JPS635132B2 - - Google Patents

Info

Publication number
JPS635132B2
JPS635132B2 JP13225084A JP13225084A JPS635132B2 JP S635132 B2 JPS635132 B2 JP S635132B2 JP 13225084 A JP13225084 A JP 13225084A JP 13225084 A JP13225084 A JP 13225084A JP S635132 B2 JPS635132 B2 JP S635132B2
Authority
JP
Japan
Prior art keywords
gas
valve
pipe
reactor
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13225084A
Other languages
Japanese (ja)
Other versions
JPS6111142A (en
Inventor
Akira Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP13225084A priority Critical patent/JPS6111142A/en
Publication of JPS6111142A publication Critical patent/JPS6111142A/en
Publication of JPS635132B2 publication Critical patent/JPS635132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、例えば、化学プラントにおける反応
器内等の可熱性、有毒性等の危険性ガスをパージ
するために使用するパージ用不活性ガスに関す
る。 [背景技術とその問題点] 一般に、化学プラント、その他各種のプラント
において、反応器等の搭槽類、機器、配管等の検
査、修理、清掃等を行なう場合、それらの反応器
等の所定空間の内部に可燃性ガス、有毒性ガス、
その他の危険性ガスが残留していると火災、爆
発、中毒等の危険があるため、完全にパージしな
ければならない。 従来、その危険性ガスのパージ手段として火
災、爆発、毒性等の危険性の全くない安全な窒素
ガスにより危険性ガスと置換していた。ところ
が、窒素ガスが反応器等の内部に充満していると
その分酸素量が減り、この状態で反応器等の内部
に作業者が入つて検査等の作業をすると、酸素欠
乏状態となる虞れがある。そこで、窒素ガスを更
に空気と置換する必要があるが、窒素ガスは無色
無臭であることから、その存在を識別することが
困難で、空気と完全に置換できたかどうか確認す
るためには、頻繁に酸素の濃度を検知器等で検知
する必要がある。しかし、実際の作業においては
頻繁な検知が面倒なため、酸素検知の回数を少な
くしたり、反応器底部のみの検知で済ませたりし
がちであつたため、常に酸欠の危険性があつた。 この為、万一酸素検知が不十分の状態で反応器
等の内部に入つても、パージ用の窒素ガスが残留
していることがすぐに識別できることが望まれて
いた。 [発明の目的] 本発明の目的は、各種のプラントにおいて、パ
ージ用に用いられた窒素ガス等の不活性ガスの残
存が作業者に容易に識別できるパージ用不活性ガ
スを提供することにある。 [問題点を解決するための手段および作用] 本発明は、反応器等の所定空間内の危険性ガス
をパージする不活性ガスに、そのガスの存在を識
別できる物質を配合することにより、そのパージ
用不活性ガスの残存を作業者の嗅覚等の官能の作
用によつて容易に認識できるようにして前記目的
を達成しようとするものである。 [実施例] 以下、本発明を石油化学プラントの反応器に適
用した一実施例を図面に基づいて説明する。 反応器10の下部一側面には、原料供給配管1
2が連結され、この原料供給配管12には前記反
応器10に近接した側から安全弁用分岐配管1
4、バイパス配管16、パージ用分岐配管18が
夫々分岐されている。前記安全弁用分岐配管14
には安全弁20が設けられるとともに、この安全
弁20をバイパスしてバイパス配管22が設けら
れ、このバイパス配管22の途中にはバイパス弁
24が設けられている。また、前記バイパス配管
16の途中にもバイパス弁26が設けられ、これ
らのバイパス配管16および安全弁用分岐配管1
4は連結配管28を介してフレア系配管30に接
続され、このフレア系配管30には可燃性ガス等
の危険性ガスを燃焼させるフレア(図示せず)が
接続されている。 前記パージ用分岐配管18の途中には、原料供
給配管12に近い側から第1の弁32および第2
の弁34が設けられ、これらの第1、第2の弁3
2,34の先端側においてパージ用分岐配管18
には夫々パージガス供給配管36およびエア供給
配管38が接続されている。また、パージ用分岐
配管18の第1の弁32と第2の弁34との中間
位置には、途中に放出弁40を有する第1の中間
放出配管42が接続されるとともに、前記パージ
ガス供給配管36とエア供給配管38との接続部
には、途中に放出弁44を有する第2の中間放出
配管46が接続されている。 前記パージガス供給配管36には、途中に開閉
弁48および流量調整弁50が設けられるととも
に、ボンベ口元開閉弁52を介して不活性ガス供
給源としての窒素ガスボンベ54が接続されてい
る。また、パージガス供給配管36の流量調整弁
50をバイパスして配合配管56が設けられ、こ
の配合配管56の途中には配合比率調整弁58お
よび配合物収納容器60が設けられている。この
配合物収納容器60内には、窒素ガスにそのガス
の存在を識別できる物質としての着臭剤、刺激剤
或いは着色剤等の物質が収納され、この物質は、
人間がその嗅覚、視覚等の官能で容易にその存在
を識別できるような物質とされている。これらの
物質の一例としては、硫化水素、メチルメルカプ
タン、エチルメルカプタン、亜硫酸ガス、クレゾ
ール、フエノール、アルデヒド、アンモニア、ス
チレン、ブテン、ベンゼン等がある。また、この
パージ用の窒素ガスの存在を識別できる物質の配
合量は、識別可能でその物質が可燃性、有毒性等
であつても人間に対して危険のないように、5〜
100ppmとされ、更に、前記物質は、前記反応器
10内等にあるパージすべきガスとは、異なる
臭、色等の性質を有する物質、例えば、スチレン
タンクにはアンモニアが使用されるというよう
に、パージされるガスとパージするガスとが異な
るものであることを人間に識別できるようなもの
が使用される。 前記パージ用分岐配管18に接続されたエア供
給配管38には、途中に開閉弁62が接続される
とともに、空気供給源64が接続されている。こ
の空気供給源64としては、直接コンプレツサ等
が接続されてもよいし、大容量の空気を短時間で
供給しようとする場合にはアキユムレータタンク
を介してコンプレツサ等が接続されてもよい。 前記反応器10の頂部には塔頂排出配管66、
ベント配管68および反応器10内の製品を次工
程へ移送するための抜出し配管70が夫々接続さ
れている。前記塔頂排出配管66の途中には、排
出弁72が設けられるとともに、この塔頂排出配
管66の先端は前記フレア系配管30に接続さ
れ、反応器10内のパージされるべきガスをこの
塔頂排出配管66を介して直接フレア系配管30
へ排出することもできるようになつている。ま
た、ベント配管68の途中には、ベント弁74が
設けられるとともに、このベント配管68の先端
は大気に開放されている。 前記反応器10の底部には、図示しないスロツ
プタンク等に接続される塔底配管76が設けられ
るとともに、ドレン配管78が設けられ、塔底配
管76の途中にはボトム弁80が、ドレン配管7
8の途中にはドレン弁82が夫々設けられてい
る。 前記反応器10の側面上部には塔頂マンホール
84が設けられるとともに、下部には塔底マンホ
ール86が設けられ、これらのマンホール84,
86から夫々作業員が反応器10内に入つて作業
が行えるようになつている。 次に、本実施例におけるパージ作業につき説明
するが、このパージ作業は以下に詳述する3つの
工程、即ち、液・ガス抜き操作、窒素ガスに
よる危険性ガスパージ操作、空気による窒素ガ
スパージ操作の3工程をこの順序で行うことによ
つてなされる。 液・ガス抜き操作 反応器10およびこの反応器10に接続され
た配管等からなる所定空間としての反応器系内
の液・ガス等の留分を系外に抜出す操作である
が、液分はボトム弁80を開き、塔底配管76
を介してスロツプタンクへ抜出す。一方、系内
の危険性ガスはバイパス弁24およびバイパス
弁26を開き、原料供給配管12、安全弁用分
岐配管14、バイパス配管22、バイパス配管
16、連結配管28を介してフレア系配管30
へ排出し、図示しないフレアで焼却処理する。
更に、反応器10の塔頂に設けられた塔頂排出
配管66の排出弁72も必要じ応じて開いて塔
頂から直接フレア系配管30へ排出する。この
