JPS635136B2 - - Google Patents

Info

Publication number
JPS635136B2
JPS635136B2 JP54082834A JP8283479A JPS635136B2 JP S635136 B2 JPS635136 B2 JP S635136B2 JP 54082834 A JP54082834 A JP 54082834A JP 8283479 A JP8283479 A JP 8283479A JP S635136 B2 JPS635136 B2 JP S635136B2
Authority
JP
Japan
Prior art keywords
alumina
carrier
hours
curing
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54082834A
Other languages
Japanese (ja)
Other versions
JPS567644A (en
Inventor
Mikio Murachi
Fumyoshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8283479A priority Critical patent/JPS567644A/en
Publication of JPS567644A publication Critical patent/JPS567644A/en
Publication of JPS635136B2 publication Critical patent/JPS635136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、スピネル質触媒担体(以下、単にス
ピネル担体という)の製造方法に関するものであ
る。 一般に、触媒担体特に自動車用の触媒担体は、
耐振動性の面からある程度の強度をもち、しかも
触媒床の暖機性の面から密度が低く、そしてその
表面積も一定以上の比表面積のものであることが
要求されており、スピネルは耐熱性及び熱安定性
に優れているため、これらの触媒担体としてその
使用が検討されているものである。 しかしながら、スピネルを製造するために用い
るアルミナ原料として、α―アルミナまたはγ―
アルミナを使用する場合には1400℃以下で焼成す
ると所望の強度を得られず、一方1400℃以上で焼
成すると得られる担体の活性が低く、同時に所望
の比表面積を得ることができず、従つて自動車等
のような振動の激しい触媒装置に使用するには不
適当であるという欠点を有していた。 本発明はこれらの欠点を解消するためのもの
で、低い焼成温度でも十分に強度が高く、同時に
比表面積を使用目的によつて自由に選択でき、所
望により大きな比表面積を有するスピネル担体の
製造方法に関するものである。 即ち、本発明によるスピネル担体の製造方法
は、ρ―アルミナ及び/又はχ―アルミナをその
一部又は主成分として含有する活性アルミナにマ
グネシウム化合物を混合し成形した後、加湿雰囲
気、飽和水蒸気圧下で養生し、その後乾燥及び焼
成することを特徴とするものである。 本発明で用いるアルミナは、水酸化アルミニウ
ムを適当な急速乾燥手段によつて脱水して得られ
るρ―アルミナ及び/又はχ―アルミナを処理条
件によるが少なくとも10重量%含む活性アルミナ
を用いる。 また、本発明のスピネル担体の製造方法におい
てマグネシウム化合物として水酸化マグネシウ
ム、酸化マグネシウムを用いる場合には、成形
後、加湿雰囲気にて飽和水蒸気圧下、温水中又は
熱水中200℃以下で養生する工程を有する。 更に、本発明のスピネル担体の製造方法におい
てマグネシウム化合物としてマグネシウム炭酸塩
を用いる場合には、成形後、加湿雰囲気にて飽和
水蒸気圧下又は熱水中120℃以上で養生する工程
を有する。 更に、本発明製造方法で行う焼成工程では、焼
成温度を1400℃以下とすることができる。 本発明を以下の実施例に従つて詳細に説明す
る。 実施例 1 バイヤー法で製造された水酸化アルミニウム
(平均粒径50μ)を、700℃の高温ガス中に極めて
短時間通過させることによつて、水酸化アルミニ
ウムの結晶中に含まれる結晶水の約80%を脱水し
活性アルミナとし、該アルミナを平均粒径約10μ
に粉砕後、その粉末100重量部に対して水酸化マ
グネシウム(平均粒径(10μ)50重量部を加え混
合した後、皿型造粒機にその粉末を供給し、水を
噴霧しながら直径約3〜4.5mmの球状に造粒した。
この造粒品を100℃の飽和水蒸気圧下で20時間養
生し、その後200℃で3時間乾燥後、1000℃で3
時間焼成してスピネル担体を得た(この担体をA
―4と名付けた)。 実施例 2 実施例1において、温度700、800、900、1100、
1200、1350、1450℃で各々3時間焼成して他は実
施例1と同様にして担体を得た(これらの担体を
各々A―1,A―2,A―3,A―5,A―6,
A―7,A―8とした)。 実施例 3 実施例1において、温度25、50、75、125、
150、175、200、225、250℃で各々20時間養生を
行い、他は実施例1と同様にして担体を得た(こ
れらの担体を各々B―1,B―2,B―3,B―
5,B―6,B―7,B―8,B―9,B―10
とした)。 実施例 4 実施例1と同様の方法で活性アルミナを得、該
アルミナを平均粒径10μに粉砕後その粉末100重
量部に対して酸化マグネシウム(平均粒径20μ)
36重量部を加え混合した後、皿型造粒機にその粉
末を供給し、水を噴霧しながら直径約3〜4.5mm
の球状に造粒した。この造粒品を150℃の飽和水
蒸気圧下で20時間養生し、その後200℃で3時間
乾燥後1000℃で3時間焼成してスピネル担体を得
た(この担体をC―4とした)。 実施例 5 実施例4において、温度700、800、900、1100、
1200、1350、1450℃で各々3時間焼成し、他は実
施例4と同様にして担体を得た(これらの担体を
各々C―1,C―2,C―3,C―5,C―6,
C―7,C―8とした)。 実施例 6 実施例4において、温度を25、50、75、100、
125、175、200、225、250℃で各々20時間養生し、
他は実施例4と同様にして担体を得た(これらの
担体を各々D―1,D―2,D―3,D―4,D
―5,D―7,D―8,D―9,D―10とし
た)。 実施例 7 実施例1と同様の方法で活性アルミナを得、該
アルミナを平均粒径10μに粉砕後その粉末100重
量部に対して炭酸マグネシウム(平均粒径1μ程
度)87重量部を加え混合した後、皿型造粒機にそ
の粉末を供給し、水を噴霧しながら直径約3〜
4.5mmの球状に造粒した。この造粒品を200℃の飽
和水蒸気圧下で20時間養生し、その後200℃で3
時間乾燥後1000℃で3時間焼成して担体を得た
(この担体をE―4とした)。 実施例 8 実施例7において、温度700、800、900、1100、
1200、1350、1450℃で各々3時間焼成し、他は実
施例7と同様にして担体を得た(これらの担体を
E―1,E―2,E―3,E―5,E―6,E―
7,E―8とした)。 実施例 9 実施例7において、温度25、50、75、100、
125、150、175、225、250℃で各々20時間養生を
行い、他は実施例7と同様にして担体を得た(こ
れらの担体をF―1,F―2,F―3,F―4,
F―5,F―6,F―7,F―9,F―10とし
た)。 実施例 10 市販の活性アルミナ(主成分:ρ―アルミナ
(含量90重量%)、住友アルミニウム製錬K.K.、
商品名KHP―2)の粉末を用い、その粉末100重
量部に対して水酸化マグネシウム(平均粒径
10μ)52重量部加えて混合し、皿型造粒機にその
粉末を供給し、水を噴霧しながら直径約3〜4.5
mmの球状に造粒した。この造粒品を100℃の飽和
水蒸気圧下で20時間養生した。その後、200℃で
3時間乾燥後、1000℃で3時間焼成し担体を得た
(この担体をG―1とした)。 実施例 11 バイヤー法で製造された水酸化アルミニウム
(平均粒径50μ)を、500℃の高温ガス中で極めて
短時間通過させることによつて、水酸化アルミニ
ウムの結晶中に含まれる結晶水の約50%を脱水
し、活性アルミナとし、それを平均粒径10μに粉
砕後、その粉末100重量部に対して水酸化マグネ
シウム(平均粒径10μ)41重量部を加え混合した
後、皿型造粒機にその粉末を供給し、水を噴霧し
ながら直径約3〜4.5mmの球状に造粒した。この
造粒品を100℃の飽和水蒸気圧下で20時間養生し、
その後200℃で3時間乾燥後1000℃で3時間焼成
して担体を得た(この担体をH―1とした)。 実施例 12 実施例1において、養生を125℃にて飽和水蒸
気圧下より水蒸気分圧の低い状態で20時間行い、
その後200℃で3時間乾燥し、1000℃で3時間焼
成して担体を得た(この担体をI―1とした)。 実施例 13 実施例1において、養生を75℃の温水中にて造
粒品を浸して20時間行つて、その後200℃で3時
間乾燥し1000℃で3時間焼成して担体を得た(こ
の担体をJ―1とした)。 実施例 14 実施例1において、養生を125℃の熱水中に造
粒品を浸して20時間行い、その後200℃で3時間
乾燥後、1000℃で3時間焼成して担体を得た(こ
の担体をK―1とした)。 実施例 15 本実施例は、実施例1における活性アルミナと
水酸化マグネシウムの混合割合を変えた例につい
て述べる。これらの混合割合を変えた以外は、全
て実施例1と同様な条件で製造した。この場合活
性アルミナ100重量部に対して水酸化マグネシウ
ムを、10、20、30、40、60、70、80重量部加えて
担体を製造した(これらの担体をL―1,L―
2,L―3,L―4,L―6,L―7,L―8と
した)。 実施例 16 本実施例は、実施例4における酸化マグネシウ
ムの平均粒径を、1μ、5μ、20μ、50μに変えた例
について述べる。酸化マグネシウム原料の粒度を
変えた以外は全て実施例4と同様な条件で製造し
た(これらの担体を各々M―1,M―2,M―
4,M―5とした)。 実施例 17 本実施例では、実施例4における活性アルミナ
の平均粒径を3μ、5μ、15μ、30μ、40μと変えた例
について述べる。活性アルミナの粒度を変えた以
外は全て実施例4と同様な条件で製造した(これ
らの担体を各々N―1,N―2,N―4,N―
