KR960000484A (en) Fiber Reinforced Resin Plate and Manufacturing Method thereof
Chen et al. Preparation, characterization and properties of fiber reinforced composites using silicon‐containing hybrid polymers
JP3519105B2 (en) Manufacturing method of carbon fiber reinforced carbon composite semi-carbon material
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
RU2793761C1 (en) Method for obtaining finished glass fibers and a polyesterimide composite filled with them
Ko et al. Modification of a carbon/carbon composite with a thermosetting resin precursor as a matrix by the addition of carbon black
JPH01294507A (en) Production of carbon or graphite material
JP3575709B2 (en) Carbon material
JPS62275009A (en) Impermeable carbon material and its production
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JPS60260469A (en) Manufacture of carbon material
JPS6256366A (en) Carbon fiber reinforced carbon composite material
JPH03279262A (en) Production of cylindrical carbon material reinforced with carbon fiber