JPS6350415A - Skid beam for walking beam type heating furnace - Google Patents

Skid beam for walking beam type heating furnace

Info

Publication number
JPS6350415A
JPS6350415A JP19319586A JP19319586A JPS6350415A JP S6350415 A JPS6350415 A JP S6350415A JP 19319586 A JP19319586 A JP 19319586A JP 19319586 A JP19319586 A JP 19319586A JP S6350415 A JPS6350415 A JP S6350415A
Authority
JP
Japan
Prior art keywords
skid
button
skid button
composite material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19319586A
Other languages
Japanese (ja)
Other versions
JPH0726142B2 (en
Inventor
Kiyoshi Takagi
清 高木
Tadashi Naito
内藤 粛
Masamitsu Kobashi
小橋 正満
Hisashi Hiraishi
平石 久志
Takeshi Shinozaki
斌 篠崎
Toru Kawai
徹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kubota Corp
Original Assignee
Kubota Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Kawasaki Steel Corp filed Critical Kubota Corp
Priority to JP61193195A priority Critical patent/JPH0726142B2/en
Priority to KR870005674A priority patent/KR880000601A/en
Priority to US07/059,971 priority patent/US4747775A/en
Priority to CN87104699A priority patent/CN1013281B/en
Priority to AU74058/87A priority patent/AU576696B2/en
Priority to EP87108381A priority patent/EP0249210A1/en
Priority to CA000539328A priority patent/CA1266774A/en
Publication of JPS6350415A publication Critical patent/JPS6350415A/en
Publication of JPH0726142B2 publication Critical patent/JPH0726142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating Conveyors (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To effectively prevent skid mark on a material to be heated and to eliminate the uneven heating by specifying the constitution composition and shape of a skid button and also specifying the layer thickness of castable refractory. CONSTITUTION:The skid button 20 is columnar body, composing of a columnar base body 21 made of heat resistant alloy (Co alloy, etc.) and a composite material 22 having composite structure, in which is mixed by 30-70wt% ceramic grain (Cr3C2, etc., having about 0.01-10mu grain size) to heat resistant alloy matrix (Co alloy, etc.), coating the top part and side part of base body 21. The ratio W/L of width W to length L at the horizontal section for the skid button 20 is arranged at >=0.34 and area ratio (area of composite material part S1/total area of section S0) for occupied area of the composite material 22 at the horizontal section at >=0.5. Further, the height H of skid button 20 is arranged to be >=120mm and the thickness tR of castable refractory 30 covering at the surface of skid pipe 10 and lower part of skid button 20 is arranged to be <=about 125mm, so that the temp. difference (DELTAT) between the temp. of the top part of skid button 20 and the furnace atmosphere temp. is <=40 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ウオーキングビーム式加熱炉のスキッドビー
ムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a skid beam of a walking beam type heating furnace.

〔従来の技術〕[Conventional technology]

鋼材加熱炉内の被加熱材(鋼片、スラブ等)を支持し搬
送するウオーキングビームコンベアは、−組みの移動ビ
ームと固定ビームとで構成され、移動ビームの昇降・水
平往復動作の周期的繰り返しにより、被加熱材を移動ビ
ームと固定ビームとに交互に移し替えながら搬送する。
The walking beam conveyor that supports and conveys the materials to be heated (steel pieces, slabs, etc.) in the steel heating furnace is composed of a set of moving beams and fixed beams, and the moving beam periodically repeats the vertical and horizontal reciprocating movements. The material to be heated is conveyed while being alternately transferred between the moving beam and the fixed beam.

そのビームは、第8図に示すように、耐熱合金製スキッ
ドパイプ(10)と、被加熱材受は台であるスキッドボ
タン(20)と、パイプ(10)を被覆するキャスタブ
ル(30)とで構成されている。スキッドボタン(20
)は耐熱合金(例えば、コバルト系耐熱鋳鋼、ニソケル
ーコバルト系耐熱鋳鋼)類ブロックであり、パイプ(1
0)の軸方向に一定の間隔をおいてその頂面に溶接によ
り固定されている。
As shown in Figure 8, the beam consists of a skid pipe (10) made of heat-resistant alloy, a skid button (20) that serves as a base for receiving the heated material, and a castable (30) covering the pipe (10). It is configured. Skid button (20
) is a block of heat-resistant alloys (e.g., cobalt-based heat-resistant cast steel, Nisokeru-cobalt-based heat-resistant cast steel), and the pipe (1
0) is fixed by welding to the top surface of 0) at regular intervals in the axial direction.

