JPS6351075B2 - - Google Patents

Info

Publication number
JPS6351075B2
JPS6351075B2 JP60141269A JP14126985A JPS6351075B2 JP S6351075 B2 JPS6351075 B2 JP S6351075B2 JP 60141269 A JP60141269 A JP 60141269A JP 14126985 A JP14126985 A JP 14126985A JP S6351075 B2 JPS6351075 B2 JP S6351075B2
Authority
JP
Japan
Prior art keywords
sludge
stage
treatment
wastewater
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60141269A
Other languages
Japanese (ja)
Other versions
JPS621496A (en
Inventor
Yasuhiko Kaida
Minoru Nakamizo
Seiji Arita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60141269A priority Critical patent/JPS621496A/en
Publication of JPS621496A publication Critical patent/JPS621496A/en
Publication of JPS6351075B2 publication Critical patent/JPS6351075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、有機汚濁廃水の活性汚泥処理におけ
るバルキングの防止および余剰汚泥量の減少に有
効な2段式微生物処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a two-stage microbial treatment method that is effective in preventing bulking and reducing the amount of excess sludge in activated sludge treatment of organic polluted wastewater.

<従来技術と問題点> 活性汚泥法は有機汚濁廃水の処理に広く採用さ
れているが、完全混合ばつ気方式で連続的に活性
汚泥処理を行うと食品関係の有機汚濁廃水の種類
によつてはバルキングを起し易く、また、余剰汚
泥量も多い等の問題を有している。特にバルキン
グは、発生原因が明らかでない例が多いため、そ
の対策に苦慮しており、有機汚濁廃水処理におけ
るバルキング防止および余剰汚泥量減少のための
技術が強く要望されている。
<Prior art and problems> The activated sludge method has been widely adopted for the treatment of organically contaminated wastewater, but when activated sludge treatment is performed continuously using a complete mixing aeration method, depending on the type of food-related organically contaminated wastewater, has problems such as being prone to bulking and having a large amount of surplus sludge. In particular, there are many cases in which the cause of bulking is not clear, so it is difficult to countermeasures against it, and there is a strong demand for technology to prevent bulking and reduce the amount of excess sludge in organic polluted wastewater treatment.

<発明の目的> 本発明は、上記の点に鑑み、従来の連続式完全
混合型活性汚泥処理の前段に廃水の単純ばつ気処
理を付加し、高BOD汚泥負荷の下で溶解性汚濁
物質をあらかじめ分解除去して汚泥に転化させ、
第2段の活性汚泥処理にかかるBOD負荷を大幅
に低下させることにより最終的にバルキングの発
生を防止すると同時に、第1段で生成した汚泥を
第2段の括性汚泥中に含まれる高濃度の後生動物
および原生動物等の微小動物により除去し、余剰
汚泥の発生量を大幅に減少させ、長期に安定した
有機汚濁廃水の処理を行うものである。
<Object of the invention> In view of the above points, the present invention adds simple aeration treatment of wastewater to the previous stage of the conventional continuous fully mixed activated sludge treatment, and removes soluble pollutants under a high BOD sludge load. It is decomposed and removed in advance and converted into sludge.
By significantly reducing the BOD load required for activated sludge treatment in the second stage, bulking is ultimately prevented, and at the same time, the sludge produced in the first stage is transferred to the high concentration contained in the bulk sludge in the second stage. The wastewater is removed by microscopic animals such as metazoa and protozoa, greatly reducing the amount of surplus sludge generated, and providing long-term stable treatment of organic polluted wastewater.

