JPS6350622A - Spark ignition engine - Google Patents

Spark ignition engine

Info

Publication number
JPS6350622A
JPS6350622A JP61191967A JP19196786A JPS6350622A JP S6350622 A JPS6350622 A JP S6350622A JP 61191967 A JP61191967 A JP 61191967A JP 19196786 A JP19196786 A JP 19196786A JP S6350622 A JPS6350622 A JP S6350622A
Authority
JP
Japan
Prior art keywords
valve
exhaust gas
intake
cylinder
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191967A
Other languages
Japanese (ja)
Other versions
JPH0718343B2 (en
Inventor
Hiroshi Kanesaka
兼坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP61191967A priority Critical patent/JPH0718343B2/en
Publication of JPS6350622A publication Critical patent/JPS6350622A/en
Publication of JPH0718343B2 publication Critical patent/JPH0718343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of the engine stated in the title specially when it is partially loaded by providing one rotary valve for adjusting the amount of intake air, on an intake passage, another valve for reinducing the exhaust air staying in an exhaust port into a cylinder and one more valve which will open when the pressure in the cylinder is low, on a reinducing passage. CONSTITUTION:A rotary valve 18 linked with the engine speed is to be provided on an intake passage 17 which leads to an intake port 5 located on the upstream from an intake valve 6. The rotary valve 18 has itself an open and close timing adjusting device to control the opening and closing timing specially to quicken the closing timing under a partial load condition to reduce the amount of intake air and lessen the compression work. An exhaust gas passage 9, which is branched off from an exhaust port 7 located on the downstream from an exhaust valve 8, leads to the cylinder through an exhaust gas feeder valve 10. An exhaust gas control valve 11, which is provided on a passage 9 where the exhaust gas in reinduced through, opens when the internal pressure of the cylinder is low to reinduce the exhaust air and raise the air temperature specially under an operating condition when the temperature in the cylinder becomes low with a partial load.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は火花点火エンジン(以下エンジンと云う)、殊
に部分負荷時において絞り損失なく圧縮始め温度を高め
つる火花点火エンジンに関するもである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a spark ignition engine (hereinafter referred to as engine), and particularly to a spark ignition engine that can increase the compression start temperature without throttling loss during partial load.

〈従来の技術〉 一般によく知られた火花点火エンジンはぼり理論混合比
の混合気を吸入することが必要であり、これによって火
花点火が可能となる原動機であるが、部分負荷時におい
ては絞り弁によって混合気の吸入量を調整し出力を調整
している。
<Prior art> A well-known spark ignition engine is a prime mover that requires the intake of a mixture with a stoichiometric mixture ratio, which enables spark ignition; however, under partial load, the throttle valve This adjusts the intake amount of air-fuel mixture and the output.

〈発明が解決しようとする問題点〉 ところが、上記絞り弁による調整は、絞りによる負圧に
比例した絞り損失が生じ、エンジンの部分負荷時の熱効
率を低下させることになり、殊に自動車用エンジンの如
く定常走行時には全負荷時の6分の1程度の低負荷で車
輌を駆動するものでは、上記絞り損失は大きく、エンジ
ンの熱効率を低下させているのが現状である。
<Problems to be Solved by the Invention> However, the above-mentioned adjustment using the throttle valve causes a throttling loss proportional to the negative pressure caused by the throttle, which reduces the thermal efficiency of the engine at partial load, and is particularly useful for automobile engines. When a vehicle is driven under a low load of about one-sixth of the full load during steady running, the throttling loss is large and the thermal efficiency of the engine is reduced.

一方、上記に鑑み、絞り弁を有しない吸気装置を備えた
エンジンによって、第6図に示す如く吸気行程の途中の
点2(大気圧及び大気温度)において吸気通路を閉じ混
合気吸入量を制限する、いわゆるミラーサイクルの応用
が試みられている。
On the other hand, in view of the above, by using an engine equipped with an intake system without a throttle valve, the intake passage is closed at point 2 (atmospheric pressure and atmospheric temperature) in the middle of the intake stroke to limit the intake amount of the mixture, as shown in Figure 6. Attempts are being made to apply the so-called Miller cycle.