加熱炉の内部は、通常約1280℃の高温に保持されて
いるので、スキッドパイプ(10)の中空孔(11)内
に冷却水を流通させることにより、パイプ(10)の昇
温とそれに伴う曲がり・座屈等の変形を防止し、載荷さ
れる被加熱材の荷重に耐える抗折強度を維持させると共
に、その表面を被覆するキャスタブル(30)でパイプ
表面を炉内の高温酸化雰囲気から保護している。
The inside of the heating furnace is normally maintained at a high temperature of about 1280°C, so by flowing cooling water into the hollow hole (11) of the skid pipe (10), the temperature of the pipe (10) increases and the accompanying temperature increases. Prevents deformation such as bending and buckling, and maintains the bending strength to withstand the load of the loaded heated material, and protects the pipe surface from the high-temperature oxidizing atmosphere in the furnace with the castable (30) that covers the surface. are doing.

〔発明が解決しようとする問題点〕。[Problem that the invention seeks to solve].

加熱炉内の被加熱材は、製品品質を向上させるために、
加熱ムラがないように、全体を均一に焼土げることが必
要である。
The heated material in the heating furnace is heated to improve product quality.
It is necessary to bake the clay evenly throughout the clay so that there is no uneven heating.

しかるに、スキッドボタンは、スキッドパイプ内を流通
する冷却水により冷却され炉内温度よりも低温となるた
め、その天面に載置される被加熱材は、その接触面を介
して熱を奪われ、接触面にスキッドマーク(局所的低温
部)が生じるという問題がある。
However, since the skid button is cooled by the cooling water flowing through the skid pipe and becomes lower than the temperature inside the furnace, the material to be heated placed on the top surface of the skid button loses heat through its contact surface. , there is a problem that skid marks (localized low temperature areas) occur on the contact surface.

このスキッドマークを抑制する方法として、スキッドボ
タンの高さ(H)を高くし、その天面部に対する水冷の
影響を少なくすることにより、天面部の温度を炉内温度
に近づけることが考えられる。しかし、耐熱合金からな
るスキッドボタンは、その温度が炉温近くに上昇すると
、圧縮強度が大きく低下し、被加熱材の圧縮荷重による
圧縮変形(所謂ヘクリ)が生じ易くなり、従って短期間
でスキッドボタンの取替・修復作業を行わねばならず、
加熱炉の操業効率の低下を免れない。この圧縮変形防止
策として、スキッドボタンの断面径を大きく、すなわち
被加熱材との接触面積を大きくしてスキッドボタンに対
する単位面積当たりの圧縮負荷を小さくすることが考え
られるけれども、被加熱材との接触面積を大きくすると
、それだけ被加熱材の加熱面積(炉内雰囲気に曝される
被加熱材表面積)が少なくなるので、被加熱材の加熱効
率が低下し、入熱不足・加熱温度ムラが生じ易くなり、
有効な対策とはなり得ない。
One possible method for suppressing these skid marks is to increase the height (H) of the skid button and reduce the influence of water cooling on the top surface, thereby bringing the temperature of the top surface closer to the furnace temperature. However, when the temperature of a skid button made of a heat-resistant alloy rises close to the furnace temperature, its compressive strength decreases significantly, and compressive deformation (so-called "hekuri") due to the compressive load of the material to be heated is likely to occur. Buttons had to be replaced and repaired,
A decrease in the operating efficiency of the heating furnace is inevitable. As a measure to prevent this compression deformation, it is possible to increase the cross-sectional diameter of the skid button, that is, to increase the contact area with the heated material to reduce the compression load per unit area on the skid button. As the contact area increases, the heating area of the heated material (the surface area of the heated material exposed to the furnace atmosphere) decreases, which reduces the heating efficiency of the heated material, resulting in insufficient heat input and uneven heating temperature. becomes easier,
This cannot be an effective countermeasure.