<発明の構成> 本発明における第1段処理は既設の活性汚泥処
理槽の一部を仕切るか、または同槽の前にばつ気
槽を新設して行うものであり、その容積は廃水の
水質および量に依存するが、第2段の活性汚泥処
理槽容積と同程度〜1/3容で十分であり、汚泥返
送を行わない一過処理方式とする。廃水の槽滞留
時間は9時間以上とし、廃水中のBOD濃度が高
い場合は適宜槽滞留時間を延長する必要がある。
速やかに処理平衡に到達させるには、廃水あるい
はばつ気槽に直接活性汚泥液やその上澄液を一部
植種する。処理平衡に近づくにつれてばつ気液の
相対粘度が上昇して粘質性のバルキングを起こ
し、ばつ気液中に微細な汚泥塊や非凝集性汚泥が
観察される。汚泥濃度と相対粘度の間にはほぼ直
線的な相関が認められる。ばつ気液の相対粘度は
1〜10の範囲で良好な処理が行われ、COD除去
率は90%前後に達する。相対粘度が10を越えると
槽内における空気かくはん効率が極度に低下し、
適正なDOの維持が困難になるなどの問題を生じ
る。同じ理由によりばつ気液中の汚泥濃度は
1000ppm以下が好ましい。また、廃水中のBOD
濃度は1200ppmを限度とし、これによりBOD濃
度が高い場合は希釈操作を必要とするが、相対粘
度や汚泥濃度の調節はBOD負荷量を変化させる
間接的な方法に加え、ばつ気液を直接希釈する方
法を併用することにより任意に行うことができ
る。第1段におけるBOD汚泥負荷は1Kg/Kg−
ss/日以上、好ましくは2〜5Kg/Kg−ss/日が
適当であり、1Kg/Kg−ss/日以下に低下すると
汚泥塊が凝集肥大化するため、粘質性のバルキン
グから正常な活性汚泥になる。しかし、その場合
でも一過処理方式であれば継続的な処理が可能で
ある。逆にBOD負荷が急激に高くなると、ばつ
気液の相対粘度が増加するためDOが2ppm以下
に低下し酸敗しやすくなる。なお、ばつ気液の相
対粘度はBOD負荷量に対して直線的な比例関係
にあるので、ばつ気液の相対粘度を測定すること
により、BOD負荷の急変を予測することができ
る。ばつ気液のPHは6〜8の中性域が適してお
り、PH6未満では粘性物質が析出するため処理が
行えなくなる。そのほか温度等の条件は通常の活
性汚泥処理条件の範囲内にある。
<Structure of the invention> The first stage treatment in the present invention is carried out by partitioning off a part of the existing activated sludge treatment tank or by installing a new aeration tank in front of the tank, whose volume depends on the quality of the wastewater. Although it depends on the amount of sludge, it is sufficient to use the same volume to 1/3 of the volume of the second-stage activated sludge treatment tank, and a one-time treatment method is used in which sludge is not returned. The residence time of wastewater in the tank should be 9 hours or more, and if the BOD concentration in the wastewater is high, the residence time in the tank should be extended as appropriate.
In order to quickly reach treatment equilibrium, a portion of the activated sludge liquid or its supernatant liquid is inoculated directly into the wastewater or aeration tank. As the treatment equilibrium approaches, the relative viscosity of the vapor liquid increases, causing viscous bulking, and fine sludge lumps and non-coagulating sludge are observed in the vapor liquid. A nearly linear correlation is observed between sludge concentration and relative viscosity. Good treatment is achieved when the relative viscosity of the vaporized liquid is in the range of 1 to 10, and the COD removal rate reaches around 90%. If the relative viscosity exceeds 10, the air agitation efficiency in the tank will be extremely reduced.
This causes problems such as difficulty in maintaining an appropriate DO. For the same reason, the sludge concentration in gas and liquid is
It is preferably 1000 ppm or less. Also, BOD in wastewater
The concentration is limited to 1200ppm, and if the BOD concentration is high, a dilution operation is required, but relative viscosity and sludge concentration can be adjusted by indirect methods of changing the BOD load, as well as direct dilution of the gas and liquid. It can be carried out arbitrarily by using the method of BOD sludge load in the first stage is 1Kg/Kg-
ss/day or more, preferably 2 to 5 Kg/Kg-ss/day, is appropriate; if it decreases to 1 Kg/Kg-ss/day or less, the sludge lumps will coagulate and enlarge, so the normal activity will change from viscous bulking. It becomes sludge. However, even in this case, continuous processing is possible if the temporary processing method is used. On the other hand, when the BOD load suddenly increases, the relative viscosity of the gas and liquid increases, causing the DO to drop below 2 ppm and becoming rancid. Note that, since the relative viscosity of the vapor liquid has a linear proportional relationship to the BOD load amount, sudden changes in the BOD load can be predicted by measuring the relative viscosity of the vapor liquid. A neutral pH range of 6 to 8 is suitable for the PH of the vapor liquid, and if the PH is lower than 6, viscous substances will precipitate, making it impossible to perform the treatment. Other conditions such as temperature are within the range of normal activated sludge treatment conditions.