しかし、ミラーサイクルは第6図の点2から3に断熱膨
張し、再び点3より4へ断熱圧縮して点4で大気圧力、
大気温度となり、ここから実質的に圧縮行程が始まって
点4から点5に向けて断熱圧縮をするので、点5の温度
は点火及び燃焼に必要とされる温度には達しない。
However, the Miller cycle expands adiabatically from point 2 to 3 in Figure 6, compresses adiabatically from point 3 to 4 again, and returns to atmospheric pressure at point 4.
The temperature at point 5 reaches the atmospheric temperature, and since the compression stroke substantially begins from this point and adiabatic compression is carried out from point 4 to point 5, the temperature at point 5 does not reach the temperature required for ignition and combustion.

因みに通常の絞りにより出力調整するエンジンでは、絞
りによる損失エネルギ、即ち第6図の点1−2’ −3
−4−1を結ぶ線で囲まれた面積で表わされる損失エネ
ルギによって点3の温度が大気温度となり、点4を経て
点5までの圧縮において温度が点火に充分な温度に上昇
するのである。
Incidentally, in an engine whose output is adjusted by a normal throttle, the energy loss due to the throttle, that is, the point 1-2'-3 in Figure 6.
The temperature at point 3 becomes atmospheric temperature due to the loss of energy represented by the area surrounded by the line connecting -4-1, and during compression from point 4 to point 5, the temperature rises to a temperature sufficient for ignition.

本発明は上記に鑑み、エンジンの部分負荷時において混
合気の温度を富め、好ましい燃焼を確保せんとするを目
的として案出されたものである。
In view of the above, the present invention was devised for the purpose of increasing the temperature of the air-fuel mixture and ensuring preferable combustion when the engine is under partial load.

〈問題点を解決するための手段〉 本発明を実施例に対応する第1図乃至第5図を用いて説
明すると、吸気弁6により開閉する吸気通路17にロー
タリバルブ18を設け、これを開閉時期調整手段100
により負荷に応じ混合気を吸入徐閉じるようにするとと
もに、シリンダヘッド5内に排気ポート7と並設して排
気ガス供給弁10により開閉する排気ガス通路9を設け
、上記排気ガス供給弁10をシリンダ1内ガス圧力が排
気通路15内圧力より低いときに開いてシリンダ内混合
気を断熱圧縮するようにしたものである。
<Means for Solving the Problems> To explain the present invention using FIGS. 1 to 5 corresponding to embodiments, a rotary valve 18 is provided in the intake passage 17 that is opened and closed by the intake valve 6, and the rotary valve 18 is opened and closed. Timing adjustment means 100
In addition, an exhaust gas passage 9 is provided in the cylinder head 5 in parallel with the exhaust port 7 and opened and closed by the exhaust gas supply valve 10, and the exhaust gas supply valve 10 is It opens when the gas pressure in the cylinder 1 is lower than the pressure in the exhaust passage 15 to adiabatically compress the air-fuel mixture in the cylinder.

〈作用〉 上記構成により、エンジンの部分負荷時においては、吸
気弁6を開いたまま開閉時期調整手段100によりロー
タリーバルブ18を吸気行程の途中にて閉じれば、以後
の吸気行程中にシリンダ内混合気は断熱膨張し負圧とな
る。ここで排気ガス供給弁10を開いて排気ガスをシリ
ンダ1中に供給し、これによってシリンダ1内混合気を
断熱圧縮して温度を高めつつ高温の排気ガスと混合させ
<Function> With the above configuration, when the engine is under partial load, if the rotary valve 18 is closed in the middle of the intake stroke by the opening/closing timing adjusting means 100 while the intake valve 6 is open, the mixture in the cylinder is reduced during the subsequent intake stroke. Air expands adiabatically and becomes negative pressure. Here, the exhaust gas supply valve 10 is opened to supply exhaust gas into the cylinder 1, thereby adiabatically compressing the air-fuel mixture in the cylinder 1 to increase its temperature and mix it with the high-temperature exhaust gas.