5,N―6とした)。 比較例 1 特開昭53−39281号に基いて、平均粒径0.5、
1、2.5、4、5μの5種類のα―アルミナ粉末を
準備し、これらの粉末にそれぞれ平均粒径50μの
酸化マグネシウム粉末を添加するとともに、これ
らの混合粉末に対して1重量%のデキストリンを
加え、これらを十分に混合し、次でマルメライザ
ー(錠剤成形機)により、約3.5mmの直径を有す
る球状の造粒品を得た。なお、上記の酸化マグネ
シウム100重量部に対してα―アルミナ粉末280重
量部を加えた。次に前記造粒品を養生することな
しに100℃で12時間乾燥し、その後これを1400℃
で10時間焼成してスピネル担体を得た(これらの
担体をP―1,P―2,P―3,P―4,P―5
とした)。 比較例 2 平均粒径2.5μのα―アルミナを用いて比較例1
と同様に造粒乾燥して800、1000、1200℃で各々
3時間焼成して担体を得た(これらの担体をQ―
1,Q―2,Q―3とした)。 比較例 3 平均粒径2.5μのα―アルミナを用いて比較例1
と同様にして造粒品を得て、これを50、100、
150、200℃の飽和水蒸気圧下で20時間養生後、
200℃で3時間乾燥し、1000℃で3時間焼成した
(これらの担体をR―1,R―2,R―3,R―
4とした)。 比較例 4 水酸化アルミニウムを800℃で3時間焼成し、
それを粉砕した平均粒度0.5μのγ―アルミナを用
いて比較例1と同様に造粒乾燥して、800、1000、
1200、1400℃で各々3時間焼成して担体を得た
(これらの担体をS―1,S―2,S―3,S―
4とした)。 比較例 5 平均粒径0.5μのγ―アルミナを用いて比較例1
と同様に造粒してこれを50、100、150、200、250
℃の飽和水蒸気圧下で20時間養生後、200℃で3
時間乾燥し1000℃で3時間焼成した(これらの担
体をT―1,T―2,T―3,T―4,T―5と
した)。 次に実施例及び比較例で得られた触媒担体(A
〜T)の性能を評価するため下記項目の試験を行
つた: 嵩密度 焼成後の担体を100mlのメスシリンダーに約
40c.c.タツピングしながら充填し、その時の体積
と担体の重量を測定して求めた。 圧壊強度 焼成した担体から直径2.83mm〜4.00mmの造粒
品を選び出して木屋式硬度計を用いて各20粒測
定し、その平均値を圧壊強度とした。 比表面積 島津製2200型の比表面積自動測定装置を用
い、N2吸着法に基いて測定した。 各実施例に基いて製造した担体の評価結果を第
1表に示す。
The present invention relates to a method for manufacturing a spinel catalyst carrier (hereinafter simply referred to as spinel carrier). In general, catalyst supports, especially catalyst supports for automobiles, are
Spinel is required to have a certain degree of strength from the perspective of vibration resistance, low density from the perspective of warm-up of the catalyst bed, and a specific surface area above a certain level. Since it has excellent thermal stability and thermal stability, its use as a catalyst carrier is being considered. However, as the alumina raw material used to produce spinel, α-alumina or γ-
When using alumina, the desired strength cannot be obtained if fired at temperatures below 1400°C, while the activity of the resulting support is low when fired at temperatures above 1400°C, and at the same time it is not possible to obtain the desired specific surface area. It has the disadvantage that it is unsuitable for use in catalyst devices that vibrate strongly, such as in automobiles. The present invention aims to eliminate these drawbacks, and provides a method for producing a spinel carrier that has sufficiently high strength even at low firing temperatures, allows the specific surface area to be freely selected depending on the purpose of use, and has a large specific surface area as desired. It is related to. That is, the method for producing a spinel carrier according to the present invention involves mixing a magnesium compound with activated alumina containing ρ-alumina and/or χ-alumina as a part or main component, molding the mixture, and then molding the mixture in a humid atmosphere under saturated water vapor pressure. It is characterized by curing, followed by drying and firing. The alumina used in the present invention is activated alumina containing at least 10% by weight of ρ-alumina and/or χ-alumina obtained by dehydrating aluminum hydroxide using a suitable rapid drying method, depending on the processing conditions. In addition, when magnesium hydroxide or magnesium oxide is used as the magnesium compound in the method for producing a spinel carrier of the present invention, after molding, there is a step of curing in warm water or hot water at 200°C or less under saturated steam pressure in a humidified atmosphere. has. Further, when magnesium carbonate is used as the magnesium compound in the method for producing a spinel carrier of the present invention, after molding, there is a step of curing in a humid atmosphere under saturated steam pressure or in hot water at 120° C. or higher. Furthermore, in the firing step performed in the production method of the present invention, the firing temperature can be set to 1400°C or less. The present invention will be explained in detail according to the following examples. Example 1 By passing aluminum hydroxide (average particle size 50μ) produced by the Bayer process through high-temperature gas at 700°C for an extremely short period of time, approximately the amount of crystal water contained in aluminum hydroxide crystals was removed. 80% is dehydrated to form activated alumina, and the alumina is reduced to an average particle size of approximately 10μ.
After pulverizing, 50 parts by weight of magnesium hydroxide (average particle size (10μ)) was added to 100 parts by weight of the powder, mixed, and then the powder was fed into a dish-type granulator, and the powder was pulverized to a diameter of approximately The pellets were granulated into spheres of 3 to 4.5 mm.