他のスキッドマーク対策として、耐熱合金製スキッドボ
タンに代え、耐熱性にすぐれた高温圧縮強度の高いセラ
ミック焼結体からなるスキッドボタンを使用することが
考えれらる。しかし、被加熱材搬送時のスキッドボタン
には、静的荷重だけでなく、大きな動的荷重が繰り返し
加わるので、靭性に乏しいセラミック製スキッドボタン
では、割れや欠けが生じ易い。しかも、セラミック製ス
キッドボタンは、耐熱合金製のものと異なり、直接スキ
ッドパイプに溶接することができず、例えば取付は部材
として、耐熱合金製ケースにスキッドボタンを嵌め込み
、該ケースを介してスキッドパイプに取付けなければな
らない。そのため、取付は構造が複雑となるだけでなく
、スキッドボタン高さが高くなり、極めて不安定で脱落
し易く、安定した炉操業を維持することが困難である。
Another possible measure against skid marks is to use a skid button made of a ceramic sintered body with excellent heat resistance and high compressive strength at high temperatures, instead of a skid button made of a heat-resistant alloy. However, not only a static load but also a large dynamic load is repeatedly applied to the skid button during the conveyance of the material to be heated, so a ceramic skid button with poor toughness is likely to crack or chip. Moreover, ceramic skid buttons, unlike those made of heat-resistant alloy, cannot be directly welded to the skid pipe. For example, when installing a skid button, the skid button is fitted into a heat-resistant alloy case as a member, and then the skid button is attached to the skid pipe through the case. must be installed on the Therefore, the mounting structure is not only complicated, but also the height of the skid button is high, making it extremely unstable and easy to fall off, making it difficult to maintain stable furnace operation.

本発明は、上記実情に対処するための改良されたスキッ
ドビームを提供しようとするものである。
The present invention seeks to provide an improved skid beam to address the above circumstances.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るウオーキングビーム式加熱炉のスキッドビ
ームは、 スキッドボタンが、耐熱合金製柱状基体の頂面および側
面を、耐熱合金マトリックスに30〜70%(重量%)
のセラミック粒子が混在した複合組織を有する複合材で
被覆した柱状体であること、スキッドボタンの水平断面
の長さと幅の比(W/L)が0.34以上であり、水平
断面における複合材の占める面積比〔複合材部分の面積
(S、)/断面の全面積(So)xlOO)が50%以
上であること、スキッドボタンの高さは、12011以
上であり、かつスキッドパイプの表面とスキッドボタン
の下部を被覆するキャスタブルは、スキッドボタン天頂
面の温度と炉内温度との差(ΔT)が40゛C以下とな
る層厚(1m)を有していること、を特徴とする。
In the skid beam of the walking beam heating furnace according to the present invention, the skid button covers the top and side surfaces of the heat-resistant alloy columnar base by 30 to 70% (wt%) to the heat-resistant alloy matrix.
It is a columnar body coated with a composite material having a composite structure in which ceramic particles of The area ratio [area of composite material part (S, )/total area of cross section (So) The castable covering the lower part of the skid button is characterized by having a layer thickness (1 m) such that the difference (ΔT) between the temperature at the top surface of the skid button and the temperature inside the furnace is 40°C or less.

本発明のスキッドビームを、その実施例に対応する第1
図により説明すると、(21)は耐熱合金製基体(コバ
ルト系合金、ニッケルークロム系合金等) 、(22)
は耐熱合金マトリックスにセラミック粒子が混在した複
合組織を有する複合材である。
The skid beam of the present invention is shown in FIG.
To explain with a diagram, (21) is a heat-resistant alloy base (cobalt alloy, nickel-chromium alloy, etc.), (22)
is a composite material with a composite structure in which ceramic particles are mixed in a heat-resistant alloy matrix.

耐熱合金製基体(21)は略四角柱状ブロックであり、
その頂面および側面を複合材(22)で被覆することに
より所定の形状のスキッドボタン(20)を構成してい
る。スキッドボタン(20)は基体(21)の脚部底面
をスキッドパイプ(10)の頂面にあてがって溶接する
ことにより強固に取付けられている。
The heat-resistant alloy base (21) is a substantially square columnar block,
A skid button (20) having a predetermined shape is constructed by covering its top and side surfaces with a composite material (22). The skid button (20) is firmly attached by applying and welding the bottom surface of the leg of the base (21) to the top surface of the skid pipe (10).

