JPS635046A - Purification of polyether - Google Patents

Purification of polyether

Info

Publication number
JPS635046A
JPS635046A JP14746886A JP14746886A JPS635046A JP S635046 A JPS635046 A JP S635046A JP 14746886 A JP14746886 A JP 14746886A JP 14746886 A JP14746886 A JP 14746886A JP S635046 A JPS635046 A JP S635046A
Authority
JP
Japan
Prior art keywords
polyether
phase
aqueous phase
water
dissolving solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14746886A
Other languages
Japanese (ja)
Inventor
Hirotoshi Horizoe
浩俊 堀添
Ayao Nakamoto
中本 斐雄
Keisuke Horii
堀井 啓右
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sanyo Chemical Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14746886A priority Critical patent/JPS635046A/en
Publication of JPS635046A publication Critical patent/JPS635046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To facilitate the separation of catalyst, by adding a dissolution solvent and then water to a reaction system to extract an alkaline catalyst in the aqueous phase, separating a polyether phase from the aqueous phase near the critical temperature of the dissolution solvent and coagulating the insoluble polyester to fine particles of the alkaline catalyst. CONSTITUTION:A synthetic polyether is added with a dissolution solvent (e.g. hexane, cyclohexane, benzene, etc.) and then with water to extract alkaline catalyst in the aqueous phase. The reaction system is heated at about the critical temperature of the dissolution solvent to remarkably decrease the viscosity of the polyether phase and eliminate the water emulsion. The aqueous phase is separated as a heavy liquid phase from the polyether phase as a light liquid phase by this treatment and, at the same time, the polyether are coagulated with insoluble polyether as a binder to facilitate the separation of the particle. EFFECT:The yield of purified polyether can be improved and the treatment cost can be remarkably reduced because a complicate operation is unnecessary in the present invention.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ポリエーテ/v′/′i−般にはアルカリ性触媒下で活
性水素を有する化合物にアルキレンオキサイドを反応さ
せて合成される。従って合成されたポリエーテ)vは残
存しているアルカリ性触媒により、アルカリ性を示し、
多くの場合このままでは使用できない。本発明は2アル
カリ性触媒を効率的に分離除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] Polyether/v'/'i--Generally, it is synthesized by reacting an alkylene oxide with a compound having active hydrogen under an alkaline catalyst. Therefore, the synthesized polyether)v exhibits alkalinity due to the remaining alkaline catalyst,
In many cases, it cannot be used as is. The present invention relates to a method for efficiently separating and removing a di-alkaline catalyst.

〔従来の技術〕[Conventional technology]

通常ポリエーテルはこのアルカリ性触媒の中和及び除去
といった後処理を行うことにより。
Usually polyethers are processed by post-treatment such as neutralization and removal of this alkaline catalyst.

精製されている。これらの後処理方法には2弱酸により
中和する方法1強酸で中和し脱/j・後p別する方法、
活性白土、酸性白土等を使用して触媒を吸着除去する方
法等があるがそれぞれの方法に完全なものはなく、製品
の悟り、カスミ。
Refined. These post-treatment methods include 2 methods of neutralizing with a weak acid, 1 method of neutralizing with a strong acid, and removing/j/post-p separation;
There are methods of adsorbing and removing catalysts using activated clay, acid clay, etc., but each method is not perfect, and the product's enlightenment and smudge.

若妻、収率低下、設桶の問題、操作の榎雑さ。Young wives, lower yields, problems with setting up tubs, and sloppy operations.

等の欠点がある。There are drawbacks such as.

例えば、吸着法の場合、吸着剤に吸着するアルカリ触媒
の量の増加とともに吸着性能が下が−るので、再生する
か又+d交換する必要がある。
For example, in the case of an adsorption method, the adsorption performance decreases as the amount of alkali catalyst adsorbed on the adsorbent increases, so it is necessary to regenerate or replace the adsorbent.

又、この時に発生する廃液、廃棄物の処理も必要である
。したがって、これらの繁雑な操作のために処理コスト
の増大となり、効率的な分離精製法が望まれている。
It is also necessary to dispose of waste liquid and waste generated at this time. Therefore, these complicated operations increase processing costs, and an efficient separation and purification method is desired.

また、ポリエーテルは常温で液状であるが。Also, polyether is liquid at room temperature.