This granulated product was cured for 20 hours under saturated steam pressure at 100℃, then dried at 200℃ for 3 hours, and then heated to 1000℃ for 3 hours.
A spinel carrier was obtained by firing for a time (this carrier was
-4). Example 2 In Example 1, the temperatures were 700, 800, 900, 1100,
Carriers were obtained in the same manner as in Example 1 except for firing at 1200, 1350, and 1450°C for 3 hours. 6,
A-7, A-8). Example 3 In Example 1, the temperatures were 25, 50, 75, 125,
The carriers were cured at 150, 175, 200, 225, and 250°C for 20 hours, and otherwise were obtained in the same manner as in Example 1. ―
5, B-6, B-7, B-8, B-9, B-10
). Example 4 Activated alumina was obtained in the same manner as in Example 1, and after pulverizing the alumina to an average particle size of 10μ, magnesium oxide (average particle size of 20μ) was added to 100 parts by weight of the powder.
After adding 36 parts by weight and mixing, feed the powder to a dish-type granulator and grind it to a diameter of about 3 to 4.5 mm while spraying water.
It was granulated into spherical shapes. This granulated product was cured for 20 hours under saturated steam pressure at 150°C, then dried at 200°C for 3 hours, and then calcined at 1000°C for 3 hours to obtain a spinel carrier (this carrier was designated as C-4). Example 5 In Example 4, the temperatures were 700, 800, 900, 1100,
The carriers were calcined at 1200, 1350, and 1450°C for 3 hours, and in the same manner as in Example 4. 6,
C-7, C-8). Example 6 In Example 4, the temperature was set to 25, 50, 75, 100,
Cured at 125, 175, 200, 225, and 250℃ for 20 hours each.
Other carriers were obtained in the same manner as in Example 4 (these carriers were D-1, D-2, D-3, D-4, and D-1, respectively).
-5, D-7, D-8, D-9, D-10). Example 7 Activated alumina was obtained in the same manner as in Example 1, and after pulverizing the alumina to an average particle size of 10μ, 87 parts by weight of magnesium carbonate (average particle size of about 1μ) was added to 100 parts by weight of the powder and mixed. After that, the powder is fed into a dish-type granulator, and while water is sprayed, it is sized to a diameter of about 3~
It was granulated into 4.5 mm spheres. This granulated product was cured for 20 hours under saturated steam pressure at 200℃, and then heated at 200℃ for 3 hours.
After drying for an hour, it was calcined at 1000°C for 3 hours to obtain a carrier (this carrier was designated as E-4). Example 8 In Example 7, the temperatures were 700, 800, 900, 1100,
Carriers were obtained by firing at 1200, 1350, and 1450°C for 3 hours each, and in the same manner as in Example 7. ,E-
7, E-8). Example 9 In Example 7, the temperatures were 25, 50, 75, 100,
Carriers were obtained in the same manner as in Example 7 except that they were cured at 125, 150, 175, 225, and 250°C for 20 hours. 4,
F-5, F-6, F-7, F-9, F-10). Example 10 Commercially available activated alumina (main component: ρ-alumina (content 90% by weight), Sumitomo Aluminum Smelting KK,
Using powder of product name KHP-2), magnesium hydroxide (average particle size
Add 52 parts by weight of 10μ), mix, feed the powder to a dish-type granulator, and spray it with water until it is about 3 to 4.5 parts in diameter.
It was granulated into spheres of mm size. This granulated product was cured for 20 hours under saturated steam pressure at 100°C. Thereafter, it was dried at 200°C for 3 hours and then calcined at 1000°C for 3 hours to obtain a carrier (this carrier was designated as G-1). Example 11 Aluminum hydroxide (average particle size: 50μ) produced by the Bayer process was passed through high-temperature gas at 500°C for an extremely short period of time to remove crystallization water contained in aluminum hydroxide crystals. After dehydrating 50% of the activated alumina and pulverizing it to an average particle size of 10μ, 41 parts by weight of magnesium hydroxide (average particle size 10μ) was added to 100 parts by weight of the powder and mixed, followed by dish-shaped granulation. The powder was fed into a machine and granulated into spheres with a diameter of about 3 to 4.5 mm while spraying with water. This granulated product was cured for 20 hours under saturated steam pressure at 100°C.
Thereafter, it was dried at 200°C for 3 hours and then calcined at 1000°C for 3 hours to obtain a carrier (this carrier was designated as H-1). Example 12 In Example 1, curing was performed at 125°C for 20 hours at a water vapor partial pressure lower than the saturated water vapor pressure.