基体(21)と共にスキッドボタン(20)を構成する
複合材(22)は、耐熱合金マトリックス(コバルト系
合金、ニッケルークロム系合金等)とセラミック粒子(
例えば、粒径0.01〜10umのcr3ct%Cr、
C,等の炭化物系セラミック粒子)との複合効果により
高温での強度・靭性を兼ね備えている。その複合材(2
2)は、例えばタングステン不活性ガスアーク溶接を利
用し、基体(21)の表面にセラミック粒子を含む耐熱
合金のビードを積層することにより形成することができ
る。その複合材(22)と基体(21)との界面は溶着
し、強固に結合−体化している。
The composite material (22) that constitutes the skid button (20) together with the base (21) is composed of a heat-resistant alloy matrix (cobalt alloy, nickel-chromium alloy, etc.) and ceramic particles (
For example, cr3ct%Cr with a particle size of 0.01 to 10 um,
It has both strength and toughness at high temperatures due to the combined effect with carbide ceramic particles such as C, etc. The composite material (2
2) can be formed by laminating beads of a heat-resistant alloy containing ceramic particles on the surface of the base (21) using, for example, tungsten inert gas arc welding. The interface between the composite material (22) and the base (21) is welded to form a strong bond.

複合材(22)の高温における材料特性は、マトリック
ス中のセラミック粒子の含有率により変エルことができ
る。ウオーキングビーム式加熱炉のスキッドボタンとし
て必要な高温圧縮強度および衝撃特性等について実加熱
炉において行った詳細な評価テストにより、セラミック
粒子の含有率(重量%)が30〜70%の範囲内であれ
ば、被加熱材の圧縮荷重および機械衝撃に耐え得る高温
圧縮変形抵抗および高温靭性が得られるこ゛とが判明し
た。
The material properties of the composite material (22) at high temperatures can be varied depending on the content of ceramic particles in the matrix. Through detailed evaluation tests conducted in actual heating furnaces to determine the high-temperature compressive strength and impact properties necessary for skid buttons in walking beam heating furnaces, we found that even if the ceramic particle content (weight %) is within the range of 30 to 70%, For example, it has been found that high-temperature compression deformation resistance and high-temperature toughness capable of withstanding the compressive load and mechanical impact of the heated material can be obtained.

この複合材の材料特性について、耐熱鋼マトリックスに
炭化物系セラミック粒子を混在させた複合材を例に挙げ
て具体的に説明すると、第2図は複合材の高温靭性値(
kg−■、 atl100℃)とセラミック粒子含有率
(重量%)の関係を示し、第3図は、複合材の高温圧縮
強度(kg/mm2)を従来材である耐熱合金のそれと
比較して示している。第2図から、セラミック粒子含有
率30%における衝撃エネルギは100 kg−amで
あり、セラミック粒子の増量に伴って靭性の低下をみる
が、含有率70%においても、なお3Qkg−cmの衝
撃エネルギを有していることが判る。また、第3図にお
いて、(a)、(b)および(C)はそれぞれセラミッ
ク粒子含有率が70%、50%および30%の複合材、
(d)はコバルト系合金、(e)はニッケルークロム系
合金であり、この図から、例えばコバルト系合金fd)
は、温度1210℃を越えると、圧縮強度が0.10k
g/m”以下に低下するのに対し、セラミック粒子を3
0%以上含む複合材(a)、r:b)、(c) ハ、1
280℃ノ高温度ニオイテモ、0.10kg/n2を越
える高い圧縮強度を保持していることがわかる。
To specifically explain the material properties of this composite material, using a composite material in which carbide ceramic particles are mixed in a heat-resistant steel matrix as an example, Figure 2 shows the high temperature toughness value of the composite material (
Figure 3 shows the relationship between the composite material's high-temperature compressive strength (kg/mm2) and that of the conventional heat-resistant alloy. ing. From Figure 2, the impact energy at a ceramic particle content of 30% is 100 kg-am, and as the amount of ceramic particles increases, the toughness decreases, but even at a ceramic particle content of 70%, the impact energy is still 3Q kg-cm. It can be seen that it has In addition, in FIG. 3, (a), (b) and (C) are composite materials with a ceramic particle content of 70%, 50% and 30%, respectively;
(d) is a cobalt-based alloy, and (e) is a nickel-chromium-based alloy. From this figure, for example, cobalt-based alloy fd)
When the temperature exceeds 1210℃, the compressive strength decreases to 0.10k.
g/m”, whereas ceramic particles
Composite material containing 0% or more (a), r:b), (c) c, 1
It can be seen that it maintains a high compressive strength exceeding 0.10 kg/n2 at a high temperature of 280°C.

