JPS6350810A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS6350810A
JPS6350810A JP19603986A JP19603986A JPS6350810A JP S6350810 A JPS6350810 A JP S6350810A JP 19603986 A JP19603986 A JP 19603986A JP 19603986 A JP19603986 A JP 19603986A JP S6350810 A JPS6350810 A JP S6350810A
Authority
JP
Japan
Prior art keywords
lens
cylindrical lens
polygon mirror
curvature
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19603986A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19603986A priority Critical patent/JPS6350810A/en
Publication of JPS6350810A publication Critical patent/JPS6350810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute an optical system which has a surface tilt correcting function at low cost and to make a scan with high accuracy by providing three lenses, i.e. a spherical lens which has positive power, a cylindrical lens, and a spherical lens with negative power in order from the reflecting surface of a rotary polygon mirror. CONSTITUTION:The cylindrical lens 2 is arranged closely to the rotary polygon mirror 4. The positive lens 1 and negative lens 3 are arranged in front of and behind the cylindrical lens 2 to deflect luminous flux only in front of and behind the cylindrical lens and made it incident on the cylindrical lens 2 from the front, thereby eliminating a sagittal image surface curvature. Namely, the luminous flux L which is deflected by the reflecting surface of the rotary polygon mirror 4 is refracted inward by the positive lens 1 and made incident on the cylindrical lens 2 almost from the front. Further, luminous flux which is projected from the cylindrical lens 3 almost in parallel to the optical axis is expanded again outward by the negative lens 3 to obtain sufficient scanning width. Further, the curvature and surface distance of each lens surface are set to specific values to compensate the sagittal image surface curvature, tangential image plane curvature, velocity equality, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームプリンタ等に用いられる回転多
面鏡式光走査装置、とくに回転多面鏡の各tii面と回
転軸との平行度の誤差を補正する機能(面倒れ誤差の補
正)を有する走査光学系の構成に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rotating polygonal mirror type optical scanning device used in a laser beam printer, etc., and in particular, to a rotating polygonal mirror for reducing errors in parallelism between each tii plane of the rotating polygonal mirror and the rotation axis. The present invention relates to the configuration of a scanning optical system having a correction function (correction of surface tilt error).

〔従来の技術〕[Conventional technology]

レーザービームプリンタ等に用いられる回転多面鏡式光
走査装置の走査光学系は、一般に像面の湾曲の補正と、
走査ピッチムラの原因となる回転多面鏡の面倒れ誤差の
補正と、走査速度が走査面上で等速となるような歪みを
与えることとを目的として設計される。
The scanning optical system of a rotating polygon mirror optical scanning device used in laser beam printers, etc. generally corrects the curvature of the field,
It is designed for the purpose of correcting the surface tilt error of the rotating polygon mirror that causes scanning pitch unevenness, and applying distortion so that the scanning speed becomes constant on the scanning surface.

而倒れ補正光学系は従来性々のタイプのものが提案され
ているが、基本的には、偏向面方向とそれに垂直な方向
で曲率の異なるアナモルクイック光学系を用い、偏向面
に垂直な方向について多面鏡の反射点と走査面を共役像
点またはそれに近い配置とすることによって多面鏡面の
傾きにより出射角が変化しても走査点位置の変動を抑え
るという原理を用いている。
Various types of tilt correction optical systems have been proposed in the past, but basically, an anamorphic quick optical system with different curvatures in the direction of the deflection plane and in the direction perpendicular to it is used. The principle used is that by arranging the reflection point of the polygon mirror and the scanning surface at a conjugate image point or close to the conjugate image point in terms of direction, fluctuations in the scanning point position are suppressed even if the output angle changes due to the inclination of the polygon mirror surface.