圧縮行程始めの混合気の温度を上昇せしめ、圧縮行程路
りの混合気温度を火花点火に充分な温度とする。
The temperature of the mixture at the beginning of the compression stroke is raised to a temperature sufficient for spark ignition at the beginning of the compression stroke.

〈実施例〉 以下本発明の実施例を図面に基づいて詳細に説明する。<Example> Embodiments of the present invention will be described in detail below based on the drawings.

本発明の火花点火エンジンは基本的には第1図に示すよ
うに、シリンダ1内でピストンリング2を有するピスト
ン3が摺動し1図示しないコンロッドによりクランク軸
(これも図示せず)を駆動する4サモ リンダ1の上部に装着したシリンダヘッド4内に、吸気
ボート5とこれを開閉する吸気弁6と、排気ポート7と
こ九を開閉する排気弁8と、上記両弁6.8間に形成さ
れ、排気ポート7と通ずる排気ガス通路9を開閉する排
気ガス供給弁10と、該排気ガス通路9内において排気
ガス流量を制御する排気ガス調整弁11とが配設されて
いる。また、実施例においては上記排気ガス通路9の一
部には整流部9aが形成され、シリンダ1内に供給する
排気ガスに渦を発生させるようになっている。前記排気
ガス調節弁11は、第1図に示すようにシリンダヘッド
4に支承された@12に回動自在に設けられ、該軸12
に固定されたレバー13を回転することにより前記のよ
うにシリンダ1内に供給する排気ガスの量を調節する。
Basically, as shown in FIG. 1, the spark ignition engine of the present invention has a piston 3 having a piston ring 2 sliding in a cylinder 1, and a connecting rod (not shown) driving a crankshaft (also not shown). 4 In the cylinder head 4 attached to the upper part of the thermo cylinder 1, an intake boat 5, an intake valve 6 that opens and closes it, an exhaust valve 8 that opens and closes the exhaust port 7, and an exhaust valve 8 that opens and closes the exhaust port 7 are formed between the two valves 6 and 8. An exhaust gas supply valve 10 that opens and closes an exhaust gas passage 9 communicating with the exhaust port 7, and an exhaust gas adjustment valve 11 that controls the exhaust gas flow rate within the exhaust gas passage 9 are provided. Further, in the embodiment, a rectifying section 9a is formed in a part of the exhaust gas passage 9 to generate a vortex in the exhaust gas supplied into the cylinder 1. The exhaust gas control valve 11 is rotatably provided on @12 supported by the cylinder head 4, as shown in FIG.
By rotating the lever 13 fixed to the cylinder 1, the amount of exhaust gas supplied into the cylinder 1 is adjusted as described above.

なお、14はシリンダヘッド4の側面において前記排気
ポート7に連結された排気管であり、前記排気ポート7
及び上記排気管14により排気通路15が構成されてい
る。
Note that 14 is an exhaust pipe connected to the exhaust port 7 on the side surface of the cylinder head 4;
The exhaust pipe 14 constitutes an exhaust passage 15.

上記吸気ボート5の一端には、例えばキャブレター(図
示せず)などの混合気形成装置を有する吸気管16が連
結され、該吸気管16及び吸気ボート5からなる吸気通
路17にはロータリバルブ18が配設され、エンジンE
の図示しないクランク軸から歯車伝達機構(図示せず)
を介して駆動するよう構成されている。
An intake pipe 16 having a mixture forming device such as a carburetor (not shown) is connected to one end of the intake boat 5, and a rotary valve 18 is connected to an intake passage 17 consisting of the intake pipe 16 and the intake boat 5. installed, engine E
Gear transmission mechanism (not shown) from the crankshaft (not shown)
It is configured to be driven through the