ところで、スキッドボタンの高温でのへタリを抑制すべ
く圧縮荷重に対する抵抗性を確保するには、変形速度(
%/ h r )を、2倍の安全率を見込んで、0.0
25%/ h r以下とすることが望ましい。その変形
速度は、スキッドボタンの水平断面における複合材(2
2)の占める面積比に依存する。
By the way, in order to ensure resistance to compressive loads in order to prevent the skid button from sagging at high temperatures, the deformation rate (
%/hr) to 0.0, allowing for a double safety factor.
It is desirable to set it to 25%/hr or less. The deformation speed of the composite material (2
It depends on the area ratio occupied by 2).

第4図にスキッドボタンの変形速さく%/ h r )
と複合材の占める断面積比(Sl /So X100)
〔So:全断面積=基体断面積+複合材断面積、Sl:
複合材断面積)の関係(温度: 1250℃、面圧: 
0.25kg/ mm”)を示す。同図から、複合材(
22)の断面積比Cs、 /So X100)を50%
以上とすることにより、変形速さは0.025%/ h
 r以下に抑えられることがわかる。
Figure 4 shows the deformation speed of the skid button (%/hr)
and the cross-sectional area ratio occupied by the composite material (Sl /So X100)
[So: total cross-sectional area = base cross-sectional area + composite material cross-sectional area, Sl:
Composite material cross-sectional area) relationship (temperature: 1250℃, surface pressure:
0.25kg/mm”). From the same figure, the composite material (
22) Cross-sectional area ratio Cs, /So X100) is 50%
By doing so, the deformation speed is 0.025%/h
It can be seen that it can be suppressed to below r.

スキッドボタンは、基体(21)である耐熱合金と、セ
ラミックを含有する複合材(22)との組合わせであり
、両者は熱膨張係数が異なるため、熱応力による割れを
生じる場合がある。これを防止するために、本発明では
、スキッドボタンの水平断面における長さくL)と幅(
W)との比(W/L)を0.34以上に限定する。第5
図は、熱応力(kg/nりとW/Lとの関係を示してい
る。基体(21)の天面の複合材(22)の層厚は15
鶴、使用温度は1200℃であり、また基体(21)側
面の複合材(22)の層厚(t、)については、その断
面積比(Sl /SO)の下限値が前記のように50%
であることから、層厚(tC)= (L+W−−F]1
了W”)/4を与えている。
The skid button is a combination of a heat-resistant alloy as a base (21) and a composite material (22) containing ceramic, and since both have different coefficients of thermal expansion, cracks may occur due to thermal stress. In order to prevent this, in the present invention, the length L) and width (L) and width (L) in the horizontal section of the skid button are
W) (W/L) is limited to 0.34 or more. Fifth
The figure shows the relationship between thermal stress (kg/n) and W/L. The layer thickness of the composite material (22) on the top surface of the base (21) is 15
The temperature at which Tsuru is used is 1200°C, and the lower limit of the cross-sectional area ratio (Sl/SO) for the layer thickness (t,) of the composite material (22) on the side surface of the base body (21) is 50 as described above. %
Therefore, layer thickness (tC) = (L+W--F]1
“W”)/4 is given.

図中、(i)は炉温1200℃(均一)、(ii)は実
炉条件(下面より冷却)でのデータである。この図から
、W/Lが大きい程、熱応力は小さくなることがわかる
。この熱応力による割れの発生を防止するための熱応力
の許容上限値を7.2kg7龍zに設定し、これに対応
してW/Lの値を0.34以上に限定した。
In the figure, (i) shows data at a furnace temperature of 1200° C. (uniform), and (ii) shows data under actual furnace conditions (cooling from the bottom surface). From this figure, it can be seen that the larger W/L is, the smaller the thermal stress is. The allowable upper limit of thermal stress for preventing the occurrence of cracks due to thermal stress was set at 7.2kg7dz, and the value of W/L was correspondingly limited to 0.34 or more.

次に、スキッドボタン上に担持される被加熱材のスキッ
ドマークの防止について説明する。被加熱材のスキッド
マークを効果的に防止するために、スキッドボタン(2
0)の天頂面の温度と炉内温度との温度差(八T)は4
0℃以下とすることが望ましい。第6図に、スキッドボ
タンの高さ(H)と、温度差(ΔT)との関係を示す。
Next, prevention of skid marks on the heated material supported on the skid button will be explained. To effectively prevent skid marks on the heated material, use the skid button (2
The temperature difference (8T) between the temperature at the zenith surface of 0) and the temperature inside the furnace is 4
It is desirable that the temperature be 0°C or lower. FIG. 6 shows the relationship between the height (H) of the skid button and the temperature difference (ΔT).