Thereafter, it was dried at 200°C for 3 hours and calcined at 1000°C for 3 hours to obtain a carrier (this carrier was designated as I-1). Example 13 In Example 1, the granulated product was cured in hot water at 75°C for 20 hours, then dried at 200°C for 3 hours, and calcined at 1000°C for 3 hours to obtain a carrier. The carrier was J-1). Example 14 In Example 1, the granulated product was cured for 20 hours by immersing it in hot water at 125°C, then dried at 200°C for 3 hours, and then calcined at 1000°C for 3 hours to obtain a carrier. The carrier was K-1). Example 15 This example describes an example in which the mixing ratio of activated alumina and magnesium hydroxide in Example 1 was changed. All the products were manufactured under the same conditions as in Example 1 except that the mixing ratio of these was changed. In this case, supports were prepared by adding 10, 20, 30, 40, 60, 70, and 80 parts by weight of magnesium hydroxide to 100 parts by weight of activated alumina.
2, L-3, L-4, L-6, L-7, L-8). Example 16 This example describes examples in which the average particle size of magnesium oxide in Example 4 was changed to 1μ, 5μ, 20μ, and 50μ. Everything was produced under the same conditions as in Example 4 except that the particle size of the magnesium oxide raw material was changed (these supports were M-1, M-2, M-
4, M-5). Example 17 This example describes examples in which the average particle diameter of activated alumina in Example 4 was changed to 3μ, 5μ, 15μ, 30μ, and 40μ. Everything was produced under the same conditions as in Example 4 except that the particle size of activated alumina was changed (these supports were N-1, N-2, N-4, N-
5, N-6). Comparative Example 1 Based on JP-A No. 53-39281, the average particle size is 0.5,
Five types of α-alumina powders of 1, 2.5, 4, and 5μ were prepared, and magnesium oxide powder with an average particle size of 50μ was added to each of these powders, and 1% by weight of dextrin was added to the mixed powder. In addition, these were sufficiently mixed, and then a spherical granulated product having a diameter of about 3.5 mm was obtained using a marmerizer (tablet forming machine). Note that 280 parts by weight of α-alumina powder was added to 100 parts by weight of the above magnesium oxide. Next, the granulated product was dried at 100℃ for 12 hours without curing, and then dried at 1400℃.
The spinel carriers were fired for 10 hours (these carriers were named P-1, P-2, P-3, P-4, P-5).
). Comparative Example 2 Comparative Example 1 using α-alumina with an average particle size of 2.5μ
The carriers were obtained by granulating and drying in the same manner as above and firing at 800, 1000, and 1200°C for 3 hours each (these carriers were
1, Q-2, and Q-3). Comparative Example 3 Comparative Example 1 using α-alumina with an average particle size of 2.5μ
Obtain a granulated product in the same manner as 50, 100,
After curing for 20 hours under saturated steam pressure at 150 and 200℃,
It was dried at 200℃ for 3 hours and calcined at 1000℃ for 3 hours.
4). Comparative Example 4 Aluminum hydroxide was fired at 800℃ for 3 hours,
Using γ-alumina with an average particle size of 0.5μ, it was granulated and dried in the same manner as in Comparative Example 1.
The carriers were obtained by firing at 1200°C and 1400°C for 3 hours each.
4). Comparative Example 5 Comparative Example 1 using γ-alumina with an average particle size of 0.5μ
Granulate it in the same way as 50, 100, 150, 200, 250.
After curing for 20 hours under saturated water vapor pressure at 200℃
The carriers were dried for an hour and fired at 1000°C for 3 hours (these carriers were designated as T-1, T-2, T-3, T-4, and T-5). Next, the catalyst carrier (A
In order to evaluate the performance of ~T), tests were conducted on the following items: Bulk density The fired carrier was placed in a 100 ml measuring cylinder.
40 c.c. was filled while tapping, and the volume and weight of the carrier were measured. Compressive Strength Granulated products with a diameter of 2.83 mm to 4.00 mm were selected from the fired carrier, and 20 grains each were measured using a Kiya type hardness tester, and the average value was taken as the compressive strength. Specific surface area Measurement was performed based on the N 2 adsorption method using an automatic specific surface area measuring device model 2200 manufactured by Shimadzu. Table 1 shows the evaluation results of the carriers produced based on each example.