上述の原理を実現する構成として、特開昭57−144
514に開示されているように、直交する二方向で屈折
力の具なる主軸、副軸を有するトーリック面を有するレ
ンズを用いる方法が知られている。第4図(α)、(b
)にトーリックレンズを用いた而倒れ補正光学系を示す
。第4図(α)は偏向面と垂直な方向の光束を示す図、
(b)は偏向面方向の光束を示す図で、面Sαがトーリ
ック面となっている。光束は回転多面鏡14で反射され
て球面レンズ11.トーリックレンズ12によって走査
面15に結像する。第4図(α)の破線で示されるよう
に、多面鏡の反射点と走査面が共役点となっていること
によって而倒れ誤差が生じても走査点位置変動は生じな
い。また、球面レンズ11が負のパワーを有し、トーリ
ックレンズ12が正のパワーを有していることにより、
この走査レンズ系は走査面上での結像スポットが等速で
移動するような歪みを持たせており、いわゆ6/θレン
ズとなりている。
As a configuration for realizing the above-mentioned principle, Japanese Patent Application Laid-Open No. 57-144
As disclosed in No. 514, a method using a lens having a toric surface having a major axis and a minor axis having refractive power in two orthogonal directions is known. Figure 4 (α), (b
) shows a tilt correction optical system using a toric lens. Figure 4 (α) is a diagram showing the light flux in the direction perpendicular to the deflection plane.
(b) is a diagram showing the light flux in the direction of the deflection surface, and the surface Sα is a toric surface. The light beam is reflected by the rotating polygon mirror 14 and passes through the spherical lens 11. An image is formed on a scanning plane 15 by a toric lens 12 . As shown by the broken line in FIG. 4 (α), since the reflection point of the polygon mirror and the scanning surface are conjugate points, even if a tilting error occurs, the scanning point position does not fluctuate. Furthermore, since the spherical lens 11 has negative power and the toric lens 12 has positive power,
This scanning lens system has a distortion such that the imaging spot on the scanning surface moves at a constant speed, and is a so-called 6/θ lens.

また、特開昭60−153416に開示されているよう
に長尺の円筒レンズを用いる方法も知られている。第5
図C(1)、Cb)に長尺円筒レンズを用いた而倒れ補
正光学系を示す。第5図(α)は偏向面と垂直な方向の
光束を示す図、第5図(b)は偏向面方向の光束を示す
図で、面shが円筒面で、前述のトーリックレンズの場
合と同様に面倒れ補正がなされる。また球面レンズ21
はメニスカスレンズであって、各屈折面の面間距離、曲
率を所定の値に設定することによってfθレンズとなる
A method using a long cylindrical lens is also known, as disclosed in Japanese Patent Application Laid-open No. 153416/1983. Fifth
Figures C(1) and Cb) show a tilt correction optical system using a long cylindrical lens. FIG. 5(α) is a diagram showing the light flux in the direction perpendicular to the deflection surface, and FIG. 5(b) is a diagram showing the light flux in the direction of the deflection surface. Similarly, face tilt correction is performed. Also, the spherical lens 21
is a meniscus lens, and becomes an fθ lens by setting the inter-plane distance and curvature of each refractive surface to predetermined values.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、上述の2例の従来例の光学系はいずれもレンズが
高価であるという問題点を有する。以下その理由を説明
する。
Now, both of the above-mentioned two conventional optical systems have the problem that the lenses are expensive. The reason will be explained below.

ます長尺の円筒レンズを用いる方法では、円筒レンズよ
り発生する球欠的像面湾曲を許容値以下に抑えるために
円筒レンズを走査面近くに配置しなければならず、はぼ
走査幅と同等の長さの円筒レンズが必要となる。なぜな
ら、円筒レンズによって生じる球欠的像面湾曲は、円筒
レンズ面と走査面との間の距離に対して相対的にほぼ比
例した鼠が生じるため、距離が短くなれば絶対的な像面
湾曲Mは汐少するからである。このように長尺な円筒レ
ンズは通常の口径の小さなレンズに比べて極めて高価な
ものとなる。
In the method of using an increasingly long cylindrical lens, the cylindrical lens must be placed close to the scanning plane in order to suppress the spherical field curvature generated by the cylindrical lens to below an allowable value, which is equivalent to the scanning width. A cylindrical lens with a length of is required. This is because the spherical curvature of field caused by a cylindrical lens is approximately proportional to the distance between the cylindrical lens surface and the scanning surface, so as the distance becomes shorter, the absolute curvature of field becomes This is because M decreases. Such a long cylindrical lens is extremely expensive compared to a normal lens with a small diameter.

