JPS6350883B2 - - Google Patents
Info
- Publication number
- JPS6350883B2 JPS6350883B2 JP62033163A JP3316387A JPS6350883B2 JP S6350883 B2 JPS6350883 B2 JP S6350883B2 JP 62033163 A JP62033163 A JP 62033163A JP 3316387 A JP3316387 A JP 3316387A JP S6350883 B2 JPS6350883 B2 JP S6350883B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- excitation
- electrodes
- gap
- surface acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005284 excitation Effects 0.000 claims description 27
- 238000010897 surface acoustic wave method Methods 0.000 claims description 13
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は弾性表面波用一方向変換器に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a unidirectional transducer for surface acoustic waves.
(従来の技術)
弾性表面波変換器は、現在電気通信用フイル
タ、遅延線、光IC回路、実時間フーリエ変換器、
テレビ用ゴーストキヤンセラー等に幅広く使われ
ている。(Prior art) Surface acoustic wave transducers are currently used in telecommunication filters, delay lines, optical IC circuits, real-time Fourier transformers,
Widely used in ghost cancellers for TVs, etc.
しかし乍ら、従来の変換器は圧電基板上に単に
すだれ状電極を配置し、電気的には、全面にわた
つて同相で励振する方法が主にとられているた
め、励振及び受信変換器の内部に強い定在波が発
生し、その前後に波を出すいわゆる双方向性特性
になる。このため、不要部に波を放出したり多重
反射を生じる等の問題を起し、低損失特性や低リ
ツプル特性が得られなくなる。 However, conventional transducers simply place interdigital electrodes on a piezoelectric substrate, and electrically, the main method is to excite in the same phase over the entire surface, so the excitation and reception transducers A strong standing wave is generated internally, and waves are emitted before and after the standing wave, resulting in a so-called bidirectional characteristic. This causes problems such as emitting waves to unnecessary parts and causing multiple reflections, making it impossible to obtain low loss characteristics and low ripple characteristics.
この問題を解決する方法として、電気的励振位
相を適当に異ならせて一方向特性を得る方法が開
発され好結果が得られている。しかし乍ら、この
方法は一つの基板上に少なくても三種類の相異る
電極を設ける必要があるため、電極を引き出す際
に問題が生じ、各電極を低結合状態で交叉させる
方法をとるか、あるいはどれか一本を変換器内で
蛇行させる方法をとらねばならない。前者には、
電極の空隙交叉という問題があり、後者には従来
励振源の一部に空白部分が生じたり又、振源の大
きさが不揃いになる等の問題があつた。 As a method of solving this problem, a method of obtaining unidirectional characteristics by appropriately varying the electrical excitation phase has been developed, and good results have been obtained. However, this method requires at least three different types of electrodes to be provided on one substrate, which causes problems when drawing out the electrodes, so a method is used in which each electrode crosses in a low coupling state. Either, or one of them must be made to meander within the converter. For the former,
There is a problem of the gap crossing of the electrodes, and the latter problem has conventionally had problems such as a blank part being formed in a part of the excitation source and the size of the excitation source being uneven.
(発明が解決しようとする問題点)
本発明は、上記後者の方法の欠点をなくすため
に、なされたもので、電極間のギヤツプの大きさ
及び配置に工夫をこらすことにより、振源の大き
さ及び位相の不揃いをなくすることを目的とす
る。(Problems to be Solved by the Invention) The present invention has been made in order to eliminate the drawbacks of the latter method. The purpose of this is to eliminate misalignment of the angle and phase.