【表】【table】

【表】【table】

【表】 上記式中、評価は以下の基準に従つて行われ
る: ○…… 嵩密度 1.0以下 圧壊強度 5以上 比表面積 5以上 △…… 嵩密度 1.0以上 比表面積 5〜2 ×…… 圧壊強度 3以下、又は 比表面積 2以下 上記表中、実施例1、2、比較例1、2で得ら
れた担体の特性を図に示す。図中、aは本発明担
体の圧壊強度、bは同嵩密度、cは同比表面積、
dは比較例担体の圧壊強度、eは同嵩密度、fは
同比表面積を示す。 前記表で示した担体の評価結果より、原料及び
製造工程条件と担体特性の結果について以下に若
干の考察を述べる。 (1) アルミナ源の種類の影響(実施例1、10、11
及び比較例1、4) 実施例1の水酸化アルミニウムの結晶水を80
%まで脱水した活性アルミナにはジプサイトは
認められず、ρ―アルミナ、χ―アルミナがX
線的に認められ(含量合計60重量%)、実施例
11の結晶水を50%まで脱水した活性アルミナに
はジプサイトが多く認められ、他にξ―アルミ
ナ、χ―アルミナがX線的に認められた(含量
合計20重量%)。また実施例10は市販のρ―ア
ルミナを用いた。一方、比較例1、4に用いた
原料は、X線的に各々α―アルミナ、γ―アル
ミナがその主成分として認められた。 表に示す結果から明らかなように、ρ―アル
ミナ及び/又はχ―アルミナを主成分とする活
性アルミナを用いて製造すると、低温焼成でも
圧壊強度が高く比表面積の高いスピネン担体を
得られる。そして、このことはρ―アルミナ及
び/又はχ―アルミナの製造法とは無関係であ
る。この原因は、本発明に用いた活性アルミナ
の水和性に大きく起因していると思われる。即
ち、スピネル担体を造粒し、養生後の生成物を
X線回折で調査してみると、本発明のもの(実
施例1、10、11、18)ではいずれもベーマイト
(擬ベーマイトも含む)が認められ、200℃以下
の養生ではベーマイトの回折線が比較的ブロー
ドであつたのに比べ、原料にα―またはγ―ア
ルミナを用いたもの(比較例1、4)は200℃
以下の養生ではX線的にベーマイトは認められ
ず、養生温度225℃、250℃で回折線のシヤープ
な結晶性ベーマイトが認められた。このように
本発明で用いた活性アルミナと、比較例で用い
た活性アルミナでは、特に低温養生での生成物
に差があり、これが得られるスピネル担体の性
能に影響していると思われる。 従つて、養生時にベーマイト養生しやすいア
ルミナ、即ちρ―及び/又はχ―アルミナをア
ルミナ源として用いた方が低温で焼成しても強
度が高く、比表面積の大きな担体が得られる。 (2) アルミナ源の粒度の影響(実施例17、比較例
1) 本発明の活性アルミナを用いた場合には、表
からも明らかなように、原料粒度によつて細孔
径、比表面積、圧壊強度、嵩密度等への影響は
極めて小さく、一方α―アルミナを用いた場合
には、原料粒度によつて細孔径が異なる。これ
は、本発明で用いる活性アルミナは、粒子内に
水の抜けた穴を内在し、比表面積を大きくして
いるものと考える。一方、比較例の場合には、
粒子内の穴は少ないかもしくは存在しないため
比表面積は小さくなる。 このように、本発明の活性アルミナを使用し
た場合には比表面積の大きい担体を得たい場合
でもアルミナの原料粒度をそれに相応させて小
さくする必要はない。 (3) マグネシア源の種類の影響(実施例1〜9) マグネシア源として、水酸化マグネシウム
Mg(OH)2(実施例1)、酸化マグネシウムMgO
(実施例4)、炭酸マグネシウム(MgCO34
Mg(OH)2・5H2O(実施例7)を用い、他の製
造条件を変えて、得られる担体の性能を評価し
た。 表から明らかなように、製造条件を選べば高
強度の比表面積の大きいスピネル担体が得られ
るが、炭酸マグネシウムを用いた場合には、低
温で養生するとMg6Al2CO3(OH)16・4H2Oが
多く生成し強度の低下があり、逆に水酸化マグ
ネシウム及び酸化マグネシウムを用いた場合に
高温で養生するとMg6Al2CO3・(OH)16
4H2Oが多く生成し、強度が低下するので好ま
しくない。前者の場合には、養生を120℃以上
で行うと性能の良い担体を得ることができ、後
者の場合には200℃以下の養生温度とすること
が好ましい。 このように、マグネシア原料の種類が異なる
場合には、適当な養生条件を選ぶ必要がある。 (4) マグネシア原料の粒度の影響(実施例16) マグネシア原料の粒度による影響は、ほとん
ど認められなかつた。 (5) アルミナ、マグネシア原料の混合割合(実施
例15) アルミナ及びマグネシアの混合量の変化によ
る影響はほとんど認められない。但し、マグネ
シアの混合量によつて嵩密度が若干変化してい
るが、これらは造粒状態によつて大きく変化す
るので両者の混合量の変化による影響とは断定
できない。 (6) 養生条件の影響(実施例1、12、13、14) 養生温度はマグネシア源の種類によつて好ま
しい温度範囲があることは前記(2)で述べたとお
りである。養生時間については実施例中全て20
時間で行つたが、これより短くとも長くとも差
は少なく、養生温度との関係で適当に選択する
ことができる。更に、養生時の雰囲気について
は、加湿雰囲気にて飽和水蒸気圧以下、飽和水
蒸気圧下、または温水もしくは熱水中いずれで
あつても、得られる担体の性能の差は小さい。 (7) 焼成条件(実施例1、2、4、5、7、8) 本発明の各実施例から明らかなように、得ら
れる担体はその焼成温度によつて嵩密度、比表
面積、細孔径が大きく変化するので、担体の使
用目的に応じて適性な特性が得られる焼成温度
を選択することができる。焼成時間及び焼成時
の雰囲気は種々選択することができ、これらの
担体特性への影響は極わめて小さい。 本発明スピネル担体の製造方法は、上記記載か
らも明らかなように、安価な原料である水酸化ア
ルミニウムを使用でき、しかも比表面積の大きな
スピネル担体を得るために微細なアルミナ原料を
用いる必要もない。また、焼成条件特に焼成温度
を選ぶことによつて比表面積等担体として重要な
特性を適宜変えることができ、焼成温度を十分に
低くすることも可能である。 このようにして得られたスピネル担体は、強度
及び比表面積が大きく、嵩密度が比較的低い担体
であり、従来のようにこれらの特性のうち1つあ
るいは2つを満たすスピネル担体はあつても、同
時に全ての特性を満たす担体はなかつたので、そ
の性能は大巾に向上した。 本発明で得られるスピネル担体は、自動車の排
気ガス浄化用触媒担体、燃料改質用触媒担体をは
じめとして、種々の排出ガス浄化用触媒担体、吸
着材、化学反応触媒担体等広く用いることがで
き、工業上非常に利用価値のあるものである。
[Table] In the above formula, evaluation is performed according to the following criteria: ○... Bulk density 1.0 or less Compressive strength 5 or more Specific surface area 5 or more △... Bulk density 1.0 or more Specific surface area 5-2 ×... Compressive strength 3 or less, or specific surface area 2 or less In the table above, the characteristics of the carriers obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in the figure. In the figure, a is the crushing strength of the carrier of the present invention, b is the same bulk density, c is the same specific surface area,
d represents the crushing strength of the comparative carrier, e represents the bulk density, and f represents the specific surface area. Based on the evaluation results of the carrier shown in the table above, some considerations will be made below regarding the results of the raw materials, manufacturing process conditions, and carrier properties. (1) Effect of type of alumina source (Examples 1, 10, 11)
