JPS6350363A - Manufacture of antiabrasive alumina sintered body - Google Patents

Manufacture of antiabrasive alumina sintered body

Info

Publication number
JPS6350363A
JPS6350363A JP61196070A JP19607086A JPS6350363A JP S6350363 A JPS6350363 A JP S6350363A JP 61196070 A JP61196070 A JP 61196070A JP 19607086 A JP19607086 A JP 19607086A JP S6350363 A JPS6350363 A JP S6350363A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
weight
alumina sintered
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61196070A
Other languages
Japanese (ja)
Inventor
桐原 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwao Jiki Kogyo Co Ltd
Original Assignee
Iwao Jiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwao Jiki Kogyo Co Ltd filed Critical Iwao Jiki Kogyo Co Ltd
Priority to JP61196070A priority Critical patent/JPS6350363A/en
Publication of JPS6350363A publication Critical patent/JPS6350363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 水頭は、粉砕用ボール、ビーズ、耐摩耗タイル等に使用
する耐摩耗性アルミナ焼結体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) Hydrohead relates to a method for producing wear-resistant alumina sintered bodies for use in grinding balls, beads, wear-resistant tiles, and the like.

(従来の技術) 従来より、耐摩耗性アルミナ焼結体としてはアルミナ9
9重量%程度の高$:i度のアルミナを使ったものより
、アルミナ90〜95重量%のアルミナ焼結体の方が耐
摩耗性に優れていることが知られている。
(Conventional technology) Conventionally, alumina 9 has been used as a wear-resistant alumina sintered body.
It is known that an alumina sintered body containing 90 to 95% by weight of alumina has better wear resistance than one using alumina with a high $:i degree of about 9% by weight.

(解決しようとする開題点) ところが、このようにアルミナにMgO,CaOなどの
物質を添加したアルミナ90〜95=x%のアルミナ焼
結体でも、耐摩耗試験の重量減による耐摩耗性ではせい
ぜい1.0%が限界でそれ以上の耐摩耗性は得られてい
ない。
(Opening problem to be solved) However, even with this alumina sintered body containing 90 to 95 = x% alumina in which substances such as MgO and CaO are added to alumina, the wear resistance due to weight reduction in the wear resistance test is at best 1.0% is the limit, and higher wear resistance has not been achieved.

また、このアルミナ90〜95重量%のアルミナ焼結体
は焼結温度が1500℃以上と高く、このため高アルミ
ナ質等の特殊討火物を用いた窯を必要とするなどの問題
があった。
In addition, the sintering temperature of this alumina sintered body containing 90 to 95% by weight of alumina is as high as 1,500°C or higher, which posed problems such as requiring a kiln using special refractory material such as high alumina. .

(開運を解決するための手段) 水皿は、これらの従来の耐摩耗性アルミナ焼結体の間屈
点を解消すべく研究の結果得られたものであり、高い耐
摩耗特性を得るため、平均粒径が1μm以下のアルミナ
80〜95重1%と粘土及びアルカリ金属あるいはアル
カリ土類金2珪=塩を5〜20重量%とを配合し、成形
して1500℃以下で焼成するようにしたものである。
(Means for solving the problem) The water tray was obtained as a result of research to eliminate the bending points of these conventional wear-resistant alumina sintered bodies, and in order to obtain high wear-resistant properties, 1% by weight of 80-95 alumina with an average particle size of 1 μm or less and 5-20% by weight of clay and alkali metal or alkaline earth gold 2 silica = salt, molded and fired at 1500°C or less. This is what I did.

本願に使用するアルミナとしては、平均粒径が1μm以
下でγ結晶が小さく反応焼結性に優れたものが好ましく
、アルミナの平均粒径が1μm以上となると耐摩耗性、
焼結性においては不利となる。また粘土としてはカオリ
ン、ハロイサイトなどの粘土鋸物を、アルカリ金属ある
いは、アルカリ土類金属の珪酸塩としては、Na2O,
に20、MgO,CaOなどを含む長石、タルク、珪灰
石なを用いる。なお、この粘土及びアルカリ金属、ある
いはアルカリ土類金属の珪酸塩の間には、粘土とアルカ
リ金属あるいはアルカリ土類金属の珪酸塩との比率が粘
土が増加するとアルミナ焼結体の強度は増すが焼結温度
が高くなり、減少すると焼結温度は低くなるものの強度
が低下する関係がある。
The alumina used in this application is preferably one with an average particle size of 1 μm or less, small γ crystals, and excellent reaction sintering properties. If the average particle size of alumina is 1 μm or more, wear resistance,
This is disadvantageous in terms of sinterability. In addition, clays such as kaolin and halloysite are used, and silicates of alkali metals or alkaline earth metals include Na2O,
20, feldspar, talc, and wollastonite containing MgO, CaO, etc. are used. Furthermore, between this clay and the silicate of alkali metal or alkaline earth metal, the strength of the alumina sintered body increases as the ratio of clay to the silicate of alkali metal or alkaline earth metal increases. There is a relationship that as the sintering temperature increases, and as it decreases, the sintering temperature decreases but the strength decreases.

(作用) 一般に、微細なアルミナは微粉となるほど反応性が窩く
、焼結時には急激に結晶成長が起りやすく、気孔が粒界
に排除さ九ないまま結晶内に閉じ込められ、結晶の大き
さも不揃いで、しかも倣密度のものしか得られないが、
本願はアルミナの平均粒径を1μm以下の微粉としてい
るにもかかわらず、このアルミナに珪酸塩、特にアルカ
リ金属あるいはアルカリ土類金属の珪酸塩を配合するこ
とにより、1500℃以下でアルミナ粒子の間に液相が
形成され、液相中に微細なアルミナ粒子が粒成長するこ
となしに分散し、ii密な焼結体を得るわけである。
(Function) In general, fine alumina becomes more reactive as it becomes finer powder, and during sintering, crystal growth tends to occur rapidly, pores are trapped within the crystal without being removed to the grain boundaries, and the size of the crystals becomes irregular. However, only the pattern density can be obtained,
Although the present application uses alumina as a fine powder with an average particle size of 1 μm or less, by blending a silicate, especially an alkali metal or alkaline earth metal silicate, with this alumina, it is possible to create a bond between alumina particles at 1500°C or less. A liquid phase is formed in the liquid phase, and fine alumina particles are dispersed in the liquid phase without grain growth, thereby obtaining a dense sintered body.

このようにしてできた焼結体は珪酸塩より生成するマト
リックス中に微訓でしかも硬度の高いアルミナ結晶を分
散するため、たとえマトリックスが支持力を失ってアル
ミナ結晶が離脱しても離脱した結晶が小さく、摩耗の進
行が非常し二遅くなり、結局耐摩耗性が高くなるわけで
ある。
The sintered body made in this way disperses highly hard alumina crystals in the matrix formed from silicate, so even if the matrix loses its supporting force and the alumina crystals separate, the separated crystals The wear resistance is small, and the progress of wear is greatly slowed down, resulting in higher wear resistance.

(実施例) 以下木工の実施例を述べる。(Example) Examples of woodworking will be described below.

実施例1 アルミナ(平均粒径0.5μm)90重量%タルク  
     3 〃 珪灰石       21I カオリン           5  〃を配合、これ
に水及び分散剤を加湿式で混合し。
Example 1 Alumina (average particle size 0.5 μm) 90% by weight talc
3 wollastonite 21I kaolin 5 was mixed with water and a dispersant in a humidified manner.

スプレードライヤーで粒径約50μmの粒子に造粒する
。この粒子を直径20mmのボールにC工P成形し。最
高温度1450℃で2時間焼成する。
Particles with a particle size of approximately 50 μm are granulated using a spray dryer. The particles were molded into a ball with a diameter of 20 mm. Bake at a maximum temperature of 1450°C for 2 hours.

このボールの耐摩耗性試験の結果は重量減が0゜02%
であった。
The results of the abrasion resistance test for this ball showed that the weight reduction was 0.02%.
Met.

実施例2 アルミナ(平均粒径0.5μm)82重量%長   石
                8   〃珪灰石 
      3 ノt タルク        2u カオリン           5  〃を実施例1に
同様にして成形し、最高温度1300℃で焼結した。得
られたボールの耐摩耗性は0゜03%であった。
Example 2 Alumina (average particle size 0.5 μm) 82% by weight long stone 8 wollastonite
3 t talc 2 u kaolin 5 were molded in the same manner as in Example 1, and sintered at a maximum temperature of 1300°C. The abrasion resistance of the resulting ball was 0.03%.

比較例1 アルミナ(平均粒径2μm)  95重重量タルク  
      3  u 珪灰石       2 〃 を実施例1に同様にして成形し、最高温度1550℃で
焼結した。得られたボールの耐摩耗性は2゜38%であ
った。
Comparative example 1 Alumina (average particle size 2 μm) 95 weight talc
3 u Wollastonite 2 was molded in the same manner as in Example 1 and sintered at a maximum temperature of 1550°C. The abrasion resistance of the resulting ball was 2.38%.

比較例2 アルミナ(平均粒径0.5μm)100重量96をスプ
レードライヤーで造粒、実施例1と同様に成形し、最高
温度1550℃で焼結した。得られたボールの耐摩耗性
は3.17%であった。
Comparative Example 2 Alumina (average particle size: 0.5 μm) 100 weight 96 pieces was granulated using a spray dryer, molded in the same manner as in Example 1, and sintered at a maximum temperature of 1550°C. The abrasion resistance of the obtained ball was 3.17%.

なお1以上の討摩耗性試談は、ボール1kgを水1Ωと
ともに2Qのアルミナポットに入れ、1100ppの回
転数で24時間回した後の重量減少率を測った。
In addition, one or more wear tests were carried out by placing 1 kg of balls in a 2Q alumina pot with 1 Ω of water, and measuring the weight loss rate after rotating at a rotation speed of 1100 pp for 24 hours.

(効果) 本願は平均粒径が小さく、シかもアルミナ粒界のマトリ
ックスが粘土及びアルカリ金属あるいはアルカリ土類金
属の珪飲塩によるガラスで作られているため低温で繊密
な焼結体を得ることが8来、アルミナの結晶をせいぜい
2μmにおさえながら耐摩耗性に優れたアルミナ焼結体
を得ることができる。
(Effects) The present invention has a small average grain size, and the matrix of the alumina grain boundaries is made of glass made of clay and silicate salt of alkali metals or alkaline earth metals, so a delicate sintered body can be obtained at low temperatures. For this reason, it is possible to obtain an alumina sintered body with excellent wear resistance while suppressing the alumina crystal size to at most 2 μm.

また、アルミナ焼結体の焼成温度が1500℃以下でよ
いため、特殊な耐火物などを使用した窯を使用する必要
もなく、焼成温度も似温であるため但コストで焼詰体を
得ることができるなどの効果がある。
In addition, since the firing temperature of the alumina sintered body is 1500℃ or less, there is no need to use a kiln using special refractories, and the firing temperature is similar, so it is possible to obtain a sintered body at a lower cost. There are effects such as being able to.

Claims (1)

【特許請求の範囲】[Claims]  平均粒径1μm以下のアルミナ80〜95重量%に粘
土及びアルカリ金属あるいはアルカリ土類金属の珪酸塩
を5〜20重量%添加し、成形後、1500℃以下で焼
成することを特徴とする耐摩耗性アルミナ焼結体の製造
方法
A wear-resistant product characterized by adding 5-20% by weight of clay and silicate of alkali metal or alkaline earth metal to 80-95% by weight of alumina with an average particle size of 1 μm or less, molding, and then firing at 1500°C or less. Manufacturing method of alumina sintered body
JP61196070A 1986-08-20 1986-08-20 Manufacture of antiabrasive alumina sintered body Pending JPS6350363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196070A JPS6350363A (en) 1986-08-20 1986-08-20 Manufacture of antiabrasive alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196070A JPS6350363A (en) 1986-08-20 1986-08-20 Manufacture of antiabrasive alumina sintered body

Publications (1)

Publication Number Publication Date
JPS6350363A true JPS6350363A (en) 1988-03-03

Family

ID=16351697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196070A Pending JPS6350363A (en) 1986-08-20 1986-08-20 Manufacture of antiabrasive alumina sintered body

Country Status (1)

Country Link
JP (1) JPS6350363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148693A (en) * 1990-02-02 1991-06-25 Ricoh Co Ltd Liquid crystal display
JPH03115635U (en) * 1990-03-12 1991-11-29
JPH04209751A (en) * 1990-11-30 1992-07-31 Toto Ltd Alumina-based sintered compact and its production
JP2004292230A (en) * 2003-03-26 2004-10-21 Kyocera Corp Wear resistant alumina sintered compact and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148693A (en) * 1990-02-02 1991-06-25 Ricoh Co Ltd Liquid crystal display
JPH03115635U (en) * 1990-03-12 1991-11-29
JPH04209751A (en) * 1990-11-30 1992-07-31 Toto Ltd Alumina-based sintered compact and its production
JP2004292230A (en) * 2003-03-26 2004-10-21 Kyocera Corp Wear resistant alumina sintered compact and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0785175B1 (en) Synthetic clay for ceramics and process for preparing the same
US4308067A (en) Unshaped refractory compositions useful as jointing and moulding compositions
US4061501A (en) Refractory linings
CA1228372A (en) Process for producing a zirconia refractory body and a product produced by the process
US4093470A (en) Alumina refractories
JPS6334075A (en) Precision polishing tool for material to be worked consisting of metal, glass, ceramics, etc.
JPS6350363A (en) Manufacture of antiabrasive alumina sintered body
JPH0413313B2 (en)
JPH0240277B2 (en)
US3979214A (en) Sintered alumina body
JP2000335978A (en) Castable refractory material
JPH0747507B2 (en) Nitride-bonded SiC refractory
CN113896421A (en) Wear-resistant digital ceramic glaze
JP3142402B2 (en) SiC refractory
JPH0440095B2 (en)
JPH02180747A (en) Wear resistant alumina ceramics and production thereof
JPS6090867A (en) Improved alkali-resistant refractory composition
JP3368960B2 (en) SiC refractory
US3135616A (en) Refractory x
JPH01192761A (en) Ingot azs refractory composition
US3223541A (en) Production of refractory silica articles
JP2607217B2 (en) Ceramics with fine voids
JPS63156061A (en) Cordierite base refractories
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JPS591233B2 (en) High zircon vibration molding material