第2段は、完全混合型活性汚泥処理法により未
分解の有機汚濁物質等の除去を行う。第2段の活
性汚濁処理は通常の活性汚泥処理と比べて微小動
物が多く含まれているのが特徴である。微小動物
のうち代表的なものは輪虫などの後生動物および
つりがね虫などの原生動物であり、その濃度は汚
泥濃度約3000ppmのばつ気液1ml当り各々2×
104個と極めて高く、通常の活性汚泥処理時の10
数倍も多く含まれている。これらの微小動物によ
る汚泥のとり込みが盛んに行われ、汚泥量の減少
に寄与している。微小動物の濃度を高くするには
微小動物の好餌となりその増殖を促す汚泥塊や分
散汚泥の濃度を高くする方法が有効である。第1
段処理における汚泥濃度は最高1000ppmである
が、この時微小動物の総数は5×10cells/ml−
ばつ気液にも達する。第2段処理の条件として、
汚泥濃度は2000ppm以上、好ましくは3000ppm前
後とし、温度やDO等は通常の活性汚泥処理の条
件を適用できる。
In the second stage, undecomposed organic pollutants are removed using a completely mixed activated sludge treatment method. The second stage activated sludge treatment is characterized by the fact that it contains more microscopic animals than the normal activated sludge treatment. Typical microfauna are metazoans such as rotifers and protozoa such as ringworms, and their concentrations are 2x each per ml of gas and liquid with a sludge concentration of approximately 3000 ppm.
10 4 , which is extremely high, compared to 10 during normal activated sludge treatment.
Contains several times more. Sludge is actively taken up by these microscopic animals, contributing to a reduction in the amount of sludge. An effective way to increase the concentration of microfauna is to increase the concentration of sludge lumps or dispersed sludge that serve as favorite food for microfauna and encourage their proliferation. 1st
The maximum sludge concentration in stage treatment is 1000 ppm, but the total number of microfauna at this time is 5 × 10 cells/ml.
It also reaches gas and liquid. As a condition for the second stage processing,
The sludge concentration should be 2000 ppm or more, preferably around 3000 ppm, and the temperature, DO, etc., can be the same as normal activated sludge treatment conditions.

以下、本発明を図面により説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図において、廃水は管4を通つて第1段処
理槽に導かれ、粘質性のバルキングを伴うBOD
汚泥負荷1Kg/1Kg−ss/日以上の高負荷で一過
処理されたのち溢流させて第2段処理槽2に導か
れる。第2段処理槽2では汚泥濃度2000ppm以上
で活性汚泥処理されたのち沈殿層3に導かれ、処
理水5として放流される。沈殿槽下部からの濃縮
汚泥は一部第2段処理槽2に返送され、余剰分は
系外に除かれる。散気管7はDO維持のため、
BOD負荷量の変動に対応して調節可能な方式の
ものがよい。
In Figure 1, the wastewater is led to the first stage treatment tank through pipe 4, with BOD with viscous bulking.
After being temporarily treated at a high sludge load of 1 kg/1 kg-ss/day or more, the sludge is overflowed and led to the second stage treatment tank 2. In the second stage treatment tank 2, the activated sludge is treated with a sludge concentration of 2000 ppm or more, and then led to a sedimentation layer 3 and discharged as treated water 5. A portion of the thickened sludge from the lower part of the settling tank is returned to the second stage treatment tank 2, and the surplus is removed from the system. The diffuser pipe 7 is used to maintain DO.
It is best to use a system that can be adjusted in response to changes in BOD load.

<発明の実施例> 以下、実施例について説明する。<Embodiments of the invention> Examples will be described below.