高粘性流体であること及びアルカリ性触媒はサブミクロ
ンの粒子として分散していることより遠心分離法や重力
沈降分離法のみでは容易に分離精製は不可能であった。
Because it is a highly viscous fluid and the alkaline catalyst is dispersed as submicron particles, it has not been possible to easily separate and purify it using centrifugal separation or gravity sedimentation separation methods alone.

例えば、温度50″Cにおいて、ポリエーテルの粘度は
約400 Cjpで1μのアルカリ触1微粒子の重力沈
降速度は。
For example, at a temperature of 50''C, the viscosity of polyether is about 400 Cjp, and the gravitational sedimentation rate of 1μ alkali catalyst particles is:

= 2.7 X 10−3crn/seeとなり、1m
沈降するのに約10時間も要し、実用的でなかった。
= 2.7 x 10-3 crn/see, 1m
It took about 10 hours to settle, making it impractical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来法の欠点を解消し、低コストで高品質
のポリエーテルを得るためにポリエーテル中のアルカリ
性触媒を効率的にかつ簡単な操作で分離除去する方法を
提供する事を目的とするものである。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and provide a method for efficiently and easily separating and removing the alkaline catalyst in polyether in order to obtain high-quality polyether at low cost. It is something to do.

〔問題点を解決するための手段〕 本発明者等は鋭意研究を重ねた結果、溶解溶剤を合成ポ
リエーテルに添加混合した場合、該溶解溶剤の臨界状態
近傍ではポリエーテルの性状が急激に変化する事を見い
出し、この知見に基づき本発明をなすに致った。
[Means for Solving the Problems] As a result of extensive research, the present inventors have found that when a dissolving solvent is added to and mixed with synthetic polyether, the properties of the polyether change rapidly near the critical state of the dissolving solvent. Based on this finding, the present invention was created.

すなわち本発明は、アルカリ触媒の存在了知合成された
ポリエーテルに溶解溶剤を添加混合し、更に水を添加混
合して該アルカリ触媒を水相に抽出した後、該溶解溶剤
の臨界温度近傍でポリエーテル相と水相の相分離を行う
とともに。
That is, in the present invention, a dissolving solvent is added to and mixed with a polyether synthesized in the presence of an alkali catalyst, water is further added and mixed to extract the alkali catalyst into the aqueous phase, and then the polyether is synthesized in the vicinity of the critical temperature of the dissolving solvent. Along with phase separation of polyether phase and aqueous phase.

該ポリエーテル中KM存しているアルカリ触媒粒子の重
力沈降分離を行い1選択的て該ポリエーテルの1部を該
アルカリ触媒粒子に凝集せしめて粒子径を増大させ、該
アルカリを該合成ポリエーテル及び該溶解溶剤の混合液
より除去した後、該溶解溶剤および水相を分離する事を
特徴とするポリエーテルの精製法を提供するものである
The alkali catalyst particles present in the polyether are separated by gravity sedimentation, and a part of the polyether is selectively agglomerated into the alkali catalyst particles to increase the particle size, and the alkali is separated from the synthetic polyether. and a method for purifying polyether, which comprises removing the dissolving solvent from a mixed solution, and then separating the dissolving solvent and the aqueous phase.

本発明の適用できるポリエーテルとしてはアルカリ性触
媒1例えば苛性カリ、荷性ソーダ。
Examples of polyethers to which the present invention can be applied include alkaline catalysts 1 such as caustic potash and caustic soda.

ナトリウムメチラート、カリウムメチラート。Sodium methylate, potassium methylate.

金属ナトリウム、金属カリウム、炭酸ナトリウム、炭酸
カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の
存在下に活性水素を有する化合物にアルキレンオキサイ
ドを反応(付加)させたものすべてをあげることができ
る。上記活性水素を有する化合物としては通常用いられ
ているアルコール類、カルボン酸類、フェノール類、ア
ミン類等が、父上記アルキレンオキサイドとしては、エ
チレンオキサイド、プロピレンオキサイド、スチレンオ
キサイドの一種又は二種以上のものがあげられる。
Examples include all compounds in which alkylene oxide is reacted (added) to a compound having active hydrogen in the presence of metallic sodium, metallic potassium, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc. The active hydrogen-containing compounds include commonly used alcohols, carboxylic acids, phenols, amines, etc., and the alkylene oxides include one or more of ethylene oxide, propylene oxide, and styrene oxide. can be given.

