JPS6351048B2 - - Google Patents

Info

Publication number
JPS6351048B2
JPS6351048B2 JP57037233A JP3723382A JPS6351048B2 JP S6351048 B2 JPS6351048 B2 JP S6351048B2 JP 57037233 A JP57037233 A JP 57037233A JP 3723382 A JP3723382 A JP 3723382A JP S6351048 B2 JPS6351048 B2 JP S6351048B2
Authority
JP
Japan
Prior art keywords
cation exchange
electrodialysis
exchange membrane
temperature
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57037233A
Other languages
Japanese (ja)
Other versions
JPS58156305A (en
Inventor
Hideo Shinozuka
Atsushi Tomita
Eiji Asada
Noriaki Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3723382A priority Critical patent/JPS58156305A/en
Publication of JPS58156305A publication Critical patent/JPS58156305A/en
Publication of JPS6351048B2 publication Critical patent/JPS6351048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電価の異なる二種以上の陽イオンを
含む電解質溶液を電気透析し、電価の異なる陽イ
オンを選択的に電気透析する方法である。詳しく
は、選択化処理剤の存在下に透析時の温度よりも
高い温度で処理することにより、極めて選択化性
能を高めた陽イオン交換膜を用いることを特徴と
する電価の異なる二種以上の陽イオンを含む電解
質溶液を電気透析し、電価の小なる陽イオンを選
択的に電気透析する方法である。 従来、イオン交換膜法による海水の濃縮による
食塩の製造などにあつては、陽イオン交換膜が海
水中のナトリウムイオン(Na+)の他の陽イオン
例えばマグネシウムイオン(Mg2+)やカルシウ
ムイオン(Ca2+)に対して選択的に通すことに
より純塩率の高い食塩を製造することが望まれて
いる。そこで陽イオン交換膜に上記のごとき、電
価の小さい陽イオンの選択透過性(以下単に選択
透過性という)を付与する試みが種々提案されて
いる。それらの例は、()陽イオン交換膜表面
に反応電荷を有する官能基、即ち陰イオン交換膜
基を存在させる方法()陽イオン交換膜の表面
に電気的に中性の膜層、即ちイオン交換基を持た
ない薄層を形成させる方法、()陽イオン交換
膜表面に架橋度の高い層を形成させる方法、()
陽イオン交換膜の少なくとも表層部の固定イオン
濃度を大きくする方法、()前記()〜()
のうち、いずれか2以上円を併せ用いる方法など
がある。これらは、また別の分類として(a)陽イオ
ン交換膜の表面に高分子物質、例えば分子量が
100以上、好ましくは500以上の重合体などを吸着
させる方法及びこれらを後処理により架橋させる
方法、(b)陽イオン交換膜を構成するマトリツクス
に化学結合により陰イオン交換基を付与するか又
は非イオン性の原子団の層を付与する方法、(e)陽
イオン交換膜の表層を化学的に変化させる方法な
どに分けることができる。 本明細書にあつては、上記に例示した如きいか
なる方法においても、選択透過性を付与された陽
イオン交換膜を選択化膜と称する。また選択化処
理とは、選択透過性付与の目的で陽イオン交換膜
の表面に分子量100以上の物質を付着させること
を意味する。同様に選択化処理剤とは、選択化処
理を行うために使用する薬剤の総称である。従つ
て単に物理的に付着した場合のみならず該工程を
経た後、化学的手段により架橋又は変性をせる手
段が加えられる場合も上記定義に包含される。 本発明の選択化処理は、選択性を付与されてい
ない陽イオン交換膜に対して適用されるばかりで
なく、選択化膜に対しても適用し得るものであ
り、選択化膜が適用することにより、従来知られ
ている選択性よりも更に優れた選択性が得られる
か又は(及び)該選択性能の耐久性が向上すると
いう利点がある。従来、選択化膜を得る方法とし
ては例えば特公昭46−23607においては陽イオン
を含む分子量が100以上の水溶性物質で陽イオン
交換膜を処理するか、又は電気透析において被透
析液にそのような物質を添加する方法が、特公昭
47−3801号には陽イオン交換膜の表面に陰イオン
交換基を有し、且つ容易に架橋し得る反応性官能
基を有する線状高分子電解質を薄層状に付着せし
めた後、架橋処理を施すことにより、三次元構造
をもち、実質上陽イオン交換膜の電気抵抗を増加
せしめない薄層として固着せしめる方法が、特公
昭53−44155号には、陰イオン交換基を有する水
又は無機塩水溶液不溶性架橋高分子の微粒子の懸
濁液で陽イオン交換膜を処理する方法等が提案さ
れている。本発明は、これらの方法によつて得た
選択化膜に対して有効に適用し得るものである。 本発明は、陽イオン交換膜を用いて電価の異な
る2以上の陽イオンを含む電解質溶液を電気透析
するに先立つて陽イオン交換膜を該電気透析時の
温度よりも高い温度で陽イオン交換膜を選択化処
理することを特徴とする電価の小なる陽イオンを
選択的に電気透析する方法である。 また、本発明に用いる選択化処理剤としては、
被透析電解質溶液中で陽イオンとなり得る官能基
をもち、且つ分子量の大きい水溶性物質が好まし
く、その構造及び濃度は特に限定さらない。例え
ば、ラウリルアミン、ラウリルトリメチルアンモ
ニウムクロライド、トリエタノールアミンモノス
テアレート、ステアラミドエチルジエチルアミ
ン、2−ヘプタデセニールヒドロキシエチルイミ
ダゾール、セチルピリジニウムクロライド、ステ
アラムドメチルピリジニウムクロライド、ポリビ
ニルピリジン、ポリビニルイミダゾール、ポリエ
チレンポリアミン、ポリエチレン、ポリ−4−ビ
ニルピリジン、ポリビニルベンジルトリメチルア
ンモニウム、或いは などの4級ホスホニウム塩類、 などの3級スルフオニウム塩類、金属としてCo、
Ni、Fe等、また配位子としてNH3、CN、NH2
CH2、CH2NH2、トリエチレンテトラミン、テ
トラエチレンペンタミン、アミノ酸等の正電荷を
持つ遷移金属の4配位又6配位錯塩類やイオンの
配位化合物で正電荷のもの、金属としてCo、
Mi、Mg、Ca等とキレート化剤として
(NaOOCCH22N・C2H4N(CH2COONa)2