and Comparative Examples 1 and 4) Crystallization water of aluminum hydroxide of Example 1 was added to 80%
No gypsite was observed in activated alumina dehydrated to %, and ρ-alumina and χ-alumina were
Linearly recognized (total content 60% by weight), Examples
In activated alumina obtained by dehydrating the crystallization water of No. 11 to 50%, a large amount of gypsite was observed, and ξ-alumina and χ-alumina were also observed by X-ray (total content 20% by weight). Further, in Example 10, commercially available ρ-alumina was used. On the other hand, in the raw materials used in Comparative Examples 1 and 4, α-alumina and γ-alumina were respectively confirmed as the main components by X-ray analysis. As is clear from the results shown in the table, when produced using activated alumina mainly composed of ρ-alumina and/or χ-alumina, a spinene support with high crushing strength and high specific surface area can be obtained even when fired at a low temperature. And this is independent of the method of manufacturing ρ-alumina and/or χ-alumina. This is thought to be largely due to the hydration properties of the activated alumina used in the present invention. That is, when the spinel carrier was granulated and the product after curing was examined by X-ray diffraction, all of the products of the present invention (Examples 1, 10, 11, and 18) were boehmite (including pseudoboehmite). was observed, and the diffraction lines of boehmite were relatively broad when cured at temperatures below 200℃, whereas those using α- or γ-alumina as raw materials (Comparative Examples 1 and 4) were cured at 200℃ or below.
No boehmite was observed in X-rays during the following curing, and crystalline boehmite with sharp diffraction lines was observed at curing temperatures of 225°C and 250°C. As described above, there is a difference in the products produced especially during low temperature curing between the activated alumina used in the present invention and the activated alumina used in the comparative examples, and this seems to affect the performance of the obtained spinel carrier. Therefore, it is better to use alumina that easily forms boehmite during curing, that is, ρ- and/or χ-alumina, as the alumina source, to obtain a support that has higher strength and a larger specific surface area even when fired at a lower temperature. (2) Effect of particle size of alumina source (Example 17, Comparative Example 1) When the activated alumina of the present invention is used, as is clear from the table, the pore diameter, specific surface area, and crushability depend on the particle size of the raw material. The influence on strength, bulk density, etc. is extremely small, whereas when α-alumina is used, the pore diameter varies depending on the particle size of the raw material. This is considered to be because the activated alumina used in the present invention has holes in its particles through which water can escape, increasing its specific surface area. On the other hand, in the case of the comparative example,
Since there are few or no pores within the particles, the specific surface area is small. Thus, when the activated alumina of the present invention is used, even if it is desired to obtain a support with a large specific surface area, it is not necessary to correspondingly reduce the particle size of the alumina raw material. (3) Effect of the type of magnesia source (Examples 1 to 9) Magnesium hydroxide was used as the magnesia source.
Mg(OH) 2 (Example 1), magnesium oxide MgO
(Example 4), magnesium carbonate (MgCO 3 ) 4 .
Using Mg(OH) 2.5H 2 O (Example 7) and changing other production conditions, the performance of the obtained carrier was evaluated. As is clear from the table, if the manufacturing conditions are selected, a spinel support with high strength and a large specific surface area can be obtained, but when magnesium carbonate is used, Mg 6 Al 2 CO 3 (OH) 16 . A large amount of 4H 2 O is produced, resulting in a decrease in strength. Conversely, when magnesium hydroxide and magnesium oxide are used and cured at high temperatures, Mg 6 Al 2 CO 3・(OH) 16