第2図は第1図のA−A矢視断面を示し、上記ロータリ
ーバルブ18の駆動機構を含む開閉時期調整手段100
を示している。上記ロータリーバルブ18は、詳しくは
吸気管16の途中に形成したバルブ体り6a内に支持し
た駆動軸19にピン20によって固定されている。上記
駆動軸19は、前記バルブ体り6a内でロータリーバル
ブ18を挾持するように配設された一対のスリーブ21
及び単体のスリーブ22を・介して、複数のベアリング
23に支承されており、その一端には左ねじヘリカルス
プライン19aが形成されている。
FIG. 2 shows a cross section taken along the line A-A in FIG.
It shows. Specifically, the rotary valve 18 is fixed by a pin 20 to a drive shaft 19 supported within a valve body 6a formed in the middle of the intake pipe 16. The drive shaft 19 is connected to a pair of sleeves 21 disposed to sandwich the rotary valve 18 within the valve body 6a.
It is supported by a plurality of bearings 23 via a single sleeve 22, and a left-handed helical spline 19a is formed at one end thereof.

24はクランク軸(図示せず)と歯車機構(これも図示
せず)を介して伝導連結されたタイミングギヤで、該ギ
ヤと一体の回転軸25の右端はベアリング26を介して
エンジンに取り付けたブラケット27に支持するととも
に、左端に右ねじヘリカルスプライン25aを切り、前
記左ねじヘリカルスプライン19aとの間を、内側に上
記両スプライン19a、25aと噛み合い、軸方向に摺
動自在な凸起28a、28bを形成した調整駒28によ
り伝導連結している。なお、29は上記調整駒28の戻
しばねである。
Reference numeral 24 denotes a timing gear that is conductively connected to a crankshaft (not shown) through a gear mechanism (also not shown), and the right end of a rotating shaft 25 that is integrated with the gear is attached to the engine via a bearing 26. A protrusion 28a is supported by the bracket 27, has a right-handed helical spline 25a cut at its left end, engages with both the splines 19a, 25a on the inside, and is slidable in the axial direction between the left-handed helical spline 19a; A conductive connection is made by an adjustment piece 28 formed with a reference numeral 28b. Note that 29 is a return spring for the adjustment piece 28.

30は調整レバーで#31により支持され、下端は前記
調整駒28の凹部28cに摺動自在に嵌入せしめるとと
もに、上端はリンク32によりエンジン出力調整機構(
図示せず)、例えばガバナ又は自動車におけるアクセル
ペダルに連結されている。従って調整レバー30をリン
ク32により時計方向に回転させると、調整駒28を左
方に移動させ、該調整駒28の凸起28a及び同23 
))と噛み合っているヘリカルスプライン19a及び同
25aによって回転軸25と駆動軸19に位相差を与え
る。即ち、駆動軸19をロータリーバルブ18の閉弁時
期を早める方向に回動する。このため、エンジンの実質
的吸気行程は第4図の線1−2に示すように短縮され、
混合気吸入量を減少させ、通常の火花点火エンジンに不
可欠な絞りによる混合気吸入量の調節を必要とせずに出
力調節をすることができる。
30 is an adjustment lever supported by #31, the lower end of which is slidably fitted into the recess 28c of the adjustment piece 28, and the upper end of which is connected to the engine output adjustment mechanism (
(not shown), for example to a governor or an accelerator pedal in an automobile. Therefore, when the adjustment lever 30 is rotated clockwise by the link 32, the adjustment piece 28 is moved to the left, and the protrusion 28a of the adjustment piece 28 and the 23
)) A phase difference is provided between the rotating shaft 25 and the drive shaft 19 by the helical splines 19a and 25a meshing with the helical splines 19a and 25a. That is, the drive shaft 19 is rotated in a direction to advance the closing timing of the rotary valve 18. Therefore, the actual intake stroke of the engine is shortened as shown by line 1-2 in FIG.
By reducing the intake amount of the mixture, it is possible to adjust the output without having to adjust the intake amount of the mixture using a throttle, which is essential for ordinary spark ignition engines.