The present invention is a method of electrodialyzing an electrolyte solution containing two or more types of cations with different electric charges, and selectively electrodialyzing the cations with different electric charges. Specifically, two or more types of membranes with different charge values are characterized by using a cation exchange membrane that has extremely enhanced selective performance by being treated in the presence of a selective treatment agent at a temperature higher than the temperature during dialysis. This method electrodialyzes an electrolyte solution containing cations, and selectively electrodialyzes cations with a low electric charge. Conventionally, in the production of salt by concentrating seawater using the ion exchange membrane method, cation exchange membranes are used to convert sodium ions (Na + ) in seawater to other cations such as magnesium ions (Mg 2+ ) and calcium ions. It is desired to produce common salt with a high purity salt percentage by selectively passing (Ca 2+ ). Therefore, various attempts have been proposed to impart selective permselectivity for cations with a small electric charge (hereinafter simply referred to as permselectivity) to cation exchange membranes as described above. Examples of these include () a method of providing a reactively charged functional group, i.e., an anion exchange membrane group, on the surface of a cation exchange membrane; and () a method of creating an electrically neutral membrane layer on the surface of a cation exchange membrane, that is, an ion Method of forming a thin layer without exchange groups, () Method of forming a layer with a high degree of crosslinking on the surface of a cation exchange membrane, ()
Method for increasing the fixed ion concentration at least in the surface layer of a cation exchange membrane, () () to () above
Among them, there is a method of using two or more yen together. These are classified as (a) high molecular substances on the surface of the cation exchange membrane, such as
100 or more, preferably 500 or more polymers, etc. are adsorbed, and these are cross-linked by post-treatment; (b) Anion exchange groups are added to the matrix constituting the cation exchange membrane through chemical bonding, or non-containing It can be divided into two methods: (e) a method of applying a layer of ionic atomic groups, and (e) a method of chemically changing the surface layer of the cation exchange membrane. In this specification, a cation exchange membrane imparted with selective permeability in any of the methods exemplified above is referred to as a selective membrane. In addition, the selective treatment means attaching a substance with a molecular weight of 100 or more to the surface of the cation exchange membrane for the purpose of imparting permselectivity. Similarly, the selection treatment agent is a general term for chemicals used to perform selection treatment. Therefore, the above definition includes not only the case where the material is simply physically attached but also the case where a means for crosslinking or modifying by chemical means is added after the step. The