(問題点を解決するための手段)
本発明は上記問題点を解決するために、複数の
電極指を有する第1の励振電極と、この第1の励
振電極の前記電極指と互いに交差する電極指を有
し前記第1の励振電極に印加される信号に対して
θ(ラジアン)だけ位相の異なつた信号が印加さ
れる第2の励振電極と、前記第1および第2の励
振電極の各電極指間に設けられた接地電極とを備
え、前記接地電極の配列1周期区間を基本区間と
しこの基本区間の長さが弾性表面波の波長λの偶
数倍に等しく、かつ前記基本区間にある電極間ギ
ヤツプの大きさがすべて略同一であり、さらに前
記基本区間内の前記第1の励振電極の電極指から
その左側および右側の前記接地電極に至るギヤツ
プの中心点をそれぞれA及びB、前記第2の励振
電極からその左側および右側の前記接地電極に至
るギヤツプの中心点をそれぞれC及びDとしたと
き、AC間の長さl1とBD間の長さl2との間にl1=l2
=l、AB間の長さyにy=1/2λの関係からあ
り、さらにl=1/nλとするときiを正整数とし
てほぼ
n=2π/(θ+(2i−1)π)
なる関係を有することを特徴とする弾性表面波用
一方向変換器を提供する。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a first excitation electrode having a plurality of electrode fingers, and an electrode that intersects with the electrode fingers of the first excitation electrode. a second excitation electrode having a finger and to which a signal having a phase difference of θ (radian) with respect to the signal applied to the first excitation electrode is applied; and each of the first and second excitation electrodes. a ground electrode provided between electrode fingers, one periodic section of the arrangement of the ground electrodes is a basic section, the length of this basic section is equal to an even multiple of the wavelength λ of the surface acoustic wave, and is in the basic section. The sizes of the gaps between the electrodes are all approximately the same, and the center points of the gaps from the electrode fingers of the first excitation electrode in the basic section to the ground electrodes on the left and right sides are A and B, respectively. When the center points of the gap from the second excitation electrode to the ground electrodes on the left and right sides are respectively C and D, there is l 1 between the length l 1 between AC and the length l 2 between BD. =l 2
=l, the length y between AB has the relationship y=1/2λ, and when l=1/nλ, the relationship is approximately n=2π/(θ+(2i-1)π), where i is a positive integer. A unidirectional transducer for surface acoustic waves is provided.
(作用)
このような構成によると、弾性表面波を励振し
たとき、波の伝搬方向をXとすると、Xの負方向
からみた振源が全く相殺され、正方向成分のみが
残り、一方向特性が得られる。(Function) According to such a configuration, when a surface acoustic wave is excited, if the wave propagation direction is X, the vibration source seen from the negative direction of X is completely canceled out, and only the positive direction component remains, resulting in a unidirectional characteristic. is obtained.
しかも通過域付近では十分な方向性をもつ低リ
ツプル特性が得られ広い周波数範囲でスプリアス
のない一方向変換器が得られる。 Furthermore, low ripple characteristics with sufficient directionality can be obtained near the passband, and a unidirectional converter without spurious signals can be obtained over a wide frequency range.
(実施例)
本発明の一方向性変換器の構成及び動作を詳述
すると次の様になる。(Example) The configuration and operation of the unidirectional converter of the present invention will be described in detail as follows.
第1図は、圧電基板上に作成された本発明の変
換器である。電極1は蛇行接地電極であり、電極
2は基準となる複数の電極指を有する励振用電極
である。電極8は電極2に加えられる電気的信号
よりθ(ラジアン)位相を遅らせた信号を与える
ための励振用電極である。第2図は第1図の変換
器の実際の弾性表面波を励振する部分の断面図で
あり電極1,2,3はそれぞれ第1図の電極1,
2,3に相当する。ここで、各電極間のギヤツプ
dは全て等しく、さらに電極1,3間のギヤツプ
の中心と電極1,2間のギヤツプの中心との間の
距離l1は、電極3,1間のギヤツプの中心と電極
2,1間のギヤツプの中心との間の距離l2に等し
くなつている。又、この電極は第2図のように蛇
行電極1の幅の広い方の電極の中心から次の蛇行
電極1の幅の広い方の電極の中心までの間L1、
又は蛇行電極1の幅の狭い方の電極の中心から次
の蛇行電極1の幅の狭い方の電極の中心までの間
L2を基本区間として周期的になつている。さら
に第2図のように電極3の両側にある各ギヤツプ
の中心間距離yが励振または受信する弾性波の波
長をλ0としたときy=λ0/2となるよう電極1お
よび3が形成されている。 FIG. 1 is a transducer of the invention fabricated on a piezoelectric substrate. Electrode 1 is a meandering ground electrode, and electrode 2 is an excitation electrode having a plurality of reference electrode fingers. The electrode 8 is an excitation electrode for providing a signal whose phase is delayed by θ (radians) from the electrical signal applied to the electrode 2. Figure 2 is a cross-sectional view of the part of the transducer in Figure 1 that actually excites surface acoustic waves, and electrodes 1, 2, and 3 are electrodes 1, 2, and 3 in Figure 1, respectively.