尚、前記ロータリーバルブ18は第1図に示す例では弁
開期間を約90’に設定してあり、且つ、前記タイミン
グギヤ24によってクランク軸回転の2分の1の回転速
度で駆動されるようになっているが、ロータリーバルブ
18がクランク小山の4分の1の回転速度で駆動される
場合は開弁期間を約45°と設定すればよい。
In the example shown in FIG. 1, the rotary valve 18 has a valve opening period of about 90', and is driven by the timing gear 24 at a rotation speed of one half of the crankshaft rotation. However, if the rotary valve 18 is driven at a rotation speed of one-fourth of the crankshaft, the valve opening period may be set to approximately 45 degrees.

ところで、本発明の火花点火エンジンに使用されるロー
タリーバルブ18の開閉時期調整手段1oOは調整レバ
ー30と、前記ヘリカルスプライン19a、25aに係
合した軸方向に移動しうる調整駒28に限定されること
なく、エンジンEの速度に応じて、又は負荷に応じてロ
ータリーバルブ18の開弁時期を調整しうる構造であれ
ば、本発明火花点火エンジンに支障なく使用できる。
By the way, the opening/closing timing adjustment means 1oO of the rotary valve 18 used in the spark ignition engine of the present invention is limited to the adjustment lever 30 and the adjustment piece 28 that is movable in the axial direction and engaged with the helical splines 19a, 25a. Any structure that can adjust the opening timing of the rotary valve 18 according to the speed of the engine E or the load without any problem can be used in the spark ignition engine of the present invention without any problem.

又、前記排気ガス調節弁11はバタフライバルブに限定
されることはなく、エンジンの吸気行程下死点附近にお
いて開弁じた排気ガス供給弁10よりシリンダ内に供給
される排気ガスの量を調節しうるちのであれば形式は問
わない。
Further, the exhaust gas control valve 11 is not limited to a butterfly valve, and adjusts the amount of exhaust gas supplied into the cylinder from the exhaust gas supply valve 10, which is opened near the bottom dead center of the engine's intake stroke. As long as it's uruchino, the format doesn't matter.

次に上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

第3図は第1図のエンジンの吸気弁6、排気弁8、排気
ガス供給弁10及びロータリーバルブ18の開閉時期と
開口面積との関係を示す。
FIG. 3 shows the relationship between the opening/closing timing and the opening area of the intake valve 6, exhaust valve 8, exhaust gas supply valve 10, and rotary valve 18 of the engine shown in FIG.

全負荷運転時にはロータリーバルブ18と吸気弁6の開
閉時期は同時期に設定しておくので、排気ガス供給弁1
0は吸気行程下死点附近にて開弁じても、この場合、排
気ガス調節弁11によって排気ガス通路9は閉じられて
いるので、排気ガスは供給されず、本質的に通常のエン
ジンと何等変ることはない。
During full load operation, the rotary valve 18 and the intake valve 6 are set to open and close at the same time, so the exhaust gas supply valve 1
0 opens near the bottom dead center of the intake stroke, but in this case, the exhaust gas passage 9 is closed by the exhaust gas control valve 11, so no exhaust gas is supplied, and the engine is essentially no different from a normal engine. Nothing will change.