但し、キャスタブル(30)の層厚(1m)は110鶴
、炉温は1280℃である。図示のとおり、スキッドボ
タン高さ(H)を120鶴以上とすることにより、温度
差(ΔT)は40℃以下となる。
However, the layer thickness (1 m) of the castable (30) was 110 mm, and the furnace temperature was 1280°C. As shown in the figure, by setting the skid button height (H) to 120 or more, the temperature difference (ΔT) becomes 40° C. or less.

更に、スキッドボタンの高さ(H)をパラメータとして
、キャスタブルの層厚(1m)と、温度差(ΔT)の関
係を第7図に示す。図中、(イ)はスキッドボタンの高
さ(H) :2001m、  (ロ)は同高さ(H):
15(inの場合である。図から、キャスタブルの層厚
(1*)と温度差(ΔT)との間に一定の相関があり、
所望の温度差(ΔT)とスキッドボタン高さ(H)が与
えられると、それに対応するキャスタブル層厚(1m)
が決定できることがわかる。例えば、スキッドボタンの
畜さ(H)が200鰭の場合において、その天面の温度
差(ΔT)を40℃以下にするには、キャスタブル(3
0)の層厚Di)を125flを越えない厚さにすれば
よいことがわかる。
Further, FIG. 7 shows the relationship between the castable layer thickness (1 m) and the temperature difference (ΔT), using the height (H) of the skid button as a parameter. In the figure, (a) is the height of the skid button (H): 2001m, (b) is the same height (H):
15 (in.) From the figure, there is a certain correlation between the castable layer thickness (1*) and the temperature difference (ΔT),
Given the desired temperature difference (ΔT) and skid button height (H), the corresponding castable layer thickness (1 m)
It can be seen that it is possible to determine For example, if the height (H) of the skid button is 200 fins, in order to keep the temperature difference (ΔT) of the top surface to 40°C or less, castable (3
It can be seen that the layer thickness Di) of 0) should not exceed 125 fl.

〔作用〕[Effect]

本発明におけるスキッドボタンは、その高さとキャスタ
ブルの層厚(1*)との規定により、被加熱材が担持さ
れる天面の温度と炉内温度との温度差(ΔT)が、40
℃以下に抑えられる。
In the skid button of the present invention, the temperature difference (ΔT) between the temperature of the top surface on which the material to be heated is supported and the temperature inside the furnace is 40
Can be kept below ℃.

また、耐熱合金製基体を被覆する複合材は、セラミック
粒子を特定量含有しており、かつその水平断面に占める
複合材の断面積比(S+/So)が一定範囲に限定され
ているので、高温域において被加熱材の衝撃に耐える靭
性と、圧縮荷重に耐える圧縮変形抵抗とを有し、また水
平断面の長さと幅の比(W/ L )が一定範囲に設定
されているので、基体とそれを被覆する複合材との熱膨
張係数の差異に起因する割れの懸念はない。
In addition, the composite material covering the heat-resistant alloy substrate contains a specific amount of ceramic particles, and the cross-sectional area ratio (S+/So) of the composite material in the horizontal cross section is limited to a certain range. It has the toughness to withstand the impact of the material to be heated in the high temperature range and the compressive deformation resistance to withstand the compressive load, and the horizontal section length to width ratio (W/L) is set within a certain range, so the base material There is no concern about cracking due to the difference in thermal expansion coefficient between the material and the composite material covering it.

〔発明の効果〕〔Effect of the invention〕

本発明のウオーキングビームを備えた加熱炉の通炉操業
においては、被加熱材のスキッドマークが効果的に防止
され、被加熱材を加熱ムラなく所定温度に焼土げること
ができ、その均一加熱効果により製品品質を向上安定化
することができる。
In the passing operation of the heating furnace equipped with the walking beam of the present invention, skid marks on the material to be heated can be effectively prevented, and the material to be heated can be baked to a predetermined temperature without uneven heating. The heating effect can improve and stabilize product quality.