系内のガスの排出は、系内の残圧が零になるま
でフレア系配管30へ抜出すこととなる。 窒素ガスによる危険性ガスパージ操作 の操作により反応器系内の残圧が略零にな
つたら、バイパス弁24およびバイパス弁26
を閉じ、一方、パージ用分岐配管18の第1の
弁32および第2の弁34を開くとともに、パ
ージガス供給配管36の開閉弁48および流量
調整弁50を開き、更にボンベ口元開閉弁52
を開いて窒素ガスボンベ54からパージ用の窒
素ガスを系内に導入する。この際、配合配管5
6の配合比率調整弁58を、前記流量調整弁5
0とともに適宜な量に調整しておくことによ
り、配合物収納容器60内に収納された着臭剤
等を前記した所定の配合量で窒素ガス中に配合
し、原料供給配管12を介して反応器10内に
供給する。このパージ用の窒素ガスの供給に際
し、塔底配管76にもパージ用ガスボンベおよ
び配合物収納器等を有する窒素ガスラインを設
けて、この塔底配管76からも窒素ガスを供給
するようにしてもよい。 前記窒素ガスを反応器10に供給する方法と
しては、塔頂の排出弁72を開いたまま、いわ
ゆるワンスルー方式でフレア系へパージする方
法と、前記排出弁72を閉じいわゆるバツチ方
式で一定圧まで反応器10内の圧力を上昇さ
せ、この後排出弁72を開いてフレア系へ脱圧
するようにしてもよい。この窒素ガスによるパ
ージは、下流方向のベント配管68またはドレ
ン配管78から、夫々に設けられたベント弁7
4或いはドレン弁82を開いて適宜時間毎に系
内ガスをサンプリングし、これにより危険性ガ
スの濃度を調べ、危険性ガスがなくなる迄パー
ジを続行する。このようにして危険性ガスが零
になると、パージ用分岐配管18の第1、第2
の弁32,34およびパージガス供給配管36
系の各弁48,50,52,58を閉じて窒素
ガスのフレア系へのパージを止める。 空気による窒素ガスパージ操作 ベント配管68のベント弁74を開放して反
応器系内の窒素ガスを残圧が零になるまで大気
に抜出した後、パージ用分岐配管18の第1の
弁32および第2の弁34、更にはエア供給配
管38の開閉弁62を開き、空気供給源64か
ら圧縮空気を供給してまだ系内に残つている窒
素ガスを強制的に大気に放出する。この圧縮空
気による窒素ガスのパージは、ベント配管68
のベント弁74を開いたままいわゆるワンスル
ー方式で行う。この後、塔頂および塔底のマン
ホール84,86を開き、下流部の塔底マンホ
ール86に図示しない換気扇を取付けて大気中
の空気を反応器10内に導入するとともに、上
流部の塔頂マンホール84から系内残留ガスの
パージを行う。 このようにして空気によつて反応器10内の
残留ガスのパージを行いながら適宜酸素検知を
行い、酸素が20%以上になるまでパージを続行
する。この反応器10内の酸素検知により、酸
素が20%以上であれば、反応器10内の作業環
境は合格と判定され、反応器10内の清掃等の
内部作業に移る。この場合、窒素ガスの比重は
空気より軽いため、反応器10の上部に窒素ガ
スが滞留する危険性があり、仮に塔底部で酸素
が20%以上でも塔頂部で酸素が10%のこともあ
るので注意を要する。 このような酸素の検知を正確に、かつ、頻繁に
励行して酸素の含有量が20%以上あることを確認
した後に反応器10内の作業に移れば事故は無い
が、酸素検知をせずに、又は回数が少なく、或は
塔底のみの酸素検知だけで塔頂部に入る等の行為
を行なつたとき、酸素欠乏の事故が発生する可能
性がある。 しかるに、本実施例の窒素ガスは、前述のよう
に前記着臭剤等を5〜100ppm配合したので、窒
素ガスが反応器10内に残つているかどうかすぐ
に確認できて、前記の事故の発生が回避できる効
果がある。 なお、本発明の実施にあたり、不活性ガスとし
ては前記窒素ガスに限らず、アルゴンガス、その
他の不活性ガスでもよいが価格上窒素ガスが有利
である。また、不活性ガスに着臭剤等を配合する
方法は、前記実施例のように配合配管56および
配合物収納容器60を設けた構造に限らず、予め
計量した着臭剤等を不活性ガスの供給ラインに直
接注入するようにしてもよい。 [実験例] 本発明の効果を明瞭にするために、下記表1に
示す組成のパージ用窒素ガスを夫々調整して所定
の塔槽類のパージを行なつた。
[Industrial Field of Application] The present invention relates to a purging inert gas used for purging heatable, toxic, and other hazardous gases in a reactor in a chemical plant, for example. [Background art and its problems] Generally, when inspecting, repairing, cleaning, etc. tanks, equipment, piping, etc. such as reactors in chemical plants and other various plants, the designated space of those reactors, etc. flammable gas, toxic gas,
If other dangerous gases remain, there is a risk of fire, explosion, poisoning, etc., so they must be completely purged. Conventionally, as a means of purging the hazardous gas, the hazardous gas has been replaced with nitrogen gas, which is safe and has no danger of fire, explosion, toxicity, or the like. However, if the inside of the reactor etc. is filled with nitrogen gas, the amount of oxygen will decrease accordingly, and if a worker enters the inside of the reactor etc. in this state for inspection or other work, there is a risk of oxygen deficiency. There is. Therefore, it is necessary to further replace the nitrogen gas with air, but since nitrogen gas is colorless and odorless, it is difficult to identify its presence, and in order to confirm whether the nitrogen gas has been completely replaced with air, it is necessary to It is necessary to detect the oxygen concentration using a detector, etc. However, in actual work, frequent detection is troublesome, so the number of oxygen detections tends to be reduced or only the bottom of the reactor is detected, so there is always a risk of oxygen deficiency. For this reason, even if a device were to enter a reactor or the like with insufficient oxygen detection, it was desired to be able to immediately identify that nitrogen gas remained for purging. [Object of the Invention] An object of the present invention is to provide an inert gas for purging in various plants that allows workers to easily identify the residual inert gas such as nitrogen gas used for purging. . [Means and effects for solving the problem] The present invention provides a method