また本発明の適用できる溶解溶剤としては。Further, the dissolving solvent to which the present invention can be applied is as follows.

常温でポリエーテルに対して溶解力を有し2回収及び取
扱いが容易なものが好ましく、また臨界状態近傍を使用
するため、ポリエーテルの熱分解温度又は熱変質温度を
考慮して、臨界温度が300°C以下のものが好ましい
。表1に溶解溶剤として代表的なものを示す。
It is preferable to use a material that has the ability to dissolve polyether at room temperature and is easy to recover and handle.Also, since the temperature near the critical state is used, the critical temperature should be set in consideration of the thermal decomposition temperature or thermal alteration temperature of the polyether. Preferably, the temperature is 300°C or less. Table 1 shows typical dissolving solvents.

表1.溶解溶剤 ペンタン   a6.1    196.6   3,
9.3ヘキサン   68.7   234.7   
29.9へブタン   98.4   267.0  
 27.0オクタン   125.7   296.2
   24.6シクロヘキサン 80    281.
0   40.4ベンゼン   80.1   288
,5   47.7プロパン   −42,196,8
42,0ブタン  −0,5152,037,5〔作用
〕 粒子の沈降速度、ば、下記ストークヌの式で示される。
Table 1. Dissolving solvent pentane a6.1 196.6 3,
9.3 Hexane 68.7 234.7
29.9 Hebutane 98.4 267.0
27.0 octane 125.7 296.2
24.6 Cyclohexane 80 281.
0 40.4 Benzene 80.1 288
,5 47.7 Propane -42,196,8
42,0 Butane -0,5152,037,5 [Operation] The sedimentation rate of particles is expressed by the Stokene equation below.

U:沈降速度 ρ、二粒子の密度 ρ:液の密度 Dp二粒子径 μ:液の粘度 g:重力加速度 上式より沈降速度は粒子径の2乗に比例することより粒
子径の増加によシ重力沈降速度が大巾に増加し、沈降分
離が大巾建促進することがわかる。
U: Sedimentation velocity ρ, density of two particles ρ: density of liquid Dp, particle diameter μ: viscosity of liquid g: gravitational acceleration From the above equation, sedimentation rate is proportional to the square of the particle diameter, so it increases as the particle size increases. It can be seen that the gravitational sedimentation rate increases greatly, and sedimentation separation accelerates greatly.

ここで溶解溶剤に対するポリエーテルの溶解度は、該溶
解溶剤の臨界温度近傍で急激に減少し1分子量の大きい
ポリエーテルはど選択的に相分離して該溶解溶剤に溶解
しないことを利用し、該ポリエーテル中の該アルカリ触
媒の微粒子を、該不溶解ポリニーT /L/を結合剤と
して凝集せしめ1粒子径を増大させることにより容易に
分離できるものである。
Here, the solubility of polyether in a dissolving solvent decreases rapidly near the critical temperature of the dissolving solvent, and polyether with a large molecular weight selectively undergoes phase separation and does not dissolve in the dissolving solvent. Fine particles of the alkali catalyst in polyether can be easily separated by agglomerating them using the insoluble polynye T/L/ as a binder and increasing the particle size.

さらに該溶解溶剤を臨界温度近傍の条件下で添加する事
により液粘度μ及び液密度ρの低減効果があり、(1)
式により前記粒子径の増大とともに沈降速度Uを増大さ
せるという相乗効果が挙げられる。
Furthermore, by adding the dissolving solvent under conditions near the critical temperature, there is an effect of reducing liquid viscosity μ and liquid density ρ, (1)
According to the formula, there is a synergistic effect of increasing the sedimentation velocity U as the particle size increases.

また、ポリエーテルに水を添加することにより、ポリエ
ーテル中のアルカリ触媒を水相に容易に抽出することは
可能であったが、水相はポリエーテルと極めて安定なエ
マルジョンを形成し、水相とポリエーテル相を分離する
ことは困難であった。
In addition, by adding water to polyether, it was possible to easily extract the alkali catalyst in polyether into the aqueous phase, but the aqueous phase formed an extremely stable emulsion with the polyether, and the aqueous phase It was difficult to separate the and polyether phases.