Corresponds to 2 or 3. Here, the gaps d between each electrode are all equal, and the distance l 1 between the center of the gap between electrodes 1 and 3 and the center of the gap between electrodes 1 and 2 is equal to the gap d between electrodes 3 and 1. It is equal to the distance l 2 between the center and the center of the gap between the electrodes 2,1. Moreover, as shown in FIG. 2, this electrode has a distance L 1 from the center of the wide electrode of the meandering electrode 1 to the center of the wide electrode of the next meandering electrode 1.
Or from the center of the narrower electrode of one meandering electrode 1 to the center of the narrower electrode of the next meandering electrode 1
It is periodic with L 2 as the basic interval. Further, as shown in Fig. 2, electrodes 1 and 3 are formed so that the distance y between the centers of each gap on both sides of electrode 3 is y = λ 0 /2, where λ 0 is the wavelength of the elastic wave to be excited or received. has been done.
一般に弾性波の伝搬定数をβとするとき、位相
がθだけ遅れた電気信号で誘起される弾性時応力
は見掛上(θ/β)だけ遠い点で位相遅れのない
信号で誘起された応力に等しくなる。従つて波の
伝搬方向をXとするとき、Xの正方向からみた見
掛のδ振源分布は第3図のようになり、Xの負方
向からみたδ振源分布は第4図のようになる。両
図で点線6は、電極3によつて生じた振源であ
り、実線5は電極2によつて生じた振源である。
今基本区間L1又はL2を2i周期とする波(波長λ)
について考えると、l1=l2=lとおき
l=λ0/n ……(1)
として
θ=(2/n−(2i−1))π、
(但し、iは正整数) ……(2)
なるときに第4図で示される振源が全て相殺され
るので、第3図で示されるXの正方向成分のみ残
り、一方向特性が得られる。 In general, when the propagation constant of an elastic wave is β, the elastic stress induced by an electrical signal whose phase is delayed by θ is the stress induced by a signal with no phase lag at a point apparently distant by (θ/β). is equal to Therefore, when the wave propagation direction is X, the apparent δ oscillation source distribution viewed from the positive direction of X is as shown in Figure 3, and the δ oscillation source distribution viewed from the negative direction of X is as shown in Figure 4. become. In both figures, the dotted line 6 is the vibration source generated by the electrode 3, and the solid line 5 is the vibration source generated by the electrode 2.
Wave whose basic interval L 1 or L 2 has a period of 2i (wavelength λ)
Considering, let l 1 = l 2 = l, l = λ 0 /n...(1), and θ=(2/n-(2i-1))π, (where i is a positive integer)... (2) Since all the vibration sources shown in FIG. 4 are canceled out, only the positive direction component of X shown in FIG. 3 remains, and a unidirectional characteristic is obtained.
特にn=4/3、θ=π/2の場合は、第3図で
示される振源は、全体に亘つて振巾及び位相関係
を揃えることが出来るので周波数特性は第5図の
実線のようにスプリアス成分のない特性が得られ
る。第5図の実線は変換器の順方向(この場合X
の正方向)に対する特性であり、点線は逆方向
(Xの負方向)に対する特性である。一点鎖線は
従来の蛇行型の一方向変換器の特性例でa点、b
点に大きなスプリアス特性が生じてる。 In particular, when n = 4/3 and θ = π/2, the amplitude and phase relationship of the vibration source shown in Figure 3 can be made uniform throughout, so the frequency characteristics are as shown by the solid line in Figure 5. Characteristics free of spurious components can be obtained. The solid line in Figure 5 is the forward direction of the converter (in this case
The dotted line is the characteristic for the opposite direction (the negative direction of X). The dashed-dotted line is an example of the characteristics of a conventional meandering type unidirectional converter, with points a and b.
A large spurious characteristic occurs at the point.
上述の方法と同様の考え方で第6図のように各
位相の電極を数個まとめて配置し、そのギヤツプ
間の距離(l)をθ=π/2、i=2として式(1)、(2)が
成立するようにしても同様の良好な特性が得られ
る。 Using the same concept as the above method, several electrodes of each phase are arranged together as shown in Fig. 6, and the distance (l) between the gaps is set as θ=π/2, i=2, and the formula (1) is given. Even if (2) is made to hold, similar good characteristics can be obtained.