実施例 1 大豆食品工場における大豆煮汁廃水は高BOD
廃水であり、完全混合型活性汚泥処理を行うとバ
ルキングが発生しやすい。実験室段階においても
BOD容積負荷0.12Kg/m3/日で容易にバルキン
グを起こした。そこで、その廃水に当該2段式微
生物処理法の適用を試みた。第1段処理槽および
第2段処理槽(共に2容)の処理条件は次のと
おりである。各槽の廃水滞留時間24時間、
DO2ppm以上、温度25℃、PHは無調節とし、第
2段処理槽の汚泥濃度は約3000ppmとした。
BOD545ppm、COD527ppm、T−N(全窒素)
28ppm、T−PO4(全リン酸)8.9ppmの大豆煮汁
廃水について槽全容積にかかるBOD負荷を0.55
Kg/m3/日として連続処理を行つた。処理平衡に
達したとみなさせる46日目の処理水の分析結果お
よび第2段処理槽の汚泥の性状を各々第1表およ
び第2表に示した。第1表より、BOD除去率は
99%、COD除去率は98%を示し、T−Nおよび
T−PO4も効果的に除去された。また、表2よ
り、SVI(汚泥容量指標)は52、汚泥転換率は0
%を示すと共に、汚泥中の微小動物数は4.8×
104cells/ml−ばつ気液と通常より極めて高い値
を示すなど、活性汚泥の凝集沈降性は優れており
バルキングの発生は認められなかつた。
Example 1 Soybean broth wastewater from a soybean food factory has high BOD
Since it is wastewater, bulking is likely to occur when fully mixed activated sludge treatment is performed. Even at the laboratory stage
Bulking easily occurred at a BOD volumetric load of 0.12 Kg/m 3 /day. Therefore, we attempted to apply the two-stage microbial treatment method to the wastewater. The processing conditions of the first stage treatment tank and the second stage treatment tank (both 2 volumes) are as follows. Wastewater residence time in each tank is 24 hours.
DO was 2ppm or more, temperature was 25℃, PH was not adjusted, and sludge concentration in the second stage treatment tank was approximately 3000ppm.
BOD545ppm, COD527ppm, T-N (total nitrogen)
For soybean broth wastewater with 28ppm and T-PO 4 (total phosphoric acid) 8.9ppm, the BOD load applied to the total tank volume is 0.55.
Continuous treatment was carried out at Kg/m 3 /day. The analysis results of the treated water on the 46th day, when it is considered that treatment equilibrium has been reached, and the properties of the sludge in the second stage treatment tank are shown in Tables 1 and 2, respectively. From Table 1, the BOD removal rate is
The COD removal rate was 99%, and the COD removal rate was 98%, and TN and T-PO 4 were also effectively removed. Also, from Table 2, SVI (sludge capacity index) is 52 and sludge conversion rate is 0.
% and the number of microscopic animals in the sludge is 4.8×
The coagulation and sedimentation properties of the activated sludge were excellent, with a value of 10 4 cells/ml - much higher than normal, and no bulking was observed.

実施例 2 実施例1と同じ条件下でBOD容積負荷を0.28
および1.1Kg/m3/日とし、2週間以上連続処理
を行つた時の処理水ならびに汚泥の性状を第3表
に示した。同表には、比較のために実施例1の
BOD容積負荷0.55Kg/m3/日の結果も合わせて
示してある。第3表より、BOD容積負荷0.28、
0.55および1.1Kg/m3/日のいずれも処理水の水
質は良好であり、汚泥の沈降性も良く安定かつ長
期に処理が行われた。
Example 2 Under the same conditions as Example 1, the BOD volume load was 0.28.
Table 3 shows the properties of treated water and sludge when continuous treatment was carried out for two weeks or more at a rate of 1.1 Kg/m 3 /day. The same table shows Example 1 for comparison.
The results for a BOD volumetric load of 0.55 Kg/m 3 /day are also shown. From Table 3, BOD volumetric load 0.28,
The quality of the treated water was good at both 0.55 and 1.1 Kg/m 3 /day, and the sludge had good sedimentation properties, and the treatment was carried out stably and over a long period of time.