for purging hazardous gas in a predetermined space such as a reactor by adding a substance that can identify the presence of the gas to the inert gas. The purpose is to achieve the above-mentioned object by making it possible for the operator to easily recognize the residual inert gas for purging through the sensual effects of the operator's sense of smell. [Example] Hereinafter, an example in which the present invention is applied to a reactor of a petrochemical plant will be described based on the drawings. A raw material supply pipe 1 is provided on one side of the lower part of the reactor 10.
2 is connected to the raw material supply pipe 12, and a safety valve branch pipe 1 is connected to the raw material supply pipe 12 from the side close to the reactor 10.
4. A bypass pipe 16 and a purge branch pipe 18 are branched, respectively. Branch piping 14 for the safety valve
A safety valve 20 is provided, a bypass pipe 22 is provided to bypass the safety valve 20, and a bypass valve 24 is provided in the middle of the bypass pipe 22. Further, a bypass valve 26 is also provided in the middle of the bypass pipe 16, and these bypass pipes 16 and the safety valve branch pipe 1
4 is connected to a flare system piping 30 via a connecting pipe 28, and a flare (not shown) for burning dangerous gas such as combustible gas is connected to this flare system piping 30. A first valve 32 and a second valve 32 are installed in the middle of the purge branch pipe 18 from the side closer to the raw material supply pipe 12.
valves 34 are provided, and these first and second valves 3
Purge branch pipe 18 on the tip side of 2, 34
A purge gas supply pipe 36 and an air supply pipe 38 are respectively connected to the purge gas supply pipe 36 and the air supply pipe 38. Further, a first intermediate discharge pipe 42 having a discharge valve 40 in the middle is connected to an intermediate position between the first valve 32 and the second valve 34 of the purge branch pipe 18, and the purge gas supply pipe A second intermediate discharge pipe 46 having a discharge valve 44 in the middle is connected to the connecting portion between the air supply pipe 36 and the air supply pipe 38 . The purge gas supply pipe 36 is provided with an on-off valve 48 and a flow rate regulating valve 50 in the middle thereof, and is connected to a nitrogen gas cylinder 54 as an inert gas supply source via a cylinder mouth on-off valve 52 . Further, a blending pipe 56 is provided to bypass the flow rate regulating valve 50 of the purge gas supply pipe 36, and a blending ratio regulating valve 58 and a compound storage container 60 are provided in the middle of this blending pipe 56. In this compound storage container 60, substances such as odorants, stimulants, or colorants are stored in nitrogen gas as substances that can identify the presence of the gas.
It is said to be a substance whose existence can be easily identified by humans through sensual senses such as smell and sight. Examples of these substances include hydrogen sulfide, methyl mercaptan, ethyl mercaptan, sulfur dioxide gas, cresol, phenol, aldehyde, ammonia, styrene, butene, benzene, and the like. In addition, the amount of the substance that can identify the presence of nitrogen gas for purging should be 5 to 50% so that even if the substance is flammable, toxic, etc., it is not dangerous to humans.
100 ppm, and furthermore, the substance has properties such as odor and color that are different from the gas to be purged in the reactor 10 etc. For example, ammonia is used in a styrene tank. , a gas that allows humans to identify that the gas to be purged and the gas to be purged are different is used. An on-off valve 62 is connected to the air supply pipe 38 connected to the purge branch pipe 18, and an air supply source 64 is also connected thereto. A compressor or the like may be directly connected to the air supply source 64, or a compressor or the like may be connected via an accumulator tank when a large volume of air is to be supplied in a short time. At the top of the reactor 10, there is a tower top discharge pipe 66,