励振の場合を主に述べたが、受信側では、弾性
表面波は圧電作用によつて上述の励振機構と逆の
過程で電気量に変換されるので、上述の構成をと
ることにより一方向性の受信変換器になる。 Although we have mainly described the case of excitation, on the receiving side, surface acoustic waves are converted into electrical quantities by piezoelectric action in a process opposite to the excitation mechanism described above, so by adopting the above configuration, unidirectional becomes a receiving converter.
このように本発明の変換器は、電極間のギヤツ
プの位置と位相θの関係をl=3λ0/4、θ=π/2と
する条件を代表としてl=11=l2=λ0/nとする
とき、
n=2π/(θ+(2i−1)π)(iは正整数)
なる関係を持つようにしたものである。θの許容
値として、±10%が許される。 As described above, in the converter of the present invention, the relationship between the gap position between the electrodes and the phase θ is typically l=3λ 0 /4, θ=π/2, and the relationship is l=1 1 =l 2 =λ 0 /n, the following relationship is established: n=2π/(θ+(2i-1)π) (i is a positive integer). The allowable value for θ is ±10%.
本発明の一実施例である第2図のような構成で
最も典型的な例である各ギヤツプの幅がλ0/8で
ある場合には各電極指の幅は蛇行電極の幅の広い
方が5λ0/8、蛇行電極の幅の狭い方がλ0/8、
基準励振用電極2の幅が3λ0/8、θだけ位相の
遅れた信号を加えるための電極3の幅が3λ0/8
となる。このように各励振用電極の電極指は、そ
の左右に必ずギヤツプを有しており、第2図の例
のように距離l1、l2が3λ0/4のとき、電極指は
λ0/2を越えない幅になる。第6図のようにi=
2となり、l1、l2が3λ0/4を越える場合において
も、各励振電極は個々には通常のすだれ状電極と
同様に接地電極を交互に介在させているので、各
電極指の幅はλ0/2を越えないもので、且つl1、
l2内で1波長毎に配置される。第6図の場合にも
最も典型的な例である各ギヤツプの幅がλ/8で
ある場合には各電極指の幅は上記第2図の例と同
様に蛇行電極は5λ0/8とλ0/8の幅の電極から
なり、電極2及び電極3の幅は3λ0/8となる。 When the width of each gap is λ 0 /8, which is the most typical example of the configuration shown in FIG. 2, which is an embodiment of the present invention, the width of each electrode finger is equal to the width of the meandering electrode. is 5λ 0 /8, the narrower width of the meandering electrode is λ 0 /8,
The width of the reference excitation electrode 2 is 3λ 0 /8, and the width of the electrode 3 for adding a signal whose phase is delayed by θ is 3λ 0 /8.
becomes. In this way, the electrode finger of each excitation electrode always has a gap on its left and right sides, and when the distances l 1 and l 2 are 3λ 0 /4 as in the example in FIG. 2, the electrode finger is λ 0 The width will not exceed /2. As shown in Figure 6, i=
2, and even when l 1 and l 2 exceed 3λ 0 /4, the width of each electrode finger is does not exceed λ 0 /2, and l 1 ,
They are arranged for each wavelength within l 2 . In the case of Fig. 6, where the width of each gap is λ/8, which is the most typical example, the width of each electrode finger is 5λ 0 /8 for the meandering electrode, as in the example of Fig. 2 above. It consists of electrodes with a width of λ 0 /8, and the widths of electrode 2 and electrode 3 are 3λ 0 /8.
さらに同様の構成で、変換器部の電界の漏洩を
防ぐため第7図のように部分的に誘電体薄膜10
をつけ、その上に共通接地電極11を蒸着する方
法で作成された変換器及び幅の広い電極部分を第
8図のように2分割、3分割して構成した変換
器、例えば全てのギヤツプがλ0/8に等しい場合
には各分割された電極指幅も全てλ0/8となるよ
うな変換器についても本発明の中に含まれるもの
とする。 Furthermore, with the same configuration, in order to prevent leakage of the electric field in the converter section, a dielectric thin film 10 is partially inserted as shown in FIG.
Converters made by attaching a common ground electrode 11 and depositing a common ground electrode 11 thereon, and converters constructed by dividing a wide electrode part into two or three parts as shown in Fig. 8, for example, when all the gaps are In the case where the width is equal to λ 0 /8, the width of each divided electrode finger is also λ 0 /8.
(発明の効果)
以上説明したように、本発明によると、通過域
付近では十分な方向性をもつ低リツプル特性が得
られ広い周波数範囲でスプリアス特性のない一方
向変換器が得られる。(Effects of the Invention) As described above, according to the present invention, a unidirectional converter can be obtained that has low ripple characteristics with sufficient directionality near the passband and has no spurious characteristics in a wide frequency range.
第1図は本発明の弾性表面波用一方向性変換器
の構造を示す図。第2図は、変換器の断面と各電
極及びギヤツプの配置を示す図。第3図は、弾性
表面波の進行方向(順方向)に対する励振源の分
布を示す図。第4図は、弾性表面波の進行方向と
逆の方向(逆方向)に対する励振源の分布を示す
図。第5図は、本発明の変換器の順方向及び逆方
向の周波数特性例と従来の一方向変換器の順方向
周波数特性例を示す図。第6図は、第2図の基本
型と同一考え方を用い、各位相の電極をまとめて
配置した例を示す図。第7図は、電気的シールド
用電極を備えた場合の構造を示す図。第8図は、
各電極を細分化して実施した場合の構造を示す
図。
1……蛇行型の接地用電極、2……基準となる
励振用電極、8……θだけ位相の遅れた信号を加
えるための電極、4……圧電又は電歪基板、5…
…電極2による振源、6……電極3による振源、
7……本発明の変換器による順方向特性、8……
本発明の変換器による逆方向特性、9……従来の
一方向変換器による順方向特性、10……誘電体
薄膜、11……金属薄膜からなる接地電極。
FIG. 1 is a diagram showing the structure of a unidirectional transducer for surface acoustic waves according to the present invention. FIG. 2 is a diagram showing a cross section of the transducer and the arrangement of each electrode and gap. FIG. 3 is a diagram showing the distribution of excitation sources in the traveling direction (forward direction) of surface acoustic waves. FIG. 4 is a diagram showing the distribution of excitation sources in the opposite direction (reverse direction) to the traveling direction of surface acoustic waves. FIG. 5 is a diagram showing an example of forward and reverse frequency characteristics of the converter of the present invention and an example of forward frequency characteristics of a conventional unidirectional converter. FIG. 6 is a diagram showing an example in which electrodes of each phase are arranged together using the same concept as the basic type of FIG. 2. FIG. 7 is a diagram showing a structure provided with an electrical shielding electrode. Figure 8 shows
The figure which shows the structure when each electrode is subdivided and implemented. 1...Meandering grounding electrode, 2...Excitation electrode serving as a reference, 8...An electrode for adding a signal whose phase is delayed by θ, 4...Piezoelectric or electrostrictive substrate, 5...
... Vibration source by electrode 2, 6... Vibration source by electrode 3,
7... Forward characteristics by the converter of the present invention, 8...
Reverse characteristics by the converter of the present invention, 9... Forward characteristics by a conventional unidirectional converter, 10... Dielectric thin film, 11... Ground electrode made of metal thin film.