問題となるエンジン低負荷時には、吸気絞りを行なわな
い本発明エンジンでは第3図及び第4図に示す如く、吸
気行程上死点1より吸気弁6の開弁によって吸気を開始
し、このときロータリーバルブ18の弁閉時期を開閉時
期調整手段100により第3図の点口から点イに早めて
おけば、エンジンの混合気吸入量は、第4図の全負荷の
線1−7に比し、線1−2と低下する。即ち、ロータリ
ーバルブ18の閉時期を調節することによって出力調節
が可能となる。このときシリンダ1内に吸入された混合
気は、第4図の点2より断熱膨張しつつシリンダ1内圧
力と温度は低下し続ける。ピストン3が下死点に近づく
と、第3図に示すように排気ガス供給弁10が開き、低
圧のシリンダ1内へ排気ガスが供給される。このとき供
給される排気ガスの量は、排気ガス調節弁11により調
節される。
When the engine load is low, which is a problem, in the engine of the present invention which does not perform intake throttling, intake is started by opening the intake valve 6 from the top dead center 1 of the intake stroke, as shown in FIGS. 3 and 4, and at this time, the rotary If the valve closing timing of the valve 18 is advanced from point A in FIG. 3 to point A by the opening/closing timing adjustment means 100, the amount of air-fuel mixture taken into the engine will be compared to the full load line 1-7 in FIG. , line 1-2. That is, the output can be adjusted by adjusting the closing timing of the rotary valve 18. At this time, the air-fuel mixture sucked into the cylinder 1 expands adiabatically from point 2 in FIG. 4 while the pressure and temperature inside the cylinder 1 continue to decrease. When the piston 3 approaches the bottom dead center, the exhaust gas supply valve 10 opens as shown in FIG. 3, and exhaust gas is supplied into the low pressure cylinder 1. The amount of exhaust gas supplied at this time is regulated by the exhaust gas control valve 11.

第4図の点3の状態は第5図(a)に示すようにシリン
ダ1内混合気の圧力P3及び温度T3と何れも大気状態
よりも低くなっており、これにより排気ガス供給弁10
が開くことによって排気ガスはシリンダ1内に供給され
、シリンダ1内混合気は第5図(b)に示すように、第
4図の圧力点4にまで断熱圧縮され、P4.T4’ と
圧力も温度も高まる。シリンダ1内の排気ガス圧力も当
然にP4であり、また部分負荷時の排気ガス(約500
℃)は温度T4’の混合気と混合して圧縮行程始めの温
度はT4に高められ、圧縮行程後の温度T6が点火及び
燃焼に最適な温度となる(第5図(C))。
In the state of point 3 in FIG. 4, as shown in FIG.
By opening, exhaust gas is supplied into the cylinder 1, and the air-fuel mixture in the cylinder 1 is adiabatically compressed to pressure point 4 in FIG. 4, as shown in FIG. 5(b), and P4. T4' and the pressure and temperature increase. The exhaust gas pressure in cylinder 1 is naturally P4, and the exhaust gas pressure at partial load (approximately 500
C) is mixed with the air-fuel mixture at temperature T4', the temperature at the beginning of the compression stroke is raised to T4, and the temperature T6 after the compression stroke becomes the optimum temperature for ignition and combustion (FIG. 5(C)).

尚、排気ガス通路9の一部に前記整流部9aを設けたと
きは、これを通って供給される排気ガスによって、混合
気に第1図点線の如き渦を発生させることもできる。
When the straightening section 9a is provided in a part of the exhaust gas passage 9, the exhaust gas supplied through the straightening section 9a can generate a vortex in the air-fuel mixture as shown by the dotted line in Figure 1.

〈発明の効果〉 本発明は上述の如く、吸気弁により開閉する吸気通路に
ロータリバルブを設け、これを開閉時期調整手段により
負荷に応じ混合気を吸入後間じるようにするとともに、
シリンダヘッド内に排気通路と並設した排気ガス供給弁
により開閉する排気ガス通路を設け、上記排気ガス供給
弁をシリンダ内ガス圧力が排気通路内圧力より低いとき
に開いてシリンダ内混合気を断熱圧縮するようにしたの
で、吸入行程中にロータリバルブを閉じることにより混
合気吸入量を負荷に応じて適切に調整し。
<Effects of the Invention> As described above, the present invention provides a rotary valve in the intake passage which is opened and closed by the intake valve, and uses an opening/closing timing adjusting means to adjust the opening/closing timing of the rotary valve so that the air-fuel mixture is stopped after being sucked in according to the load.
An exhaust gas passage is provided in the cylinder head that is opened and closed by an exhaust gas supply valve installed in parallel with the exhaust passage, and the exhaust gas supply valve is opened when the gas pressure in the cylinder is lower than the pressure in the exhaust passage to insulate the air-fuel mixture in the cylinder. Since it is compressed, the amount of air-fuel mixture intake can be adjusted appropriately according to the load by closing the rotary valve during the intake stroke.