さて、上述の円筒レンズで生じる球欠的像面湾曲は、走
査角が大きいときに光束が円筒レンズに斜めに入射する
ことによって生じるものである。
Now, the spherical curvature of field that occurs in the above-mentioned cylindrical lens is caused by the light beam obliquely entering the cylindrical lens when the scanning angle is large.

なぜなら第6図の光束Bに示すように円筒32を斜めに
光束が切る場合光束Aのように、正面から切るよりも曲
率が大きく作用するからである。前述のトーリック面と
は、この作用を回、避するために、円筒面となる・べき
而を、常に光束が正面から入射するように曲げた結果で
きた曲面と考えてよい。このようにトーリック面を用い
れば球欠的像面湾曲は抑えられるため、レンズ面を多面
鏡寄りに配置でき、レンズ口径を小さくすることが可能
である。ところが、トーリックレンズは通常の用途には
用いられない特殊なレンズであるためそれ自体で製造コ
ストが高価となり、長尺円筒レンズを排した効果はなく
なってしまう。
This is because when the light beam cuts the cylinder 32 obliquely as shown in the light beam B in FIG. 6, the curvature acts more strongly than when it cuts the cylinder 32 from the front like the light beam A. The aforementioned toric surface can be thought of as a curved surface created by bending what should be a cylindrical surface so that the light beam always enters from the front, in order to avoid this effect. If a toric surface is used in this way, spherical curvature of field can be suppressed, so the lens surface can be placed closer to the polygon mirror, and the lens aperture can be made smaller. However, since a toric lens is a special lens that is not used for normal purposes, its manufacturing cost is high, and the effect of eliminating the long cylindrical lens is lost.

以上のように従来の面倒れ補正光学系はレンズの製造コ
ストが高価であるという欠点を有していた。
As described above, the conventional surface tilt correction optical system has the drawback that the manufacturing cost of the lens is high.

本発明は上述の問題点を解消するためになされたもので
、その目的とするところは、面倒れ補正機能を有する光
学系を安価に慰することによって高精度な走査が可能な
光走査装置を安価に提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide an optical scanning device that can perform highly accurate scanning by inexpensively using an optical system that has a surface tilt correction function. The aim is to provide it at a low price.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は光ビーム発生手段と、該光ビームを偏向走査す
る回転多面鏡偏向装置と、該光ビームを前記回転多面鏡
の反射面に走査方向と平行な方向の線状光ビームを形成
する如く配された第1集光光学系と、前記線状光ビーム
を被走査平面上に像面湾曲なく点状結像する如く配され
た第2集光光学系とを清え、前記第2集光光学系は前記
回転多面鏡の反射面から順に正のパワーを有する球レン
ズ、走査方向と垂直な方向にのみ正のパワーを有する円
筒レンズ、負のパワーを有する球レンスノ3枚のレンズ
で構成されていることを特徴とする〔実施例〕 本発明に係る光学系の説明を実施例を用いて行う。第1
図(1り、(b)はそれぞれ本発明の走査光学系におけ
る偏向面と垂直な方向と偏向面方向の光束を示す光路図
である。
The present invention includes a light beam generating means, a rotating polygon mirror deflecting device for deflecting and scanning the light beam, and a rotating polygon mirror deflector for deflecting the light beam to form a linear light beam in a direction parallel to the scanning direction on the reflecting surface of the rotating polygon mirror. The first condensing optical system disposed and the second condensing optical system disposed so as to form a point-like image of the linear light beam on the scanned plane without field curvature are cleaned, and the second condensing optical system is cleaned. The light optical system consists of three lenses in order from the reflecting surface of the rotating polygon mirror: a spherical lens with positive power, a cylindrical lens with positive power only in the direction perpendicular to the scanning direction, and a spherical lens with negative power. [Example] The optical system according to the present invention will be explained using an example. 1st
Figures (1) and (b) are optical path diagrams showing the light beams in the direction perpendicular to the deflection plane and in the direction of the deflection plane, respectively, in the scanning optical system of the present invention.