This is not preferable because a large amount of 4H 2 O is produced and the strength decreases. In the former case, a carrier with good performance can be obtained by curing at 120°C or higher; in the latter case, it is preferable to set the curing temperature to 200°C or lower. In this way, when the types of magnesia raw materials are different, it is necessary to select appropriate curing conditions. (4) Effect of particle size of magnesia raw material (Example 16) Almost no effect was observed due to particle size of magnesia raw material. (5) Mixing ratio of alumina and magnesia raw materials (Example 15) Almost no effect was observed due to changes in the mixing amounts of alumina and magnesia. However, although the bulk density slightly changes depending on the amount of magnesia mixed, these changes greatly depending on the granulation state, so it cannot be concluded that this is due to the change in the amount of both. (6) Effect of curing conditions (Examples 1, 12, 13, 14) As stated in (2) above, there is a preferable curing temperature range depending on the type of magnesia source. Regarding curing time, all examples are 20
Although the time was determined by the time, there is little difference between shorter and longer times than this, and the time can be selected appropriately depending on the curing temperature. Furthermore, with regard to the atmosphere during curing, there is little difference in performance of the resulting carriers, regardless of whether the curing is in a humidified atmosphere with a saturated water vapor pressure or below, under a saturated vapor pressure, or in hot water or hot water. (7) Firing conditions (Examples 1, 2, 4, 5, 7, 8) As is clear from the examples of the present invention, the bulk density, specific surface area, and pore diameter of the obtained carrier vary depending on the firing temperature. Since the calcination temperature varies greatly, it is possible to select a calcination temperature that provides suitable characteristics depending on the intended use of the carrier. The firing time and the atmosphere during firing can be selected in various ways, and their influence on the properties of the carrier is extremely small. As is clear from the above description, the method for producing the spinel carrier of the present invention allows the use of aluminum hydroxide, which is an inexpensive raw material, and does not require the use of fine alumina raw materials in order to obtain a spinel carrier with a large specific surface area. . Furthermore, by selecting the firing conditions, particularly the firing temperature, important properties as a carrier, such as specific surface area, can be changed as appropriate, and it is also possible to lower the firing temperature sufficiently. The spinel carrier obtained in this way has high strength and specific surface area, and relatively low bulk density, and although there are conventional spinel carriers that satisfy one or two of these characteristics, Since there was no carrier that simultaneously satisfied all the properties, its performance was greatly improved. The spinel support obtained by the present invention can be widely used as a catalyst support for automobile exhaust gas purification, a catalyst support for fuel reforming, various exhaust gas purification catalyst supports, adsorbents, chemical reaction catalyst supports, etc. , which is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例1、2及び比較例1、2で得られた
スピネル担体において、焼成温度と触媒担体の特
性(圧壊強度、嵩密度、比表面積)との関係を示
すグラフである。
The figure is a graph showing the relationship between the calcination temperature and the characteristics (compressive strength, bulk density, specific surface area) of the catalyst carrier in the spinel carriers obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