Claims (1)
の第1の励振電極の前記電極指と互いに交差する
電極指を有し前記第1の励振電極に印加される信
号に対してθ(ラジアン)だけ位相の異なつた信
号が印加される第2の励振電極と、前記第1およ
び第2の励振電極の各電極指間に設けられた接地
電極とを備え、前記接地電極の配列1周期区間を
基本区間としこの基本区間の長さが弾性表面波の
波長λの偶数倍に等しく、かつ前記基本区間内に
ある電極間ギヤツプの大きさがすべて略同一であ
り、さらに前記基本区間内の前記第1の励振電極
の電極指からその左側および右側の前記接地電極
に至るギヤツプの中心点をそれぞれA及びB、前
記第2の励振電極からその左側および右側の前記
接地電極に至るギヤツプの中心点をそれぞれC及
びDとしたとき、AC間の長さl1とBD間の長さl2
との間にl1=l2=l、AB間の長さyにy=1/2λ の関係があり、さらにl=1/nλとするときiを 正整数としてほぼ n=2π/(θ+(2i−1)π) なる関係を有することを特徴とする弾性表面波用
一方向変換器。 2 電気的位相差θがθ=π/2(ラジアン)を
中心としてπ/2(ラジアン)±10度以内にあるこ
とを特徴とする特許請求の範囲第1項記載の弾性
表面波用一方向性変換器。[Scope of Claims] 1. A first excitation electrode having a plurality of electrode fingers, and a signal applied to the first excitation electrode having electrode fingers that intersect with the electrode fingers of the first excitation electrode. a second excitation electrode to which a signal having a phase different by θ (radians) from the ground is applied; and a ground electrode provided between each electrode finger of the first and second excitation electrodes, One periodic section of the electrode arrangement is a basic section, and the length of this basic section is equal to an even multiple of the wavelength λ of the surface acoustic wave, and the sizes of the inter-electrode gaps in the basic section are all approximately the same, and The center points of the gap from the electrode fingers of the first excitation electrode in the basic section to the ground electrodes on its left and right sides are A and B, respectively, and the center points of the gap from the second excitation electrode to the ground electrodes on its left and right sides are respectively A and B. When the center points of the gap leading to are respectively C and D, the length between AC l 1 and the length between BD l 2
There is a relationship between l 1 = l 2 = l, and the length y between A and B is y = 1/2λ, and when l = 1/nλ, approximately n = 2π/(θ+ (2i-1)π) A unidirectional transducer for surface acoustic waves characterized by having the following relationship. 2. The unidirectional surface acoustic wave according to claim 1, wherein the electrical phase difference θ is within π/2 (radian) ±10 degrees with θ=π/2 (radian) as the center. sex converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316387A JPS62216411A (en) | 1987-02-18 | 1987-02-18 | Unidirection converter for surface acoustic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316387A JPS62216411A (en) | 1987-02-18 | 1987-02-18 | Unidirection converter for surface acoustic wave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62216411A JPS62216411A (en) | 1987-09-24 |
JPS6350883B2 true JPS6350883B2 (en) | 1988-10-12 |
Family
ID=12378881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3316387A Granted JPS62216411A (en) | 1987-02-18 | 1987-02-18 | Unidirection converter for surface acoustic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62216411A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007019701A (en) * | 2005-07-06 | 2007-01-25 | Toppan Printing Co Ltd | Spherical surface acoustic wave element and surface acoustic wave exciting method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866154A (en) * | 1973-12-03 | 1975-02-11 | Westinghouse Electric Corp | Broadband unidirectional surface wave transducer |
-
1987
- 1987-02-18 JP JP3316387A patent/JPS62216411A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866154A (en) * | 1973-12-03 | 1975-02-11 | Westinghouse Electric Corp | Broadband unidirectional surface wave transducer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007019701A (en) * | 2005-07-06 | 2007-01-25 | Toppan Printing Co Ltd | Spherical surface acoustic wave element and surface acoustic wave exciting method |
Also Published As
Publication number | Publication date |
---|---|
JPS62216411A (en) | 1987-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3961293A (en) | Multi-resonant surface wave resonator | |
JP2703891B2 (en) | Surface acoustic wave filter | |
JP2000059170A (en) | Sound wave transducer | |
US4007433A (en) | Elastic surface wave filter | |
JPS6223490B2 (en) | ||
EP0026114A1 (en) | Surface acoustic wave device | |
US3990023A (en) | Elastic surface wave device | |
US4097825A (en) | Surface acoustic wave tapped delay line | |
US4604595A (en) | Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response | |
JPH0353802B2 (en) | ||
EP0031685B2 (en) | Surface acoustic wave device | |
US4160219A (en) | Transducer electrodes for filters or delay lines utilizing surface wave principles | |
US3987377A (en) | Elastic surface wave propagation device | |
US5714830A (en) | Free edge reflective-type surface acoustic wave device | |
JPS6231860B2 (en) | ||
JPS6350883B2 (en) | ||
US5396200A (en) | Interdigital transducer with finger-width weighting for surface wave arrangements | |
US4276524A (en) | Acoustic surface wave device | |
JPH0410764B2 (en) | ||
JPH03204212A (en) | Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter | |
JPS63194406A (en) | Surface acoustic wave resonator | |
GB2126035A (en) | Surface acoustic wave device | |
WO1986001054A1 (en) | Improved surface acoustic wave filter | |
JPS5912813Y2 (en) | Comb-shaped electrode of surface acoustic wave device | |
US4205280A (en) | Surface wave device with suppressed boundary-reflected waves |