本発明の主眼は円筒レンズを多面鏡帯りに配置丁゛るこ
とによりて、長尺化することなく小型の円筒レンズを用
いて面倒れ補正を行おうというものである。その際問題
となるのは従来例のところで述べたように球欠的像面湾
曲であった。また、球欠的像面湾曲を生じさせないため
には円筒偏向面左垂直な方向の光束を集光させる面に正
面から光束を入射することが望ましいと述べた。従来例
のトーリックレンズとはそのために円筒レンズを屈曲さ
せたものと考えてよい。
The main objective of the present invention is to correct surface tilt using a small cylindrical lens without increasing the length by arranging cylindrical lenses in a polygonal mirror band. In this case, the problem was the spherical curvature of field as described in the conventional example. It was also stated that in order to prevent the occurrence of spherical curvature of field, it is desirable that the light beam be incident from the front onto a surface that converges the light beam in a direction perpendicular to the left of the cylindrical deflection surface. A conventional toric lens can be considered to be a cylindrical lens bent for this purpose.

不発明は逆に、円筒レンズの前後に正のレンズと負のレ
ンズを配する構成とすることによって、光束を円筒レン
ズの前後だけ屈曲させて円筒レンズに正面から入射させ
、球欠的像面湾曲が生じないようにしたものである。部
ち第1図Cb)において回転多面鏡40反射面S1で偏
向された光束り、は正のレンズ1によって内側に屈折さ
れ、円筒レンズ2にほぼ正面から入射する。さらにほぼ
光軸と平行に円筒レンズから出射した光束は負のレンズ
3によって再び外側に拡げられ、十分な走査幅を得るこ
とができる。第1図(α)の破線は本発明の走査光学系
における面倒れ補正効果を示すもので、多面鏡面が傾い
ていることによりて光・束の出射方向が変化しても走査
点位置は変化しな以上は定性的な説明であるが、定量的
には以下第1表、第2表の数値例と第2図、第3図の収
差図で示されるように、各レンズ面の曲率や面間距離を
所定の値に設定することによつ゛て、球欠的像面湾曲補
正、子午的像面湾曲補正、および走査の等速性の補正が
なされる。
On the contrary, the invention has a structure in which a positive lens and a negative lens are arranged in front and behind a cylindrical lens, so that the light beam is bent only in front and behind the cylindrical lens and enters the cylindrical lens from the front, creating a spherical image surface. This prevents curvature. In FIG. 1Cb), the light beam deflected by the reflecting surface S1 of the rotating polygon mirror 40 is refracted inward by the positive lens 1 and enters the cylindrical lens 2 almost from the front. Furthermore, the light beam emitted from the cylindrical lens substantially parallel to the optical axis is expanded outward again by the negative lens 3, making it possible to obtain a sufficient scanning width. The broken line in Fig. 1 (α) shows the surface tilt correction effect in the scanning optical system of the present invention. Even if the direction of light/bundle emission changes due to the tilted polygonal mirror surface, the scanning point position changes. The above explanation is qualitative, but quantitatively, as shown in the numerical examples in Tables 1 and 2 and the aberration diagrams in Figures 2 and 3, the curvature and By setting the inter-plane distance to a predetermined value, spherical field curvature correction, meridional field curvature correction, and scanning uniformity correction are performed.

ただし初期結像距離 Sm=−261 第  2  表 注、)oRmは偏向面方向の曲率半径 6R8は偏向面と垂直な方向の曲率半径O面間距離、屈
折率はその番号で示される面と次の面との間をさす。
However, the initial imaging distance Sm=-261 Note in Table 2) oRm is the radius of curvature in the direction of the deflection surface.R8 is the radius of curvature in the direction perpendicular to the deflection surface. Point between the surface of

O第1面とは回転多面鏡の反射面である。The O first surface is a reflecting surface of a rotating polygon mirror.

O初期結像距離Smとは回転多面鏡に入射する光束の収
束あるいは発散度で多面鏡の反射点から測った結像点の
距離で表している。
The initial imaging distance Sm is the degree of convergence or divergence of the light beam incident on the rotating polygon mirror, and is expressed as the distance of the imaging point measured from the reflection point of the polygon mirror.

第2図(α”)、Cb> 、(c)、@3図(α)、C
b)、CC)はそれぞれ第1表、第2表の数値例におけ
る球欠的像面湾曲と子午的像面湾曲と等速走査性を示す
収差図である。これより画像面湾曲収差と走査等速性は
十分良好な値に抑えられていることが分る。
Figure 2 (α”), Cb>, (c), @Figure 3 (α), C
b) and CC) are aberration diagrams showing spherical curvature of field, meridional curvature of field, and constant velocity scanning properties in the numerical examples of Tables 1 and 2, respectively. From this, it can be seen that the image plane curvature aberration and scanning uniformity are suppressed to sufficiently good values.

〔発明の効果〕 以盆ぺてきたように、本発明によれば、回転多面鏡の而
倒れ補正光学系を會む走査光学系が、多面鏡の反射点か
ら順に正のパワーを有する球レンズ、偏向面と垂直な方
向にのみ正のパワーを有する円筒レンズ、負のパワーを
有する球レンズ(1) Igに配され、偏向面と垂直な
方向については多面鏡の反射点と走査面がたがいに共役
な像点となるよう構成されているため、大型、特殊なレ
ンズを用いることなく安価に走査光学系を構成すること
ができ、走査ピッチムラのない高精度な光走査装置を安
価に提供できるという効果を有する。
[Effects of the Invention] As described above, according to the present invention, the scanning optical system that meets the rotational polygonal mirror and the tilt correction optical system is configured such that the spherical lens having positive power is sequentially formed from the reflection point of the polygonal mirror. , a cylindrical lens that has positive power only in the direction perpendicular to the deflection plane, and a spherical lens that has negative power only in the direction perpendicular to the deflection plane. Since it is configured to have an image point conjugate with It has this effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Ca)、Cb)は本発明の一実施例を示す光路図
、第2図(α)、(b)、(C)および第3図(α)、
(b)、(C)は本発明の数値例による収差図、第4図
(α)、(b)および第5図(α)、(b)は従来の走
査光学系を示す光路図、第′6図は球欠的像面湾曲収差
の発生を説明するための図である。 1・・・・・・正のレンズ 2・・・・・・円筒レンズ 3・・・・・・負のレンズ 4・・・・・・回転多面鏡 5・・・・・・走査面 6・・・・・・光束 以  上 1 正Oレンス゛ (Q) 第1図 第2図
Fig. 1 Ca), Cb) is an optical path diagram showing an embodiment of the present invention, Fig. 2 (α), (b), (C) and Fig. 3 (α),
(b) and (C) are aberration diagrams according to numerical examples of the present invention, Figures 4 (α) and (b) and Figures 5 (α) and (b) are optical path diagrams showing conventional scanning optical systems; Figure '6 is a diagram for explaining the occurrence of spherical curvature of field aberration. 1... Positive lens 2... Cylindrical lens 3... Negative lens 4... Rotating polygon mirror 5... Scanning surface 6. ...Luminous flux or more 1 Positive O lens (Q) Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 光ビーム発生手段と、該光ビームを偏向走査する回転多
面鏡偏向装置と、該光ビームを前記回転多面鏡の反射面
に走査方向と平行な方向の線状光ビームを形成する如く
配された第1集光光学系と、前記線状光ビームを被走査
平面上に像面湾曲なく点状結像し、かつ該結像スポット
が等速走査する如く配された第2集光光学系とを備え、
前記第2集光光学系は前記回転多面鏡の反射面から順に
正のパワーを有する球レンズ、走査方向と垂直な方向に
のみ正のパワーを有する円筒レンズ、負のパワーを有す
る球レンズの3枚のレンズで構成されていることを特徴
とする光走査装置。
a light beam generating means, a rotating polygon mirror deflecting device for deflecting and scanning the light beam, and the light beam is arranged to form a linear light beam in a direction parallel to the scanning direction on the reflecting surface of the rotating polygon mirror. a first condensing optical system; a second condensing optical system arranged so that the linear light beam forms a dot-like image on the scanned plane without field curvature, and the imaged spot scans at a constant speed; Equipped with
The second condensing optical system includes three lenses, in order from the reflecting surface of the rotating polygon mirror: a ball lens having positive power, a cylindrical lens having positive power only in a direction perpendicular to the scanning direction, and a ball lens having negative power. An optical scanning device characterized by being composed of a single lens.
JP19603986A 1986-08-21 1986-08-21 Optical scanner Pending JPS6350810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19603986A JPS6350810A (en) 1986-08-21 1986-08-21 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19603986A JPS6350810A (en) 1986-08-21 1986-08-21 Optical scanner