本発明は混合相に溶解溶剤を臨界温度近傍で添加するこ
とによって、水相とポリエーテル相の相分離を促進する
という効果を奏するものである。即ち、溶解溶剤を臨界
温度近傍で添加することによシ、該ポリエーテル相の粘
度は大福に減少するとともに比重も小さくなり水との比
重差の増大により水エマルジョンが消失シ、水相は重液
相として、ポリエーテルは軽液相として速やかに相分離
するものである。
The present invention has the effect of promoting phase separation between the aqueous phase and the polyether phase by adding a dissolving solvent to the mixed phase near the critical temperature. That is, by adding a dissolving solvent near the critical temperature, the viscosity of the polyether phase decreases significantly and the specific gravity also decreases.The water emulsion disappears due to the increase in the difference in specific gravity with water, and the aqueous phase becomes heavy. As a liquid phase, polyether rapidly separates into a light liquid phase.

したがって1本発明により該アルカリ触媒を水相に容易
に抽出でき、水相とポリエーテル相を容易に相分離する
ことが可能となり該アルカリ触媒が実質的に含まれない
ポリエーテルを回収することが可能となった。
Therefore, according to the present invention, the alkali catalyst can be easily extracted into the aqueous phase, and the aqueous phase and the polyether phase can be easily phase-separated, making it possible to recover polyether that does not substantially contain the alkali catalyst. It has become possible.

ここで腹水の添加量は水中での該アルカリ触媒の飽和濃
度より該アルカリ触媒の5倍以上あればよいが、腹水と
該アルカリ触媒の接触効率を高めるために、該ボリエー
テ/L/1重量部に対し、少くとも0.01重量部以上
添加するのが好ましい。特に望ましくは0.01〜0.
10の範囲である。
Here, the amount of ascites added should be at least 5 times the saturated concentration of the alkali catalyst in water, but in order to increase the contact efficiency between the ascites and the alkali catalyst, it is necessary to add the ascites/L/1 part by weight of the alkali catalyst. It is preferable to add at least 0.01 part by weight. Particularly preferably 0.01 to 0.
The range is 10.

0.10以上の添加は単に水の使用量の増加となシ経済
的に好ましくない。
Addition of 0.10 or more simply increases the amount of water used, which is economically undesirable.

また該溶解溶剤の添加量は、特に望ましくはボリエーテ
/V 1重量部に対して2〜4重量部が好ましい。2重
量部以下では液の粘度及び比重の低減が十分でなく、沈
降速度が小さくなり好ましくない。
The amount of the dissolving solvent added is particularly preferably 2 to 4 parts by weight per 1 part by weight of Boliete/V. If it is less than 2 parts by weight, the viscosity and specific gravity of the liquid will not be sufficiently reduced and the sedimentation rate will be low, which is not preferable.

操作圧力は、該溶解溶剤が気化するのを防止するに十分
な圧力であれば良く、好ましくは該溶解溶剤の臨界圧力
から臨界圧力の2倍の範1」であれば良い。これ以上の
圧力はコストの増加となり好ましくない。
The operating pressure may be sufficient as long as it is sufficient to prevent the dissolving solvent from vaporizing, and is preferably in the range from the critical pressure of the dissolving solvent to twice the critical pressure. A pressure higher than this is undesirable as it increases costs.

また操作温度は、該溶解溶剤のポリエーテル中への拡散
速度の大きい臨界温度近傍にすべきである。特に望まし
くは、該臨界温度より少なくとも80’C低い温度以上
でかつ該臨界温度より50°C高い温度以下の範囲にす
べきである。しかし、該ポリエーテルの熱分解温度又は
熱変質温度以下にすべきである。該臨界温度よう50°
C高い温度以上では、該溶解溶剤の密度が急激に減少し
、溶解度が減少するため、該ポI)エーテルの回収率が
減少し好ましくない。この状残て密度を増すためには圧
力を臨界圧力の数倍以上に高める必要があり経済的に不
利である。
The operating temperature should also be close to the critical temperature at which the rate of diffusion of the dissolving solvent into the polyether is high. Particularly preferably, the temperature should be at least 80° C. below the critical temperature and 50° C. above the critical temperature. However, it should be below the thermal decomposition or thermal alteration temperature of the polyether. The critical temperature is 50°
If the temperature is higher than C, the density of the dissolving solvent decreases rapidly and the solubility decreases, so the recovery rate of the poly(I) ether decreases, which is not preferable. In order to increase the density while remaining in this state, it is necessary to increase the pressure to several times the critical pressure or more, which is economically disadvantageous.