A vent pipe 68 and an extraction pipe 70 for transferring the product in the reactor 10 to the next process are connected to each other. A discharge valve 72 is provided in the middle of the tower top discharge pipe 66, and the tip of the tower top discharge pipe 66 is connected to the flare system pipe 30 to direct the gas to be purged in the reactor 10 to the tower. Flare system piping 30 directly via top discharge piping 66
It is also now possible to discharge it to Further, a vent valve 74 is provided in the middle of the vent pipe 68, and the tip of the vent pipe 68 is open to the atmosphere. At the bottom of the reactor 10, a tower bottom pipe 76 is provided which is connected to a slop tank (not shown), etc., and a drain pipe 78 is also provided.
A drain valve 82 is provided in the middle of each tube. A tower top manhole 84 is provided at the upper side of the reactor 10, and a tower bottom manhole 86 is provided at the lower part, and these manholes 84,
Workers can enter the reactor 10 from 86 to perform work. Next, the purge operation in this example will be explained. This purge operation consists of three steps detailed below: liquid/gas removal operation, dangerous gas purge operation using nitrogen gas, and nitrogen gas purge operation using air. This is done by performing the steps in this order. Liquid/gas venting operation This is an operation for extracting liquid/gas fractions from the reactor system, which is a predetermined space consisting of the reactor 10 and piping connected to this reactor 10, to the outside of the system. opens the bottom valve 80 and opens the bottom pipe 76.
Extract to slop tank via. On the other hand, the dangerous gas in the system opens the bypass valve 24 and the bypass valve 26, and passes through the raw material supply piping 12, the safety valve branch piping 14, the bypass piping 22, the bypass piping 16, and the connecting piping 28 to the flare system piping 30.
and incinerated with a flare (not shown).
Furthermore, the discharge valve 72 of the tower top discharge pipe 66 provided at the top of the reactor 10 is also opened as necessary to discharge the gas directly from the tower top to the flare system pipe 30. The gas in the system is discharged to the flare system piping 30 until the residual pressure in the system becomes zero. When the residual pressure in the reactor system becomes approximately zero due to the hazardous gas purge operation using nitrogen gas, the bypass valve 24 and the bypass valve 26 are closed.
On the other hand, the first valve 32 and the second valve 34 of the purge branch pipe 18 are opened, the on-off valve 48 and the flow rate adjustment valve 50 of the purge gas supply pipe 36 are opened, and the cylinder mouth on-off valve 52 is opened.
is opened and nitrogen gas for purging is introduced into the system from the nitrogen gas cylinder 54. At this time, the mixing pipe 5
6, the mixing ratio adjustment valve 58 is replaced with the flow rate adjustment valve 5.
By adjusting the amount together with 0 to an appropriate amount, the odorant, etc. stored in the compound storage container 60 is blended into the nitrogen gas at the predetermined amount described above, and reacted via the raw material supply pipe 12. Supplied into the container 10. When supplying this nitrogen gas for purging, a nitrogen gas line having a purge gas cylinder, a compound storage container, etc. may also be provided in the tower bottom piping 76, and nitrogen gas may also be supplied from this tower bottom piping 76. good. The nitrogen gas can be supplied to the reactor 10 by purging it into the flare system using a so-called one-through method while keeping the exhaust valve 72 at the top of the tower open, or by closing the exhaust valve 72 and purging it to a constant pressure using a so-called batch method. The pressure within the reactor 10 may be increased and then the exhaust valve 72 may be opened to release the pressure to the flare system. This purging with nitrogen gas is carried out from the vent pipe 68 or drain pipe 78 in the downstream direction through the vent valve 7 provided respectively.
4 or open the drain valve 82 to sample the gas in the system at appropriate intervals, check the concentration of hazardous gas, and continue purging until the hazardous gas is gone. When the hazardous gas becomes zero in this way, the first and second purge branch pipes 18
valves 32, 34 and purge gas supply piping 36
Each valve 48, 50, 52, 58 in the system is closed to stop purging nitrogen gas into the flare system. Nitrogen gas purge operation using air After opening the vent valve 74 of the vent pipe 68 and venting the nitrogen gas in the reactor system to the atmosphere until the residual pressure becomes zero, the first valve 32 and the first valve of the purge branch pipe 18 are opened. The second valve 34 and the on-off valve 62 of the air supply pipe 38 are opened, compressed air is supplied from the air supply source 64, and nitrogen gas still remaining in the system is forcibly discharged to the atmosphere. This purge of nitrogen gas with compressed air is carried out by the vent piping 68.
This is done in a so-called one-through method with the vent valve 74 open. After that, the manholes 84 and 86 at the top and bottom of the tower are opened, and a ventilation fan (not shown) is attached to the bottom manhole 86 in the downstream part to introduce atmospheric air into the reactor 10, and the top manhole in the upstream part is introduced into the reactor 10. From 84, the residual gas in the system is purged. In this way, while purging the residual gas in the reactor 10 with air, oxygen detection is performed as appropriate, and purging is continued until the oxygen content reaches 20% or more. If the oxygen in the reactor 10 is detected to be 20% or more, the working environment in the reactor 10 is determined to be acceptable, and internal work such as cleaning inside the reactor 10 is started. In this case, since the specific gravity of nitrogen gas is lighter than air, there is a risk that nitrogen gas will remain in the upper part of the reactor 10, and even if the oxygen content is 20% or more at the bottom of the column, it may be 10% at the top of the column. Therefore, caution is required. If such oxygen detection is carried out accurately and frequently to confirm that the oxygen content is 20% or more, and then work is started inside the reactor 10, there will be no accident, but if oxygen is not detected, Oxygen deficiency accidents may occur if the user enters the top of the tower only to detect oxygen at the bottom, or only infrequently, or when oxygen is detected only at the bottom of the tower. However, since the nitrogen gas of this example contains 5 to 100 ppm of the above-mentioned odorant as described above, it is possible to immediately check whether nitrogen gas remains in the reactor 10 and prevent the occurrence of the above-mentioned accident. There is an effect that can be avoided. In carrying out the present invention, the inert gas is not limited to the nitrogen gas mentioned above, but may also be argon gas or other inert gases, but nitrogen gas is advantageous in terms of cost. In addition, the method of blending an odorant or the like with an inert gas is not limited to the structure in which the blending pipe 56 and the compound storage container 60 are provided as in the above embodiment. It may also be injected directly into the supply line. [Experimental Example] In order to clarify the effects of the present invention, purging nitrogen gases having the compositions shown in Table 1 below were adjusted to purge specified columns and tanks.

【表】【table】

【表】 その結果、5名の作業者全員がそのパージ用窒
素ガスの存在を認識でき、作業が安全に進捗し
た。 [発明の効果] 本発明によれば、各種のプラントにおいて、パ
ージ用に使用した不活性ガスが残存していること
を作業者が容易に認識できる効果がある。
[Table] As a result, all five workers were able to recognize the presence of the purge nitrogen gas, and the work progressed safely. [Effects of the Invention] According to the present invention, there is an effect that in various plants, workers can easily recognize that inert gas used for purging remains.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係るパージ用不活性ガスを化学プ
ラントの反応器に適用した一実施例を示す系統図
である。 10…反応器、18…パージ用分岐配管、30
…フレア系配管、36…パージガス供給配管、3
8…エア供給配管、50…流量調整弁、54…不
活性ガス供給源としての窒素ガスボンベ、56…
配合配管、58…配合比率調整弁、60…配合物
収納容器、64…空気供給源、68…ベント配
管、76…塔底配管、78…ドレン配管。
The figure is a system diagram showing an embodiment in which the inert gas for purging according to the present invention is applied to a reactor of a chemical plant. 10...Reactor, 18...Purge branch piping, 30
...Flare system piping, 36...Purge gas supply piping, 3
8... Air supply piping, 50... Flow rate adjustment valve, 54... Nitrogen gas cylinder as an inert gas supply source, 56...
Mixing piping, 58...Blending ratio adjustment valve, 60...Blend storage container, 64...Air supply source, 68...Vent piping, 76...Bottom piping, 78...Drain piping.