selectivity treatment of the present invention can be applied not only to cation exchange membranes that are not imparted with selectivity, but also to selective membranes; This has the advantage that a selectivity superior to that conventionally known can be obtained and/or the durability of the selective performance is improved. Conventionally, as a method for obtaining a selective membrane, for example, in Japanese Patent Publication No. 46-23607, a cation exchange membrane is treated with a water-soluble substance containing cations and has a molecular weight of 100 or more, or the dialysate is treated with such a substance in electrodialysis. The method of adding substances that
No. 47-3801 discloses a method in which a linear polymer electrolyte having an anion exchange group and a reactive functional group that can be easily crosslinked is attached to the surface of a cation exchange membrane in a thin layer, and then a crosslinking treatment is performed. Japanese Patent Publication No. 53-44155 describes a method of fixing a cation exchange membrane as a thin layer that has a three-dimensional structure and does not substantially increase the electrical resistance of the cation exchange membrane by applying water or an aqueous inorganic salt solution having an anion exchange group. A method of treating a cation exchange membrane with a suspension of fine particles of an insoluble crosslinked polymer has been proposed. The present invention can be effectively applied to selective membranes obtained by these methods. In the present invention, prior to electrodialyzing an electrolyte solution containing two or more cations with different electric charges using a cation exchange membrane, the cation exchange membrane is subjected to cation exchange at a temperature higher than the temperature during the electrodialysis. This is a method of selectively electrodialyzing cations with a low electric charge, which is characterized by selectively treating a membrane. In addition, as the selective treatment agent used in the present invention,
A water-soluble substance having a functional group capable of becoming a cation in the electrolyte solution to be dialyzed and having a large molecular weight is preferred, and its structure and concentration are not particularly limited. For example, laurylamine, lauryltrimethylammonium chloride, triethanolamine monostearate, stearamide ethyldiethylamine, 2-heptadecenylhydroxyethylimidazole, cetylpyridinium chloride, stearamdomethylpyridinium chloride, polyvinylpyridine, polyvinylimidazole, polyethylene Polyamine, polyethylene, poly-4-vinylpyridine, polyvinylbenzyltrimethylammonium, or Quaternary phosphonium salts such as tertiary sulfonium salts such as Co, metal as
Ni, Fe, etc., and as ligands NH 3 , CN, NH 2 ,
CH 2 , CH 2 NH 2 , triethylenetetramine, tetraethylenepentamine, amino acids and other positively charged transition metal 4- or 6-coordinate complex salts and ion coordination compounds with positive charges, as metals. Co,
As a chelating agent with Mi, Mg, Ca, etc. (NaOOCCH 2 ) 2 N・C 2 H 4 N (CH 2 COONa) 2 ,