前述の望ましい温度範囲において、該ポリエ−チルの一
部を急速に相分離させ、該アルカリ微粒子の凝集沈降分
離が促進できる。
In the above-mentioned desired temperature range, a part of the polyethyl is rapidly phase-separated, and coagulation and sedimentation separation of the alkali fine particles can be promoted.

また該相分離ポリエーテルの景は、該アルカリ微粒子の
数倍量ちれば十分であり、該ポリエーテルの損失は無視
できることも判明した。
It has also been found that it is sufficient to obtain the phase-separated polyether in an amount several times that of the alkali fine particles, and the loss of the polyether can be ignored.

次に本発明によるボリエーテ)v精製1去の1実施態様
例を第1図に示す工程図により説明する。
Next, an example of an embodiment of v purification (1) according to the present invention will be explained with reference to the process diagram shown in FIG.

第1図において、lは合成ポリエーテル供給ライン、2
は溶解溶剤循環ライン、4は重力沈降分離槽、5はアル
カリ触媒排出ライン、6は上澄液、7は分離槽、8は精
製ポリエーテルライン、9は水供給ラインを示す。
In FIG. 1, l is a synthetic polyether supply line, 2
4 is a dissolution solvent circulation line, 4 is a gravity sedimentation separation tank, 5 is an alkali catalyst discharge line, 6 is a supernatant liquid, 7 is a separation tank, 8 is a purified polyether line, and 9 is a water supply line.

重力沈降分離槽4の下部5からは、該相分離ポリエーテ
ルと該アルカリ微粒子の凝集沈降物および水相が抜き出
され、上部6からはアルカリ微粒子が実質的に含まれな
いポリエーテルと該溶解溶剤がオーバーフロー液として
取り出されろう 該オーバーフローz夜6中のポリエーテルと該溶解溶剤
および水は分離槽7に導入し分離する。
From the lower part 5 of the gravity sedimentation separation tank 4, the agglomerated sediment of the phase-separated polyether and the alkali fine particles and the aqueous phase are extracted, and from the upper part 6, the polyether containing substantially no alkali fine particles and the dissolved polyether are extracted. The solvent is removed as an overflow liquid, and the polyether in the overflow, the dissolved solvent and water are introduced into a separation tank 7 and separated.

分離槽7は蒸発分離法、自己蒸気PE縮法又は超臨界分
離法のいずれも使用可能であり、怪済性より決定するこ
とができる。
For the separation tank 7, any of the evaporative separation method, the self-steam PE condensation method, or the supercritical separation method can be used, and the method can be determined based on safety.

〔実施例〕〔Example〕

次に実砲例により本発明の効果を更に詳細に説明する。 Next, the effects of the present invention will be explained in more detail using actual gun examples.

グリセリン500gに触媒としてKOH29gを添加し
、常法によりプロピレンオキサイド1200gを反応さ
せた。
29 g of KOH was added as a catalyst to 500 g of glycerin, and 1200 g of propylene oxide was reacted by a conventional method.

次に該反応生成物に対し3倍量のn−ヘキサンおよび0
.05倍量の水を添加し、縦長オートクンープに仕込み
、攪拌しなから175°Cまで昇温し、30分間静置後
側部より上澄液を回収し、該上澄液よりn−ヘキサン及
び水を蒸留により分離して高品質のポリエーテルを回収
した。
Next, 3 times the amount of n-hexane and 0
.. Add 0.5 times the amount of water, charge it into a vertical auto-kump, raise the temperature to 175°C without stirring, leave it for 30 minutes, collect the supernatant from the side, and from the supernatant, n-hexane and Water was separated by distillation to recover high quality polyether.

該ポリエーテル中のKOH濃度は50 ppmで原料中
のKOH濃度1:160 ppm K較べ十分に精製さ
れていた。
The KOH concentration in the polyether was 50 ppm, which was sufficiently purified compared to the KOH concentration in the raw material, which was 1:160 ppm.

また該ポリエーテルの収率は99.Qwt%であった。The yield of the polyether was 99. Qwt%.

〔比較例〕[Comparative example]

実施例1において、溶解溶剤の種類、水の添加量及び操
作温度を変えた場合の比較例を表1て示した。
Table 1 shows comparative examples in which the type of dissolving solvent, amount of water added, and operating temperature were changed in Example 1.

表1において、克1は溶解溶剤及び水を全く添加しなか
った例、克2は水を添加せずにアルカリ触媒を水相に抽
出するという効果が得られなかった例、克14のキシレ
ンは臨界温度345°Cと高いため操作温度290’C
との間に温度差がありすぎだためK KOHの除去効果
が低下した例である。これ以上に操作温度を上げるとポ
リエーテルの熱分解を招き好ましくない。遅17は操作
温度が50°Cと低すぎたためにKOf(の除去効果が
得られなかった例、&18は操作温度が300°Cと高
すぎたためにポリエーテルの熱分解が起こ9゜精製ポリ
エーテルの回収率が著しく低下した例であるっ 〔発明の効果〕 本発明は以上詳述したようにアルカリ触媒を含有するポ
リエーテルに溶解溶剤及び水を添加し、該ポリエーテル
の該溶解溶剤への溶解度を溶解溶剤の臨界温度付近で温
度により制御し。
In Table 1, Case 1 is an example in which no dissolving solvent or water was added, Case 2 is an example in which the effect of extracting the alkali catalyst into the aqueous phase was not obtained without adding water, and Case 14 is an example in which the effect of extracting the alkali catalyst into the aqueous phase was not obtained. Operating temperature is 290'C due to high critical temperature of 345°C
This is an example in which the removal effect of KOH decreased because there was too much temperature difference between the two. Raising the operating temperature higher than this is undesirable as it causes thermal decomposition of the polyether. Slow 17 is an example in which the removal effect of KOf( was not obtained because the operating temperature was too low at 50°C, and &18 is an example in which the operating temperature was too high at 300°C, resulting in thermal decomposition of polyether and 9° purified polyester. This is an example in which the recovery rate of ether was significantly reduced. [Effects of the Invention] As detailed above, the present invention adds a dissolving solvent and water to a polyether containing an alkali catalyst, and dissolves the polyether into the dissolving solvent. The solubility of the solvent is controlled by temperature near the critical temperature of the dissolving solvent.

該アルカリ触媒の沈降分離速度を増大させて。By increasing the rate of sedimentation separation of the alkaline catalyst.

アルカリ触媒を凝集沈降分離するとともに水相にアルカ
リ触媒を抽出し、溶解溶剤の存在下で水相とポリエーテ
ル相の相分離を行い、精製ポリエーテルの収率向上が可
能で実質的てアルカリ触媒が含まれない精製ポリエーテ
ルを製造する方法を提供するものである。また繁雑な操
作を必要としないために処理コストを大部テ低減できる
ものである。
The alkali catalyst is coagulated and sedimented and separated, and the alkali catalyst is extracted into the aqueous phase, and the aqueous phase and polyether phase are phase separated in the presence of a dissolving solvent, making it possible to improve the yield of purified polyether and substantially eliminate the alkali catalyst. The purpose of the present invention is to provide a method for producing purified polyether that does not contain. Furthermore, since no complicated operations are required, processing costs can be reduced to a large extent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様例を示すポリエーテ/v 
精製法のプロセスフロー図である。 1・・・合成ポリエーテル供給ライン、2・・・溶解溶
剤循環ライン、4・・・重力沈降分層槽、5・・・アル
カリ触媒及び水排出ライン、6・・・上澄液(オーバー
フロー液)ライン、7・・・分離槽、8・・・精製ポリ
エーテルライン、9・・・水供給ライン暁
FIG. 1 shows an example of an embodiment of the present invention.
FIG. 2 is a process flow diagram of a purification method. DESCRIPTION OF SYMBOLS 1...Synthetic polyether supply line, 2...Dissolving solvent circulation line, 4...Gravity sedimentation separation tank, 5...Alkali catalyst and water discharge line, 6...Supernatant liquid (overflow liquid) ) line, 7...separation tank, 8...purified polyether line, 9...water supply line Akatsuki

Claims (1)