Claims (1)

【特許請求の範囲】 1 所定空間内の危険性ガスをパージする不活性
ガスに、そのガスの存在を識別できる物質を配合
したことを特徴とするパージ用不活性ガス。 2 特許請求の範囲第1項において、前記不活性
ガスは窒素ガスであることを特徴とするパージ用
不活性ガス。 3 特許請求の範囲第1項または第2項におい
て、前記ガスの存在を識別できる物質の配合量が
5〜100ppmであることを特徴とするパージ用不
活性ガス。
[Scope of Claims] 1. An inert gas for purging, characterized in that an inert gas for purging dangerous gas in a predetermined space is blended with a substance that can identify the presence of the gas. 2. The inert gas for purging according to claim 1, wherein the inert gas is nitrogen gas. 3. The inert gas for purging according to claim 1 or 2, characterized in that the amount of the substance that can identify the presence of the gas is 5 to 100 ppm.
JP13225084A 1984-06-26 1984-06-26 Inert gas for purge Granted JPS6111142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13225084A JPS6111142A (en) 1984-06-26 1984-06-26 Inert gas for purge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13225084A JPS6111142A (en) 1984-06-26 1984-06-26 Inert gas for purge

Publications (2)

Publication Number Publication Date
JPS6111142A JPS6111142A (en) 1986-01-18
JPS635132B2 true JPS635132B2 (en) 1988-02-02

Family

ID=15076876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13225084A Granted JPS6111142A (en) 1984-06-26 1984-06-26 Inert gas for purge

Country Status (1)

Country Link
JP (1) JPS6111142A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712599B1 (en) * 1993-11-19 1996-01-12 Air Liquide Composition comprising an inert gas.
US6682585B2 (en) * 2000-02-07 2004-01-27 Air Products And Chemicals, Inc. Refining nonferrous metals and alloys with gases having reduced global warming potential

Also Published As

Publication number Publication date
JPS6111142A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
US4407341A (en) Apparatus for removing contents of damaged aerosol containers
US6758913B1 (en) Method of cleaning pressurized containers containing anhydrous ammonia
CN210893823U (en) Gas closed sampler
US5512087A (en) Petroleum vapor control apparatus
US20180283616A1 (en) Loading system and method of use thereof
US6532684B1 (en) System for cleaning pressurized containers
JPS635132B2 (en)
US5529097A (en) Gas tank evacuator
CN112432823A (en) Sampling system for natural gas outward transportation main pipe
KR101130599B1 (en) Mixture to add odour to an odourless combustible gas
CN109308082A (en) Low Temperature Plasma Treating sewage collecting, storage, processing links release gas in VOCs method of controlling security
RU182996U1 (en) The device for the selection of multicomponent gas in the process stream
US6635119B1 (en) Method of cleaning pressurized containers containing liquified petroleum gas
CN209237637U (en) A kind of cold bulging volatilization gas zero-emission negative pressure recovery system
Incocciati et al. Innovative Mixed Microbial Culture Processes for PHA Production at Pilot Scale: Professional Chemical Risk Assessment.
US2935391A (en) Apparatus for odorizing a product without allowing the escape of the odor to the atmosphere
US6325967B1 (en) Incineration process
US5182870A (en) System and method for recovering volatile organic gases emitted from a polyethylene resin product
US20240219270A1 (en) Automated vacuum sampling system and methods related thereto
JPS58147632A (en) Device for measuring concentration at inflammable limit
US4861576A (en) Method for reducing corrosion in a bypass system
Morrison III et al. Common causes and corrections for explosions and fires in improperly inerted vessels
CN214570679U (en) Filling equipment and system for quantitatively and hermetically filling combustible liquid in barrel
JP2000342926A (en) Filter apparatus
CN215975665U (en) Contain hydrocarbon tail gas exhaust treatment system