【式】【formula】

【式】 などの正電位となり得るキレート化合物等の金属
錯塩化合物があるが、好ましくはポリアミンであ
る。処理方法も特に限定されないが、一般に
0.001〜1g/の濃度の溶液を陽イオン交換膜
と接触させる。 本発明において、最も重要な要件は陽イオン交
換膜の選択化処理時の温度である。即ち、該温度
は電気透析時の温度より高くすることが必須であ
り、該温度と電気透析時の温度との温度差は大き
い程、選択透過性能が向上するが、該処理温度は
用いるイオン交換膜の劣化をきたさない範囲にと
どめなければならない。通常は、電気透析時の温
度よりも5〜30℃高いのが一般的である。この為
の手段としては選択化処理剤を含む溶液を電気透
析時の温度よりも高い温度に保つて陽イオン交換
膜と接触させるか、或いは電気透析時の温度と同
温以下の選択化処理剤を含む溶液と接触させた
後、電気透析時よりも高い温度に昇温すればよ
い。要は、選択化処理剤が表面に付着した陽イオ
ン交換膜を一定時間、電気透析時の温度よりも高
い温度まで昇温することが重要である。更に別の
態様として、一たん電気透析時よりも高い温度下
に選択化処理剤を付着せしめた陽イオン交換膜を
再度電気透析時の温度より高く昇温するのも有効
である。 このような処理による選択性向上の機構は、明
らかでないが、本発明者等はイオン交換膜の温度
による伸縮の違いが効果的に作用するものと推定
する。 また、本発明の処理時間は用いる陽イオン交換
膜の種類、処理温度、選択処理剤の種類等により
異なるが、通常数時間〜十数時間が好ましい。 本発明方法による処理を施した陽イオン交換膜
を用いることにより、電価の異なる2種以上の陽
イオンを含む電解質溶液から電価の小なる陽イオ
ンを高性能で選択的に電気透析できるため、陽イ
オン交換膜を用いるイオンの選択的濃縮、希釈に
利用し得る。 次に本発明を具体的に説明するための実施例を
示すが、本発明はこれらの実施例に限定されるも
のではない。 尚、以下の実施例は電気透析法による海水濃縮
を行い、陽イオン間選択透過性は簡易純塩率の値
L(Cl−Ca−Mg)N×100/Cl(N)〕を用いて評
価した。 電気透析は、陰陽イオン交換膜を対として20対
並べ隔室の4釈室に海水を6cm/秒の流速で流
し、その両端に設けた電極を通じて膜表面に対
し、2Amp/dm2の電流密度で電流を通す。膜の
有効面積は、2dm2である。電気透析により他の
隔室毎に濃縮される液は、その組成が平衝に達し
た後に分析し、簡易純塩率を求めた。 実施例 1 イオン交換膜はネオセプタIM(徳山曹達製品
名)とA−10KS(徳山曹達製品名)の新しい膜と
既に1年間海水濃縮を行つた膜を用いた。選択化
処理薬剤は、ジシアンジアミド、ホルマリン重縮
合物を用いた。 選択化処理は、選択化処理薬剤を100ppmにな
るように水に入れても5調合し、電気透析希釈
室に6cm/秒の流速で1時間ポンプ循環した。そ
の後、前記した電気透析を行つた。選択比は処理
温度と電気透析温度及び簡易純塩率を第1表に示
す。 表中、1年使用した膜とは、1年間の連続使用
において繰り返し選択化処理を行い1年後におけ
る選択化処理時の値である。第2表、第3表にお
いても同様である。尚、No.1〜No.4は比較例であ
る。
There are metal complex compounds such as chelate compounds that can have a positive potential such as [Formula], but polyamines are preferable. The processing method is not particularly limited, but generally
A solution with a concentration of 0.001 to 1 g/g is contacted with the cation exchange membrane. In the present invention, the most important requirement is the temperature during the selective treatment of the cation exchange membrane. That is, it is essential that the temperature be higher than the temperature during electrodialysis, and the larger the temperature difference between the temperature and the temperature during electrodialysis, the better the selective permeation performance will be, but the treatment temperature depends on the ion exchange used. It must be kept within a range that does not cause deterioration of the membrane. Usually, the temperature is 5 to 30°C higher than the temperature during electrodialysis. As a means for this purpose, the solution containing the selective treatment agent is kept at a temperature higher than the temperature during electrodialysis and brought into contact with the cation exchange membrane, or the solution containing the selective treatment agent is kept at a temperature equal to or lower than the temperature during electrodialysis. After contacting with a solution containing , the temperature may be raised to a higher temperature than during electrodialysis. In short, it is important to raise the temperature of the cation exchange membrane, on which the selective treatment agent is attached, for a certain period of time to a temperature higher than the temperature during electrodialysis. In yet another embodiment, it is also effective to raise the temperature of the cation exchange membrane to which the selective treatment agent is attached once again to a temperature higher than that during electrodialysis. Although the mechanism by which selectivity is improved by such treatment is not clear, the present inventors assume that the difference in expansion and contraction of the ion exchange membrane due to temperature acts effectively. Further, the treatment time of the present invention varies depending on the type of cation exchange membrane used, the treatment temperature, the type of selective treatment agent, etc., but is usually preferably several hours to more than ten hours. By using a cation exchange membrane treated by the method of the present invention, cations with a small charge can be selectively electrodialyzed with high performance from an electrolyte solution containing two or more types of cations with different charges. It can be used for selective concentration and dilution of ions using a cation exchange membrane. Next, Examples will be shown to specifically explain the present invention, but the present invention is not limited to these Examples. In the following examples, seawater was concentrated by electrodialysis, and the selective permselectivity between cations was evaluated using the simple pure salt ratio value L(Cl-Ca-Mg)N x 100/Cl(N)]. did. In electrodialysis, seawater is flowed at a flow rate of 6 cm/sec into four compartments in which 20 pairs of anion and cation exchange membranes are arranged, and a current density of 2 Amp/dm 2 is applied to the membrane surface through electrodes installed at both ends. to conduct current. The effective area of the membrane is 2dm2 . The liquid concentrated in each of the other compartments by electrodialysis was analyzed after its composition reached equilibrium to determine the simple pure salt percentage. Example 1 New ion-exchange membranes, Neocepta IM (Tokuyama Soda product name) and A-10KS (Tokuyama Soda product name), and membranes that had been used to concentrate seawater for one year were used. As the selective processing agent, dicyandiamide and formalin polycondensate were used. For the selection treatment, the selection treatment agent was prepared by adding it to water to a concentration of 100 ppm, and the mixture was pumped and circulated in an electrodialysis dilution chamber for 1 hour at a flow rate of 6 cm/sec. Thereafter, the electrodialysis described above was performed. The selection ratio is shown in Table 1, which shows the treatment temperature, electrodialysis temperature, and simple pure salt rate. In the table, the membrane used for 1 year refers to the value obtained after repeated selection treatments during continuous use for 1 year and after 1 year of selection treatment. The same applies to Tables 2 and 3. Note that No. 1 to No. 4 are comparative examples.