且つロータリバルブ閉弁後の断熱膨張による温度低下を
、排気ガス供給弁を介し供給される高温排気ガスによっ
て補い、これにより良好な燃焼が得られる状態の混合気
を作ることができ、全負荷範囲にわたって実質的に絞り
損失のない、殊に部分負荷時において熱効率の高い火花
点火エンジンが得られる効果がある。
In addition, the temperature drop caused by adiabatic expansion after the rotary valve closes is compensated for by the high-temperature exhaust gas supplied through the exhaust gas supply valve, making it possible to create an air-fuel mixture that provides good combustion. This has the effect of providing a spark ignition engine with substantially no throttling loss over time and with high thermal efficiency, especially at partial load.

また、本発明によれば1部分負荷時において排気ガス通
路の一部に附設された整流部を通過して還流する排気ガ
スは混合気に渦を発生させ、燃焼速度を高め、燃焼効率
を高めることによって熱効率の高い火花点火エンジンが
得られる。
Further, according to the present invention, during one partial load, the exhaust gas that passes through the rectifier attached to a part of the exhaust gas passage and recirculates generates a vortex in the air-fuel mixture, increasing the combustion speed and combustion efficiency. This results in a spark ignition engine with high thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る4サモ ジンの縦断面略示図、第2図はロータリバルブの開閉時
期調整手段を示す第1図のA−A断面矢視相当図、第3
図は本発明に係るエンジンの吸気弁。 排気弁、排気ガス供給弁及びロータリバルブの開閉時期
及び上記各弁、バルブの開口面積を示す線図、第4図は
本発明に係るエンジンのp−vm図、第5図は本発明に
係るエンジンの部分負荷時のシリンダ内混合気の状態変
化の原理説明図、第6図は絞り弁により出力調整をする
通常のエンジンと、吸気行程の途中に絞りがなく吸気通
路を閉じて出力調整をするエンジンとを比較したp−v
線図。 1;シリンダ、3;ピストン、4;シリンダヘッド、5
;吸気ポート、61吸気弁、7;排気ポート、8;排気
弁、9;排気ガス通路、10;排気ガス供給弁、14;
排気管、15;排気通路、16;吸気管、17;吸気通
路、18;ロータリバルブ、100;開閉時期調整手段
、19;駆動軸、19a;左ねじヘリカルスプライン、
24;タイミングギヤ、25;回転軸、25a;右ねじ
ヘリカルスプライン、28:調整駒、30;調整レバー
。 31;軸、32:リンク、E;エンジン。 第5面 第6 図
FIG. 1 is a schematic longitudinal cross-sectional view of a four-samogin according to the present invention, FIG. 2 is a view corresponding to the AA cross section in FIG.
The figure shows an intake valve for an engine according to the present invention. Figure 4 is a p-vm diagram of the engine according to the present invention, and Figure 5 is a diagram showing the opening/closing timing of the exhaust valve, exhaust gas supply valve, and rotary valve, and the opening area of the valves. Figure 6 is an explanatory diagram of the principle of how the state of the air-fuel mixture in the cylinder changes when the engine is under partial load. Figure 6 shows a normal engine that adjusts the output using a throttle valve, and a normal engine that does not have a throttle in the middle of the intake stroke and adjusts the output by closing the intake passage. p-v compared with the engine
Line diagram. 1; Cylinder, 3; Piston, 4; Cylinder head, 5
; Intake port, 61 Intake valve, 7; Exhaust port, 8; Exhaust valve, 9; Exhaust gas passage, 10; Exhaust gas supply valve, 14;
Exhaust pipe, 15; Exhaust passage, 16; Intake pipe, 17; Intake passage, 18; Rotary valve, 100; Opening/closing timing adjusting means, 19; Drive shaft, 19a; Left-hand thread helical spline,
24: Timing gear, 25: Rotating shaft, 25a: Right-handed helical spline, 28: Adjustment piece, 30: Adjustment lever. 31: Axis, 32: Link, E: Engine. Page 5, Figure 6