実施例 3 廃水の槽滞留時間を第1段処理は9時間、第2
段処理は16時間とし、廃水中のBOD濃度を変え
ることによりBOD容積負荷を0〜0.96Kg/m3
日と変化させ、2週間以上連続処理を行つた。処
理平衡に達した時のBOD濃度と第1段処理ばつ
き気液の相対粘度の関係を第2図に示した。第2
図より、廃水中のBOD濃度の増加と共にばつ気
液の相対粘度は比例的に高くなつた。相対粘度が
10以上に達するとDOの維持が困難になるなど、
処理に支障を来たすことから、処理可能な廃水の
BOD最高濃度は約1200ppmである。第3図は、
第1段処理槽について、廃水のBOD濃度とBOD
汚泥負荷の関係を示したものである。第3図よ
り、BOD汚泥負荷は2〜5Kg/Kg−ss/日の範
囲内にあり、この値は一般的な活性汚泥処理にお
けるBOD汚泥負荷0.2〜0.4Kg/Kg−ss/日と比べ
るとかなり高い。
Example 3 The residence time of wastewater in the tank was 9 hours for the first stage treatment and 9 hours for the second stage treatment.
The stage treatment was for 16 hours, and the BOD volume load was varied from 0 to 0.96 Kg/m 3 / by changing the BOD concentration in the wastewater.
The treatment was carried out continuously for more than two weeks, changing the conditions every day. Figure 2 shows the relationship between the BOD concentration when the treatment equilibrium is reached and the relative viscosity of the gas and liquid in the first stage treatment. Second
The figure shows that as the BOD concentration in wastewater increases, the relative viscosity of the gas-liquid increases proportionally. relative viscosity
If it reaches 10 or more, it becomes difficult to maintain DO.
Wastewater that can be treated is
The maximum BOD concentration is approximately 1200ppm. Figure 3 shows
Regarding the first stage treatment tank, BOD concentration and BOD of wastewater
This shows the relationship between sludge loads. From Figure 3, the BOD sludge load is within the range of 2 to 5 Kg/Kg-ss/day, and this value is compared to the BOD sludge load of 0.2 to 0.4 Kg/Kg-ss/day in general activated sludge treatment. Quite expensive.

<発明の効果> 本発明は、以上説明したように、有機汚濁廃水
の活性汚泥処理において、従来の完全混合型活性
汚泥処理におけるバルキングを防止すると共に余
剰汚泥量の低減化が可能である。
<Effects of the Invention> As described above, the present invention can prevent bulking in conventional fully mixed activated sludge treatment and reduce the amount of excess sludge in activated sludge treatment of organic polluted wastewater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2段式微生物処理装置を示す図、第2
図はBOD濃度と相対粘度の関係を示す図、第3
図はBOD濃度とBOD汚泥負荷の関係を示す図で
ある。 図中符号1は第1段処理槽、2は第2段処理
槽、3は沈殿槽、4は廃水管、5は処理水管、6
は汚泥管、7は散気管を示す。
Figure 1 shows a two-stage microbial treatment device;
Figure 3 shows the relationship between BOD concentration and relative viscosity.
The figure shows the relationship between BOD concentration and BOD sludge load. In the figure, 1 is the first stage treatment tank, 2 is the second stage treatment tank, 3 is the settling tank, 4 is the waste water pipe, 5 is the treated water pipe, 6
7 indicates a sludge pipe, and 7 indicates a diffuser pipe.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 好気性微生物による有機汚濁廃水の連続処理
に際し、第1段として、1000ppm以下の低汚泥濃
度、1Kg/Kg−ss/日(ss:浮遊物質)以上の高
BOD汚泥負荷の条件下で粘質性のバルキングを
起こしたばつ気槽で、廃水中の溶解性汚濁物質を
汚泥に転化したのち、第2段において残存する未
分解の汚濁物質および第1段で増殖した汚泥を後
生動物および原生動物に富む活性汚泥で処理し、
最終的にバルキングを防止すると同時に余剰汚泥
量を減少させることを特徴とする有機汚濁廃水の
2段式微生物処理法。
1. In the continuous treatment of organic polluted wastewater using aerobic microorganisms, the first step is to treat sludge with a low concentration of 1000 ppm or less and a high concentration of 1Kg/Kg-ss/day (ss: suspended solids) or more.
After converting the soluble pollutants in the wastewater into sludge in the aeration tank where viscous bulking occurred under BOD sludge loading conditions, the remaining undecomposed pollutants in the second stage and the remaining undecomposed pollutants in the first stage are The grown sludge is treated with activated sludge rich in metazoa and protozoa,
A two-stage microbial treatment method for organically contaminated wastewater, which is characterized by ultimately preventing bulking and at the same time reducing the amount of excess sludge.
JP60141269A 1985-06-26 1985-06-26 Two-stage microbiological treatment of organic dirty waste water Granted JPS621496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60141269A JPS621496A (en) 1985-06-26 1985-06-26 Two-stage microbiological treatment of organic dirty waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141269A JPS621496A (en) 1985-06-26 1985-06-26 Two-stage microbiological treatment of organic dirty waste water