【表】 実施例 2 実施例1と同様の方法で選択化処理を20℃で行
い、20℃で5時間電気透析を行つた(No.1)その
後35℃で2時間上記と同様の選択化処理を行い、
更に引き続いて20℃で電気透析を行つた(No.2)
結果を第2表に示す。尚、No.1は比較例である。
[Table] Example 2 Selectivity treatment was performed at 20°C in the same manner as in Example 1, and electrodialysis was performed at 20°C for 5 hours (No. 1), followed by selectivity treatment in the same manner as above at 35°C for 2 hours. process,
Furthermore, electrodialysis was performed at 20°C (No. 2)
The results are shown in Table 2. Note that No. 1 is a comparative example.

【表】 実施例 3 実施例1のNo.7と実施例2のNo.1とNo.2の処理
したものについて電気透析を行い、簡易純塩率の
経時変化を第3表に示す。尚、実施例2のNo.1に
関するものは比較例である。
[Table] Example 3 Electrodialysis was performed on the treated samples No. 7 of Example 1 and No. 1 and No. 2 of Example 2, and Table 3 shows the change in simple pure salt percentage over time. Note that No. 1 of Example 2 is a comparative example.

【表】 実施例 4 イオン交換膜はネオセプタCH−45T(徳山曹達
製品名)とAFS−4T(徳山曹達製品名)を用い
た。又、選択化処理剤は、ポリエチレンイミンを
用いた。選択化処理は、選択化処理剤を150ppm
になるように水に添加し、5調合し、これを電
気透析希釈室に6cm/秒の流速で2時間ポンプを
循環した。その後前記装置により電気透析を行つ
た選択化処理温度と電気透析温度及び簡易純塩率
を第4表に示す。尚、No.1、No.2は比較例であ
る。
[Table] Example 4 Neocepta CH-45T (Tokuyama Soda product name) and AFS-4T (Tokuyama Soda product name) were used as ion exchange membranes. Moreover, polyethyleneimine was used as the selective treatment agent. For selective treatment, use 150ppm of selective treatment agent.
The mixture was added to water so as to yield 5 mixtures, and the mixture was circulated in an electrodialysis dilution chamber using a pump at a flow rate of 6 cm/sec for 2 hours. Table 4 shows the selective treatment temperature, electrodialysis temperature, and simple pure salt rate at which electrodialysis was performed using the above-mentioned apparatus. Note that No. 1 and No. 2 are comparative examples.