Claims (1)

【特許請求の範囲】 1 ρ―アルミナ及び/又はχ―アルミナをその
一部又は主成分として含有する活性アルミナにマ
グネシウム化合物を混合し、成形した後、加湿雰
囲気、飽和水蒸気圧下で養生し、その後乾燥及び
焼成することを特徴とするスピネル質触媒担体の
製造方法。 2 マグネシウム化合物として、水酸化マグネシ
ウム、酸化マグネシウムを用い、成形後、加湿雰
囲気、飽和水蒸気圧下、温水中又は熱水中にて
75゜〜200℃で養生する工程を有する特許請求の範
囲第1項記載の方法。 3 マグネシウム化合物として、マグネシウム炭
酸塩を用い、成形後、加湿雰囲気、飽和水蒸気圧
下又は熱水中にて120℃以上で養生する工程を有
する特許請求の範囲第1項記載の方法。 4 成形後の焼成工程において、その焼成温度が
1400℃以下である特許請求の範囲第1項記載の方
法。
[Scope of Claims] 1. A magnesium compound is mixed with activated alumina containing ρ-alumina and/or χ-alumina as a part or main component, molded, and then cured in a humidified atmosphere under saturated water vapor pressure. A method for producing a spinel catalyst carrier, which comprises drying and firing. 2 Using magnesium hydroxide or magnesium oxide as a magnesium compound, after molding, in a humid atmosphere, under saturated steam pressure, in hot water or hot water.
The method according to claim 1, comprising the step of curing at 75° to 200°C. 3. The method according to claim 1, which uses magnesium carbonate as the magnesium compound and includes the step of curing at 120° C. or higher in a humid atmosphere, under saturated steam pressure, or in hot water after molding. 4 In the firing process after molding, the firing temperature is
The method according to claim 1, wherein the temperature is 1400°C or less.
JP8283479A 1979-06-29 1979-06-29 Manufacture of catalyst carrier Granted JPS567644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8283479A JPS567644A (en) 1979-06-29 1979-06-29 Manufacture of catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283479A JPS567644A (en) 1979-06-29 1979-06-29 Manufacture of catalyst carrier

Publications (2)

Publication Number Publication Date
JPS567644A JPS567644A (en) 1981-01-26
JPS635136B2 true JPS635136B2 (en) 1988-02-02

Family

ID=13785427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283479A Granted JPS567644A (en) 1979-06-29 1979-06-29 Manufacture of catalyst carrier

Country Status (1)

Country Link
JP (1) JPS567644A (en)

Also Published As

Publication number Publication date
JPS567644A (en) 1981-01-26

Similar Documents

Publication Publication Date Title
US3222129A (en) Method for producing active alumina nodules
US3226191A (en) Method of producing active alumina and the resulting product
US5538932A (en) Preparation of high activity, high density activated carbon with activatable binder
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
US3557025A (en) Method of producing alkalized alumina and products produced thereby
US4237030A (en) Catalyst for purifying exhaust gas from an internal combustion engine
US3850849A (en) Formed alumina bodies for catalytic uses
US5049365A (en) Process for treating air containing hydrocarbon vapor with a composite adsorbent material
JPS6324932B2 (en)
GB1603464A (en) Alumina compositions
WO1995022403A1 (en) Absorbents
US6962684B2 (en) Activated alumina formed body and method for producing the same
JP3066850B2 (en) Binderless X-type zeolite molding and method for producing the same
JPS6234685B2 (en)
US3917544A (en) Agglomerated adsorbent products of molecular sieve grains
JPS635136B2 (en)
JPH0576754A (en) Composite forming adsorbent and production thereof
US3251783A (en) Method of preparing an alumina supported catalyst composition
JP4345323B2 (en) Method for producing activated alumina molded body
RU2711605C1 (en) Method of producing alumina catalysts of the claus process and use thereof on sulfur production plants
JP3328732B2 (en) Acid component adsorbent
RU2671583C1 (en) Carbon dioxide absorber, method for preparing thereof and method for cleaning gas mixtures
JPH0248484B2 (en)
JPS633654B2 (en)
JP2003063854A (en) Activated alumina molding and method for manufacturing it