Publications (2)

Publication Number Publication Date
JPS621496A JPS621496A (en) 1987-01-07
JPS6351075B2 true JPS6351075B2 (en) 1988-10-12

Family

ID=15287963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141269A Granted JPS621496A (en) 1985-06-26 1985-06-26 Two-stage microbiological treatment of organic dirty waste water

Country Status (1)

Country Link
JP (1) JPS621496A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501496B2 (en) * 2004-03-30 2010-07-14 栗田工業株式会社 Biological treatment method for organic wastewater
KR101162474B1 (en) * 2004-02-02 2012-07-03 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
US7754081B2 (en) * 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP4892917B2 (en) * 2005-10-12 2012-03-07 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
WO2007088860A1 (en) * 2006-02-03 2007-08-09 Kurita Water Industries Ltd. Method of biologically treating organic waste water
CN103408142B (en) * 2013-08-18 2014-08-13 北京工业大学 Method for rapidly solving sticky sludge bulking problem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229535A (en) * 1975-09-02 1977-03-05 Ibbott Jack Kenneth Feeding mechanism of additional air to airrfuel mixed flow in internal combustion engine
JPS5422025A (en) * 1977-07-15 1979-02-19 Bosch Gmbh Robert Regulator of number of revolution of fuel injection pump
JPS5541832A (en) * 1978-09-20 1980-03-24 Hitachi Ltd Liquid drop injection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229535A (en) * 1975-09-02 1977-03-05 Ibbott Jack Kenneth Feeding mechanism of additional air to airrfuel mixed flow in internal combustion engine
JPS5422025A (en) * 1977-07-15 1979-02-19 Bosch Gmbh Robert Regulator of number of revolution of fuel injection pump
JPS5541832A (en) * 1978-09-20 1980-03-24 Hitachi Ltd Liquid drop injection device

Also Published As

Publication number Publication date
JPS621496A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
US5833856A (en) Process for biologically removing phosphorus and nitrogen from wastewater by controlling carbohydrate content therein
US4731185A (en) Biological wastewater treating system
MOHSENI et al. Biological treatment of dairy wastewater by sequencing batch reactor
US6783671B2 (en) Enhanced activated sludge treatment
JPS603873B2 (en) Water treatment method
WO1989010898A1 (en) Method of sewage treatment
US3763039A (en) Method of treating sewage using high polymer ratio flocculation agent biologically produced in situ
JPS6351075B2 (en)
Van Starkenburg et al. Biological P-removal: state of the art in the Netherlands
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
JP3248233B2 (en) Activated sludge treatment method
KR910003004B1 (en) Biological nitrogen and phosphorus removing method and apparatus
Levin et al. Phostrip® Process—a Viable Answer To Eutrophication of Lakes and Coastal Sea Waters in Italy
CA2425147A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
US6592757B2 (en) Selector contact stabilization process and apparatus for wastewater treatment
KR100217357B1 (en) Process for the biological removal of nitrogen and phosphorus
Fang Aerobic treatment of dairy wastewater
Direstiyani et al. Tempe Industrial Wastewater Treatment by using Combined Anaerobic Baffled Reactor and Biofilter Processes
Bulley et al. Biological treatment of egg processing wastewater
Hung et al. Effect of bioaugmentation on activated sludge treatment of potato wastewater
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
DI PALMA et al. UPGRADING OF A CONVENTIONAL ACTIVATED-SLUDGE PLANT BY MEANS OF A MULTISTAGE AEROBIC SYSTEM WITH STEP SLUDGE RECIRCULATION (SSR)
Lin Aeration of anaerobically treated potato-processing wastewater
Suzuki et al. Night soil treatment by the nitrified liquor recycling process
Chevakidagarn et al. Optimum Carbon/Nitrogen Ratio for upgrading single-stage activated sludge process in the Frozen Seafood Industry

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term