【表】 実施例 5 陽イオン交換膜ネオセプタCH−45T(徳山曹達
社製)と陰イオン交換膜ネオセプタAFS−4T(徳
山曹達社製)を用いた。 選択化処理は、下記(1)(2)(3)に示す選択化処理剤
を含む水溶液を5℃用い電気透析希釈室に6cm/
秒の流速で2時間ポンプ循環した。その後、前記
装置により電気透析を行つた。選択化処理温度と
電気透析温度及び簡易純塩率を第5表に示す。 (1) 分子量約2000のポリ−4−ビニルピリジンを
沃化メチル処理して得たポリ−4−ビニルピリ
ジンの4級塩を1000ppmになるように水に溶か
す。 (2) 分子量約1000のポリビニルベンジルトリメチ
ルアンモニウムを5000ppmになるように水に溶
かす。 (3) セチルピリジニウムクロライドを500ppmに
なるように水に溶かす。
[Table] Example 5 A cation exchange membrane Neocepta CH-45T (manufactured by Tokuyama Soda Co., Ltd.) and an anion exchange membrane Neocepta AFS-4T (manufactured by Tokuyama Soda Co., Ltd.) were used. In the selection treatment, an aqueous solution containing the selective treatment agent shown in (1), (2), and (3) below was placed in an electrodialysis dilution chamber at 6 cm/6 cm at 5°C.
Pump circulation was carried out for 2 hours at a flow rate of 1.5 seconds. Thereafter, electrodialysis was performed using the above device. Table 5 shows the selective treatment temperature, electrodialysis temperature, and simple pure salt rate. (1) A quaternary salt of poly-4-vinylpyridine obtained by treating poly-4-vinylpyridine with a molecular weight of about 2000 with methyl iodide is dissolved in water to a concentration of 1000 ppm. (2) Dissolve polyvinylbenzyltrimethylammonium with a molecular weight of approximately 1000 in water to a concentration of 5000 ppm. (3) Dissolve cetylpyridinium chloride in water to a concentration of 500ppm.

【表】 実施例 6 陽イオン交換膜ネオセプタCH−45T(徳山曹達
社製)特開昭56−50933に準じて、N,N′−ジ
(ビニルベンジル)−N,N,N′,N′−テトラメ
チル1,6ヘキセンジアンモニウムジクロライド
500ppmの水溶液中へ25℃、3時間浸漬した。そ
の後、該溶液中へ過硫酸アンモニウムを1000ppm
になるように加え、3時間後に取り出し、水洗し
て選択化膜を得た。こうして得られた選択化膜と
陰イオン交換膜ネオセプタAFS−4T(徳山曹達社
製)を用いて海水の電気透析を20℃で行つたとこ
ろ、簡易純塩率は95.5%であつた引き続いて本発
明の選択化処理を行う。 選択化処理は、選択化処理剤としてポリエチレ
ンイミンを50ppmになるように水に入れて5調
合し、電気透析希釈室に6cm/秒の流速で2時間
ポンプ循環した。選択化処理温度と電気透析温度
及び簡易純塩率を第6表に示す。即ち、比較例は
選択化処理温度と電気透析温度が同一の場合であ
る。
[Table] Example 6 Cation exchange membrane Neosepta CH-45T (manufactured by Tokuyama Soda Co., Ltd.) N,N'-di(vinylbenzyl)-N,N,N',N' according to JP-A-56-50933 -Tetramethyl 1,6 hexenediammonium dichloride
It was immersed in a 500 ppm aqueous solution at 25°C for 3 hours. Then, add 1000 ppm of ammonium persulfate into the solution.
After 3 hours, the membrane was taken out and washed with water to obtain a selective membrane. When electrodialysis of seawater was performed at 20°C using the selective membrane obtained in this way and an anion exchange membrane Neocepta AFS-4T (manufactured by Tokuyama Soda Co., Ltd.), the simple pure salt rate was 95.5%. Perform invention selection processing. In the selection treatment, polyethyleneimine was mixed in water to a concentration of 50 ppm as a selection agent, and the mixture was pumped and circulated in an electrodialysis dilution chamber for 2 hours at a flow rate of 6 cm/sec. Table 6 shows the selective treatment temperature, electrodialysis temperature, and simple pure salt rate. That is, the comparative example is a case where the selectivity treatment temperature and the electrodialysis temperature are the same.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 選択化処理剤の存在下に透析時の温度よりも
高い温度で処理した陽イオン交換膜を用いること
を特徴とする電価の異なる二種以上の陽イオンを
含む電解質溶液を電気透析し、電価の小なる陽イ
オンを選択的に電気透析する方法。
1. Electrodialysis of an electrolyte solution containing two or more types of cations with different electric charges, characterized by using a cation exchange membrane treated in the presence of a selective treatment agent at a temperature higher than the temperature during dialysis, A method of selectively electrodialyzing cations with low electric charge.
JP3723382A 1982-03-11 1982-03-11 Method for enhancing selective permeability of cation exchange membrane Granted JPS58156305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3723382A JPS58156305A (en) 1982-03-11 1982-03-11 Method for enhancing selective permeability of cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3723382A JPS58156305A (en) 1982-03-11 1982-03-11 Method for enhancing selective permeability of cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS58156305A JPS58156305A (en) 1983-09-17
JPS6351048B2 true JPS6351048B2 (en) 1988-10-12

Family

ID=12491887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3723382A Granted JPS58156305A (en) 1982-03-11 1982-03-11 Method for enhancing selective permeability of cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS58156305A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834676A (en) * 1971-09-08 1973-05-21
JPS5344155A (en) * 1976-08-16 1978-04-20 Motorola Inc Gain control amplifier
JPS56118702A (en) * 1980-02-25 1981-09-17 Mitsubishi Petrochem Co Ltd Treatment of ion exchange membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834676A (en) * 1971-09-08 1973-05-21
JPS5344155A (en) * 1976-08-16 1978-04-20 Motorola Inc Gain control amplifier
JPS56118702A (en) * 1980-02-25 1981-09-17 Mitsubishi Petrochem Co Ltd Treatment of ion exchange membrane

Also Published As

Publication number Publication date
JPS58156305A (en) 1983-09-17

Similar Documents

Publication Publication Date Title
Sata Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis
Sata et al. Interaction between anionic polyelectrolytes and anion exchange membranes and change in membrane properties
US3510418A (en) Ion selective membrane
US5948230A (en) Electrodialysis including filled cell electrodialysis (Electrodeionization)
Amara et al. Modification of cation-exchange membrane properties by electro-adsorption of polyethyleneimine
Strathmann Electrodialysis and its application in the chemical process industry
Sata et al. Modification of properties of ion exchange membranes. VII. Relative transport number between various cations of cation exchange membrane having cationic polyelectrolyte layer and mechanism of selective permeation of particular cations
JP2724735B2 (en) Highly functional bipolar membrane
JP2003154238A (en) Composite semipermeable membrane and method for manufacturing the same
EP1188784B1 (en) Cation-exchange membrane selectively permeable to monovalent cation and process for producing the same
JPS6365060B2 (en)
Amara et al. Modified cation exchange resin applied to demineralisation of a liquid industrial waste. Comparison to a classical treatment and electrodialysis
JPS6351048B2 (en)
Luo et al. On-line construction of electrodialyzer with mono-cation permselectivity and its application in reclamation of high salinity wastewater
JP2003082130A (en) Ion-exchange membrane
JP2843427B2 (en) Composite semipermeable membrane
JPH04298223A (en) Separation of nitric acid ion
JPH07265864A (en) Fluorine-ion removing method
JPH084715B2 (en) Method of separating electrolyte and method of ion exchange of electrolyte having counterion
JP4431710B2 (en) ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE
JPH04284832A (en) Electrodialysis of inorganic salt-containing amphoteric surfactant solution
JPS6115885B2 (en)
JP3497619B2 (en) Cation exchange membrane
Sata et al. Electrodialytic properties of cation-exchange membranes in the presence of N-dodecyl pyridyl compounds
JPH0585574B2 (en)