Claims (1)

【特許請求の範囲】 1)吸気弁により開閉する吸気通路にロータリバルブを
設け、これを開閉時期調整手段により負荷に応じ混合気
を吸入後閉じるようにするとともに、シリンダヘッド内
に排気通路と並設した排気ガス供給弁により開閉する排
気ガス通路を設け、上記排気ガス供給弁をシリンダ内ガ
ス圧力が排気通路内圧力より低いときに開いてシリンダ
内混合気を断熱圧縮するようにしたことを特徴とする火
花点火エンジン。 2)上記排気ガス通路に排気ガス調整弁を設置してなる
特許請求の範囲第1項記載の火花点火エンジン。
[Claims] 1) A rotary valve is provided in the intake passage which is opened and closed by the intake valve, and an opening/closing timing adjustment means is used to adjust the opening/closing timing to close the air-fuel mixture after intake, and a rotary valve is provided in the cylinder head in line with the exhaust passage. The exhaust gas passage is opened and closed by an exhaust gas supply valve, and the exhaust gas supply valve is opened when the gas pressure in the cylinder is lower than the pressure in the exhaust passage to adiabatically compress the air-fuel mixture in the cylinder. spark ignition engine. 2) The spark ignition engine according to claim 1, wherein an exhaust gas regulating valve is installed in the exhaust gas passage.
JP61191967A 1986-08-19 1986-08-19 Spark ignition engine Expired - Lifetime JPH0718343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191967A JPH0718343B2 (en) 1986-08-19 1986-08-19 Spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191967A JPH0718343B2 (en) 1986-08-19 1986-08-19 Spark ignition engine

Publications (2)

Publication Number Publication Date
JPS6350622A true JPS6350622A (en) 1988-03-03
JPH0718343B2 JPH0718343B2 (en) 1995-03-01

Family

ID=16283423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191967A Expired - Lifetime JPH0718343B2 (en) 1986-08-19 1986-08-19 Spark ignition engine

Country Status (1)

Country Link
JP (1) JPH0718343B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616629U (en) * 1984-06-20 1986-01-16 マツダ株式会社 Exhaust recirculation control device for swirl chamber type diesel engine
JPS62223415A (en) * 1986-03-24 1987-10-01 Mazda Motor Corp Intake control device for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616629U (en) * 1984-06-20 1986-01-16 マツダ株式会社 Exhaust recirculation control device for swirl chamber type diesel engine
JPS62223415A (en) * 1986-03-24 1987-10-01 Mazda Motor Corp Intake control device for engine

Also Published As

Publication number Publication date
JPH0718343B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US4461151A (en) Internal combustion engine
US4426985A (en) Supercharged internal combustion engine
US4174683A (en) High efficiency variable expansion ratio engine
US5588411A (en) Method for controlling an internal combustion engine with external ignition system and with a fuel injection system
US4930315A (en) Turbo-charger engine system
US5233948A (en) Variable cycle engine
JPH045457A (en) Otto cycle engine
EP1242720B1 (en) Four-stroke internal combustion engine with variable cam timing
JPS5810573B2 (en) spark ignition internal combustion engine
US5230315A (en) Otto-cycle engine
JPS6350622A (en) Spark ignition engine
JP2519110B2 (en) Otto-cycle engine
JPS5855329B2 (en) gasoline engine
JPH0797939A (en) Otto cycle engine using differential driving supercharger
JPS6147295B2 (en)
JPS60166717A (en) Internal-combustion engine with exhaust turbosupercharger
JPH04166624A (en) Intake controller for automobile engine
JPH0621579B2 (en) Variable valve timing engine control method
JPS61106918A (en) Intake-air control device in engine
US2574694A (en) Method and means for facilitating engine starting
US4056081A (en) Internal combustion engine
JPH06213023A (en) Diesel cycle engine using differential drive supercharger
JPS6246814Y2 (en)
JPS63297731A (en) Turbocharged engine
JPH0324864Y2 (en)