Publications (1)

Publication Number Publication Date
JPS6350810A true JPS6350810A (en) 1988-03-03

Family

ID=16351177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19603986A Pending JPS6350810A (en) 1986-08-21 1986-08-21 Optical scanner

Country Status (1)

Country Link
JP (1) JPS6350810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508215B1 (en) * 1993-12-22 2005-08-17 가부시키가이샤 니콘 Correction member and method of manufacturnig correction member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413355A (en) * 1977-06-30 1979-01-31 Ibm Optical scanning device
JPS5431743A (en) * 1977-08-15 1979-03-08 Ricoh Co Ltd Plural beam simultaneous scanner
JPS6161113A (en) * 1984-08-31 1986-03-28 Fuji Xerox Co Ltd Scanning device of optical beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413355A (en) * 1977-06-30 1979-01-31 Ibm Optical scanning device
JPS5431743A (en) * 1977-08-15 1979-03-08 Ricoh Co Ltd Plural beam simultaneous scanner
JPS6161113A (en) * 1984-08-31 1986-03-28 Fuji Xerox Co Ltd Scanning device of optical beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508215B1 (en) * 1993-12-22 2005-08-17 가부시키가이샤 니콘 Correction member and method of manufacturnig correction member
US6958803B2 (en) 1993-12-22 2005-10-25 Nikon Corporation Projection exposure apparatus and method with adjustment of rotationally asymmetric optical characteristics

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
US5491578A (en) Optics for passive scan angle doubling
JPH0627904B2 (en) Laser beam scanning optics
JPH06265810A (en) Reflection type scanning optical system
JPH06118325A (en) Optical scanner
JP3222498B2 (en) Scanning optical system
JP2584640B2 (en) Scanning optical system such as laser beam printer
EP0387900B1 (en) Scanning optical system
JP3567408B2 (en) Scanning optical device and scanning optical lens for scanning optical device
CA1284046C (en) Wobble correction by two reflections on a facet without bow
US5327280A (en) Scanning optical system
JPS6350810A (en) Optical scanner
JPH08248345A (en) Optical scanner
JP3034648B2 (en) Optical scanning optical system and optical scanning device
JP3381333B2 (en) Optical scanning device
JPS6311907A (en) Optical scanner
JP2626708B2 (en) Scanning optical system
JP2657381B2 (en) Light flux adjusting method for scanning optical device
JPH0543090B2 (en)
JPH112769A (en) Optical scanner
JPH01200220A (en) Light beam scanning optical system
JP3330649B2 (en) Anamorphic fθ lens and optical scanning device
JPH0235410A (en) Optical scanner
JP3206947B2 (en) Scanning optical device
JP3441008B2 (en) Scanning imaging lens and optical scanning device