また、そのスキッドボタンは、高温圧縮変形抵抗および
耐衝撃性にすぐれかつ熱応力による割れも生じにくいの
で、長期にわたる安定した使用が可能であり、スキッド
ボタンの取替頻度が減少することにより、加熱炉操業が
安定、効率化する。なお、スキッドボタンは従来のそれ
と同様に、溶接により直接スキッドパイプに取付けるこ
とができ、スキッドの組立・製作工程が複雑化すること
もない。
In addition, the skid button has excellent high-temperature compression deformation resistance and impact resistance, and is resistant to cracking due to thermal stress, so it can be used stably for a long period of time, and by reducing the frequency of replacing the skid button, Furnace operation becomes stable and efficient. In addition, the skid button can be directly attached to the skid pipe by welding, like conventional ones, and the skid assembly and manufacturing process will not be complicated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)は本発明のスキッドビームの例を示す径方
向断面図、(II)はその軸方向断面図、第2図は複合
材の高温靭性値とセラミック粒子含有率の関係を示すグ
ラフ、第3図は複合材の圧縮強度と温度の関係を示すグ
ラフ、第4図はスキッドボタンの圧縮変形速さと複合材
の断面積比の関係を示すグラフ、第5図はスキッドボタ
ンの熱応力と水平断面の幅/長さ比の関係を示すグラフ
、第6図はスキッドボタンの天面温度と炉内温度の差と
スキッドボタン高さの関係を示すグラフ、第7図はスキ
ッドボタンの天面温度と炉内温度の差とキャスタブルの
層厚の関係を示すグラフ、第8図(Nは従来のスキッド
ビームの径方向断面図、(n)はその軸方向断面図であ
る。 10ニスキッドパイプ、20ニスキツドボタン、21:
耐熱合金製基体、22  複合材、30:キャスタブル
Fig. 1 (1) is a radial cross-sectional view showing an example of the skid beam of the present invention, (II) is an axial cross-sectional view thereof, and Fig. 2 shows the relationship between the high-temperature toughness value and ceramic particle content of the composite material. Graph, Figure 3 is a graph showing the relationship between the compressive strength of the composite material and temperature, Figure 4 is a graph showing the relationship between the compressive deformation speed of the skid button and the cross-sectional area ratio of the composite material, and Figure 5 is the graph showing the relationship between the heat of the skid button. A graph showing the relationship between stress and the width/length ratio of the horizontal section. Figure 6 is a graph showing the relationship between the difference between the skid button's top surface temperature and the furnace temperature and the skid button height. Figure 7 is a graph showing the relationship between the skid button's height and the difference between the skid button's top surface temperature and furnace temperature. Graph showing the relationship between the difference between the top surface temperature and the furnace temperature and the castable layer thickness, Figure 8 (N is a radial cross-sectional view of a conventional skid beam, (n) is its axial cross-sectional view. Skid pipe, 20 varnished buttons, 21:
Base made of heat-resistant alloy, 22 Composite material, 30: Castable.

Claims (1)