【特許請求の範囲】[Claims] アルカリ触媒の存在下に合成されたポリエーテルに溶解
溶剤を添加混合し、更に水を添加混合して該アルカリ触
媒を水相に抽出した後、該溶解溶剤の臨界温度近傍でポ
リエーテル相と水相の相分離を行うとともに、該ポリエ
ーテル中に残存しているアルカリ触媒粒子の重力沈降分
離を行い、選択的に該ポリエーテルの1部を該アルカリ
触媒粒子に凝集せしめて粒子径を増大させ、該アルカリ
を該合成ポリエーテル及び該溶解溶剤の混合液より除去
した後、該溶解溶剤および水相を分離する事を特徴とす
るポリエーテルの精製法。
A dissolving solvent is added to and mixed with the polyether synthesized in the presence of an alkali catalyst, water is further added and mixed to extract the alkali catalyst into the aqueous phase, and then the polyether phase and the water are mixed near the critical temperature of the dissolving solvent. In addition to phase separation of the phases, the alkaline catalyst particles remaining in the polyether are separated by gravity sedimentation, and a part of the polyether is selectively agglomerated into the alkali catalyst particles to increase the particle size. . A method for purifying polyether, which comprises removing the alkali from a mixed solution of the synthetic polyether and the dissolving solvent, and then separating the dissolving solvent and the aqueous phase.
JP14746886A 1986-06-24 1986-06-24 Purification of polyether Pending JPS635046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746886A JPS635046A (en) 1986-06-24 1986-06-24 Purification of polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746886A JPS635046A (en) 1986-06-24 1986-06-24 Purification of polyether

Publications (1)

Publication Number Publication Date
JPS635046A true JPS635046A (en) 1988-01-11

Family

ID=15431063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746886A Pending JPS635046A (en) 1986-06-24 1986-06-24 Purification of polyether

Country Status (1)

Country Link
JP (1) JPS635046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294733A (en) * 1988-05-20 1989-11-28 Kanegafuchi Chem Ind Co Ltd Removal of alkali metal compound from crude polymeric substance
US5036962A (en) * 1988-12-27 1991-08-06 Fuji Jukogyo Kabushiki Kaisha Shift lock system for an automatic transmission of a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294733A (en) * 1988-05-20 1989-11-28 Kanegafuchi Chem Ind Co Ltd Removal of alkali metal compound from crude polymeric substance
US5036962A (en) * 1988-12-27 1991-08-06 Fuji Jukogyo Kabushiki Kaisha Shift lock system for an automatic transmission of a motor vehicle

Similar Documents

Publication Publication Date Title
EP1620362A2 (en) Process for producing 1, 3-propanediol
JP4579473B2 (en) Method for purifying polyethers
TWI383951B (en) Method for producing hydrogen peroxide containing a regeneration step of an action solution
JPS635046A (en) Purification of polyether
JPH01294733A (en) Removal of alkali metal compound from crude polymeric substance
CN108455633B (en) Salt extraction and recovery method and device for synthetic ammonia desulfurization residual liquid
ZA200609811B (en) Method and apparatus for purification of an aqueous solution form droplets of extraction solution
EP1721886A1 (en) Method of processing methacrylic-ester-containing solution
JPS635045A (en) Purification of polyether
JP2017524527A (en) Method for recovering treatment liquid from a stream containing an alkaline earth metal salt
JP2002155020A (en) Industrial method for recovering terephthalic acid from pulverized product of recovered polyethylene terephthalate
JPS6379847A (en) Purification of polyether
JP2002249580A (en) Removing method of metallic compound from crude polyether
US20050189296A1 (en) Method for handling (meth) acrylic ester-containing solution
JP2003313289A (en) Process for producing polyether from which metal compound is removed
KR101180341B1 (en) Reuse method by dividing of wastes in polyol production
JP2003105079A (en) Method for eliminating metal compound from crude polyether
JP4065714B2 (en) Method for purifying 1,2-dichloroethane
JP2003105078A (en) Method for eliminating metal compound from crude polyether
JPS6235837B2 (en)
CN117509685A (en) Technology for preparing sodium carbonate from industrial salt by using membrane method
RU2291739C2 (en) Method of the recuperation of the ethers of cellulose from the water solutions by the ultrafiltration with the improved shift effect
JP4405829B2 (en) Method for recovering methylene chloride
KR0136159B1 (en) Apparatus for filter of waste acid
KR100431688B1 (en) Process for recovering trimellitic acid and catalysts, and apparatus thereof