【特許請求の範囲】[Claims] (1)ウォーキングビーム式加熱炉のスキッドパイプと
、該パイプの頂面に取付けられたスキッドボタンと、該
パイプの表面およびスキッドボタンの下部を被覆するキ
ャスタブルとからなるスキッドビームであって、 スキッドボタンは、耐熱合金製柱状基体の頂面および側
面を、耐熱合金マトリックスに30〜70重量%のセラ
ミック粒子が混在する複合組織を有する複合材で被覆し
た柱状体であり、 スキッドボタンの水平断面の長さと幅の比(W/L)が
0.34以上、および水平断面における複合材の占める
面積比〔複合材部分の面積(S_1)/断面の全面積(
S_0)×100〕が50%以上であり、スキッドボタ
ンの高さ(H)は、120mm以上であり、かつスキッ
ドパイプの表面とスキッドボタンの下部を被覆するキャ
スタブルの層厚(t_R)は、スキッドボタンの天頂面
の温度と炉内温度との差(ΔT)が40℃以下となる層
厚を有していることを特徴とするウォーキングビーム式
加熱炉のスキッドビーム。
(1) A skid beam consisting of a skid pipe of a walking beam heating furnace, a skid button attached to the top surface of the pipe, and a castable covering the surface of the pipe and the lower part of the skid button, the skid button is a columnar body in which the top and side surfaces of a columnar base made of a heat-resistant alloy are coated with a composite material having a composite structure in which 30 to 70% by weight of ceramic particles are mixed in a heat-resistant alloy matrix, and the horizontal cross-sectional length of the skid button is and the width ratio (W/L) is 0.34 or more, and the area ratio occupied by the composite material in the horizontal cross section [area of the composite material part (S_1)/total area of the cross section (
S_0)×100] is 50% or more, the height (H) of the skid button is 120 mm or more, and the layer thickness (t_R) of the castable covering the surface of the skid pipe and the lower part of the skid button is A skid beam for a walking beam heating furnace, characterized in that the skid beam has a layer thickness such that the difference (ΔT) between the temperature at the zenith surface of the button and the temperature inside the furnace is 40° C. or less.
JP61193195A 1986-06-10 1986-08-18 Walking beam type heating furnace skid beam Expired - Fee Related JPH0726142B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61193195A JPH0726142B2 (en) 1986-08-18 1986-08-18 Walking beam type heating furnace skid beam
KR870005674A KR880000601A (en) 1986-06-10 1987-06-04 Walking-Beam Furnace Skid-Beam
US07/059,971 US4747775A (en) 1986-06-10 1987-06-09 Skid beam for heating furnaces of walking beam type
CN87104699A CN1013281B (en) 1986-06-10 1987-06-09 Rail plate of walking beam heating furnace
AU74058/87A AU576696B2 (en) 1986-06-10 1987-06-09 Skid beam for heating furnaces of walking beam type
EP87108381A EP0249210A1 (en) 1986-06-10 1987-06-10 Skid beam for heating furnaces of walking beam type
CA000539328A CA1266774A (en) 1986-06-10 1987-06-10 Skid beam for heating furnaces of walking beam type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193195A JPH0726142B2 (en) 1986-08-18 1986-08-18 Walking beam type heating furnace skid beam

Publications (2)

Publication Number Publication Date
JPS6350415A true JPS6350415A (en) 1988-03-03
JPH0726142B2 JPH0726142B2 (en) 1995-03-22

Family

ID=16303884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193195A Expired - Fee Related JPH0726142B2 (en) 1986-06-10 1986-08-18 Walking beam type heating furnace skid beam

Country Status (1)

Country Link
JP (1) JPH0726142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437251U (en) * 1990-07-19 1992-03-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373209U (en) * 1976-11-19 1978-06-19
JPS5745259U (en) * 1980-08-28 1982-03-12
JPS5983960U (en) * 1982-11-25 1984-06-06 東京窯業株式会社 Furnace skid button
JPS6054295A (en) * 1983-09-05 1985-03-28 Kubota Ltd Build-up method by welding
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373209U (en) * 1976-11-19 1978-06-19
JPS5745259U (en) * 1980-08-28 1982-03-12
JPS5983960U (en) * 1982-11-25 1984-06-06 東京窯業株式会社 Furnace skid button
JPS6054295A (en) * 1983-09-05 1985-03-28 Kubota Ltd Build-up method by welding
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437251U (en) * 1990-07-19 1992-03-30

Also Published As

Publication number Publication date
JPH0726142B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US4747775A (en) Skid beam for heating furnaces of walking beam type
JPS6350415A (en) Skid beam for walking beam type heating furnace
JP2626734B2 (en) Hearth roll for silicon steel sheet heat treatment furnace
JPS6350414A (en) Skid beam for walking beam type heating furnace
JPH07103419B2 (en) Low skid mark Skid button for walking beam furnace
KR900009781Y1 (en) Skid beam for heating furnaces of walking beam type
CA2215447C (en) Heat-resistant alloy steel for hearth metal members of steel material heating furnaces
JPH01215923A (en) Heat resistant support member
JPS6333108A (en) Superior wear resistant roll at high temperature
JPH0565563B2 (en)
JPS61186190A (en) Composite filter rod for building up by welding
JPS6310114B2 (en)
JPS63391B2 (en)
JPH06264160A (en) Composite ceramic tube
JPH0586316B2 (en)
JPH0230365B2 (en)
JPH06304722A (en) Transfer roll
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPS6217118A (en) Skid button
JPS626794A (en) Composite filler rod for build-up welding
JPH04293748A (en) Heat resistant alloy for radiant tube
JPH0230366B2 (en) KANETSUROYOSUKITSUDOBOTANKOZO
JPH10226841A (en) Chromium base superalloy and hearth hardware of steel heating furnace
JPH069755B2 (en) Welding material for forming a structure in which carbide is crystallized on the entire surface of the weld metal
JPS6270511A (en) Support member for heating steel material in heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees