JPS6350165B2 - - Google Patents

Info

Publication number
JPS6350165B2
JPS6350165B2 JP55054543A JP5454380A JPS6350165B2 JP S6350165 B2 JPS6350165 B2 JP S6350165B2 JP 55054543 A JP55054543 A JP 55054543A JP 5454380 A JP5454380 A JP 5454380A JP S6350165 B2 JPS6350165 B2 JP S6350165B2
Authority
JP
Japan
Prior art keywords
microwave
radiator
tire
wire
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55054543A
Other languages
Japanese (ja)
Other versions
JPS56150531A (en
Inventor
Shinji Okakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5454380A priority Critical patent/JPS56150531A/en
Publication of JPS56150531A publication Critical patent/JPS56150531A/en
Publication of JPS6350165B2 publication Critical patent/JPS6350165B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は強度を増すため内部に複数のスチール
ワイヤを埋設してなる例えば大形ゴムタイヤのよ
うな樹脂体をマイクロ波により加熱する方法、お
よびこの方法を実施するのに用いるマイクロ波加
熱装置に関する。 周知のように大形ゴムタイヤはその内部に直径
数mmのスチールワイヤを複数本平行に並べて円周
状に埋設し、これを加硫して製造される。この加
硫に先だつて予熱をおこなうが、この熱源として
マイクロ波電力を用いると、マイクロ波の内部加
熱現象のため比較的均一に所望の温度に加熱しう
る利点がある。ところでこの種のゴムタイヤに外
周からマイクロ波を照射すると第1図イ,ロに曲
線Aで示すようにタイヤの外側表面部a近傍に比
べて内側表面部b近傍が著しく高温になつてしま
い、所望の均一加熱が得られない場合がある。こ
の原因は外側に比べて内側の方が樹脂の密度が相
対的に高い場合や、内側にナイロン質のような高
周波損失係数が相対的に大きい材料が充填されて
いる場合が多いためと、外側表面部の熱放散現象
によるためである。さらに、タイヤの内部にスチ
ールワイヤが埋設してある場合は、このワイヤに
よつてマイクロ波の一部が反射されて同図に曲線
Bで示すようにワイヤ11の位置から逆に内側表
面にわたつて急激に温度の低い温度分布となつて
しまい均一な温度分布になりにくい場合がある。 本発明はスチールワイヤが埋設されたこの種ゴ
ムタイヤのような樹脂体をマイクロ波照射により
加熱するにあたつて、樹脂体の肉厚方向にわたつ
て所望の均一な温度分布で加熱しうる方法と、こ
の方法を容易に実施しうる装置を提供するもので
ある。 以下図面を参照してその実施例を説明する。な
お同一部分は同一符号であらわす。また以下に示
す実施例は樹脂体としてゴムタイヤの場合を示す
が、本発明はゴムタイヤに限らず内部に平行して
複数本スチールワイヤをもつ樹脂構造体に広く適
用しうる。 第2図および第3図に示す装置は次の構造を有
してなる。導電体板で形成されたマイクロ波オー
ブン12は一面に図示しないドアを有し、天井か
ら被加熱物であるゴムタイヤ13をつるして矢印
14方向に回転可能なハンガー15を有する。ゴ
ムタイヤ13は第3図に一部を拡大して示すよう
に例えば外側表面部付近がゴム質で、肉厚方向の
ほぼ中央部にタイヤの円周に沿つて複数本のスチ
ールワイヤ11が平行に存在し、さらにその内側
がナイロン質のコード入りゴムでつくられてい
る。このタイヤはハンガー15の中を通して送ら
れる高圧蒸気でふくらまされるゴム袋16により
所定形状にふくらまされる。さて、このタイヤ
3の外周に近設して円周上の4箇所にホーン形の
矩形導波管マイクロ波輻射器17(図ではその1
つを示している)が設けられている。この輻射器
17は矩形導波管18に接続されており、オーブ
ン12の外に置かれたマイクロ波発振器19に電
気的に接続されている。これら矩形導波管18と
輻射器17とは適当な位置でタイヤに対して矢印
14のように少くとも90度だけ回転可能となつて
いる。この回転操作は円形導波管による回転結合
器20により機械的な遠隔操作で行いうるように
すればよい。マイクロ波発振器19は例えば
2450MHz帯の発振周波数をもつマグネトロンのよ
うなものを用いればよい。 この装置を用いて加熱するには、まずオーブン
内にゴムタイヤを入れハンガーにより所定位置に
つるし、矢印14のように回転させる。オーブン
を外部にマイクロ波が漏洩しないよう閉じてマイ
クロ波発振器を作動させ、輻射器からマイクロ波
をタイヤに向けて照射する。このとき、導波管お
よび輻射器を第4図に示す関係に設定する。すな
わちゴムタイヤ内のスチールワイヤ11の長手方
向に対して矩形導波管18および輻射器17をそ
の長辺中心線Cが角度θだけ傾くように位置させ
る。 矩形導波管18および輻射器17にはTE01モ
ードのマイクロ波電力が供給されており、第5図
にも示すように電界Eは長辺すなわち磁界面壁h
に直角の方向成分のみを有する。したがつて輻射
器に近接して置かれたタイヤ内にそのままの偏波
面のままマイクロ波電力が伝播される。通常、ス
チールワイヤ11の間隔tがマイクロ波の波長の
1/2よりも充分小さい場合には、ワイヤの長手方
向に平行な電界成分はワイヤの位置で反射され
る。一方ワイヤに垂直な電界成分はワイヤの位置
を通過する。このような現象から理解できるよう
に本発明においてワイヤの長手方向に対して斜め
に位置させられた輻射器から照射されるマイクロ
波電力は第6図に示すように電界Eがワイヤに平
行な電界成分E1と垂直な成分E2の合成とみるこ
とができ、平行な成分E1はこのワイヤ位置で反
射されてタイヤの外側表面部近傍でタイヤに再び
吸収されてこの部分の加熱に寄与し、またワイヤ
に垂直な成分E2はワイヤの位置を通過してタイ
ヤの内側に深く浸入し内側部分の加熱に寄与す
る。その結果本発明の方法により第1図ロに実線
曲線Dで示すようにタイヤの外側からマイクロ波
を照射して加熱した場合、タイヤの肉厚方向にわ
たつて中央部が最大であるがほぼ均一な温度分布
にすることができる。この分布の程度はワイヤの
間隔tやマイクロ波波長で異なるがこれらが定ま
れば傾斜角度θの調整で容易に制御できる。 なお、ゴムタイヤと輻射器とを著しく離すと、
マイクロ波電力の大部分は直接タイヤに吸収され
ずにオーブン内壁で乱反射して偏波面が一定しな
い成分が増えてしまうのが好ましくない。このよ
うな不都合をなくすには矩形導波管の開口先端か
らゴムタイヤ外表面までの距離を約10波長以内に
するとともに好ましくは上記実施例の如くさらに
ホーン形の輻射器で偏波面の乱れと電波の不所望
な広がりを抑制するように構成する。ただしホー
ン形は不可欠ではなく、矩形導波管の開口端をそ
のまま輻射器として用いてもよい。 以上のように本発明によれば、導電体であるス
チールワイヤを埋設した樹脂体の肉厚方向にわた
る所望の均一加熱を容易に達成することができ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for heating a resin body, such as a large rubber tire, which has a plurality of steel wires embedded therein to increase its strength, and a method for carrying out this method. The present invention relates to a microwave heating device used. As is well known, large rubber tires are manufactured by embedding a plurality of steel wires with a diameter of several millimeters in parallel in a circumferential shape inside the tire and vulcanizing the wires. Prior to this vulcanization, preheating is performed, and when microwave power is used as the heat source, there is an advantage that heating can be done relatively uniformly to a desired temperature due to the internal heating phenomenon of microwaves. By the way, when microwaves are irradiated from the outer circumference of this type of rubber tire, as shown by curves A and B in FIG. Uniform heating may not be obtained. This is because the density of the resin is relatively higher on the inside than on the outside, or the inside is often filled with a material such as nylon that has a relatively large high-frequency loss coefficient. This is due to the heat dissipation phenomenon at the surface. Furthermore, if a steel wire is embedded inside the tire, a portion of the microwave is reflected by this wire and travels from the position of wire 11 back to the inner surface, as shown by curve B in the figure. As a result, the temperature distribution suddenly becomes low, making it difficult to achieve a uniform temperature distribution. The present invention provides a method for heating a resin body such as this type of rubber tire in which steel wires are embedded by microwave irradiation, with a desired uniform temperature distribution across the thickness of the resin body. The present invention provides an apparatus that can easily carry out this method. Examples thereof will be described below with reference to the drawings. Note that the same parts are represented by the same symbols. Furthermore, although the embodiments shown below show a case where a rubber tire is used as the resin body, the present invention is not limited to rubber tires, but can be widely applied to resin structures having a plurality of parallel steel wires inside. The apparatus shown in FIGS. 2 and 3 has the following structure. A microwave oven 12 made of a conductive plate has a door (not shown) on one side, and a hanger 15 that hangs a rubber tire 13 as an object to be heated from the ceiling and is rotatable in the direction of an arrow 14. As shown in a partially enlarged view of FIG. 3, the rubber tire 13 has, for example, rubber near the outer surface, and a plurality of steel strips along the circumference of the tire approximately at the center in the thickness direction. Wires 11 are arranged in parallel, and the inside thereof is made of rubber with a nylon cord. This tire is inflated into a predetermined shape by a rubber bag 16 which is inflated with high pressure steam fed through a hanger 15. Now, this tire 1
Horn-shaped rectangular waveguide microwave radiators 17 (part 1 in the figure) are installed near the outer periphery of 3 and placed at four locations on the circumference.
(one shown) is provided. This radiator 17 is connected to a rectangular waveguide 18 and electrically connected to a microwave oscillator 19 placed outside the oven 12. These rectangular waveguide 18 and radiator 17 are rotatable at appropriate positions relative to the tire by at least 90 degrees as shown by arrow 14. This rotational operation may be performed by mechanical remote control using the circular waveguide rotary coupler 20. The microwave oscillator 19 is, for example,
Something like a magnetron with an oscillation frequency in the 2450MHz band can be used. To heat using this device, first place a rubber tire in an oven, hang it in a predetermined position with a hanger, and rotate it as shown by arrow 14. The oven is closed to prevent microwaves from leaking outside, the microwave oscillator is activated, and the radiator irradiates the tires with microwaves. At this time, the waveguide and radiator are set in the relationship shown in FIG. That is, the rectangular waveguide 18 and the radiator 17 are positioned such that their long side center line C is inclined by an angle θ with respect to the longitudinal direction of the steel wire 11 inside the rubber tire. TE01 mode microwave power is supplied to the rectangular waveguide 18 and the radiator 17, and as shown in FIG.
It has only a directional component perpendicular to . Therefore, the microwave power is propagated within the tire placed close to the radiator with its plane of polarization unchanged. Normally, when the distance t between the steel wires 11 is sufficiently smaller than 1/2 of the wavelength of the microwave, the electric field component parallel to the longitudinal direction of the wire is reflected at the position of the wire. On the other hand, the electric field component perpendicular to the wire passes through the position of the wire. As can be understood from this phenomenon, in the present invention, the microwave power radiated from the radiator located obliquely with respect to the longitudinal direction of the wire is such that the electric field E is parallel to the wire as shown in Figure 6. It can be seen as a combination of component E 1 and perpendicular component E 2 , and the parallel component E 1 is reflected at this wire position and absorbed by the tire again near the outer surface of the tire, contributing to the heating of this area. , and the component E 2 perpendicular to the wire passes through the wire position and penetrates deeply into the inside of the tire, contributing to heating of the inner part. As a result, when the method of the present invention is used to heat the tire by irradiating microwaves from the outside as shown by the solid line curve D in Figure 1B, the temperature is almost uniform throughout the thickness direction of the tire, although the maximum is at the center. temperature distribution. The degree of this distribution varies depending on the wire spacing t and the microwave wavelength, but once these are determined, it can be easily controlled by adjusting the inclination angle θ. Furthermore, if the rubber tires and the radiator are separated significantly,
It is undesirable that most of the microwave power is not directly absorbed by the tire, but is diffusely reflected by the inner wall of the oven, increasing the amount of components whose polarization planes are not constant. To eliminate such inconveniences, the distance from the opening end of the rectangular waveguide to the outer surface of the rubber tire should be within about 10 wavelengths, and preferably a horn-shaped radiator as in the above embodiment may be used to prevent disturbances in the polarization plane and radio waves. The structure is configured to suppress the undesirable spread of. However, the horn shape is not essential, and the open end of the rectangular waveguide may be used as it is as a radiator. As described above, according to the present invention, it is possible to easily achieve desired uniform heating over the thickness direction of a resin body in which a conductive steel wire is embedded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イはゴムタイヤの断面図、第1図ロは温
度分布図、第2図は本発明の実施例を示す概略
図、第3図はその要部拡大図、第4図はスチール
ワイヤと輻射器との位置関係を示す図、第5図は
矩形導波管内の電界成分を示す図、第6図はスチ
ールワイヤと電界成分との関係を示す図である。 11…スチールワイヤ、12…オーブン、13
…ゴムタイヤ、15…ハンガー(被加熱物設置手
段)、17,18…矩形導波管(輻射器)、19…
マイクロ波発振器、E…電界方向。
Figure 1A is a sectional view of a rubber tire, Figure 1B is a temperature distribution diagram, Figure 2 is a schematic diagram showing an embodiment of the present invention, Figure 3 is an enlarged view of its main parts, and Figure 4 is a steel wire and FIG. 5 is a diagram showing the positional relationship with the radiator, FIG. 5 is a diagram showing the electric field component within the rectangular waveguide, and FIG. 6 is a diagram showing the relationship between the steel wire and the electric field component. 11...Steel wire, 12...Oven, 13
...Rubber tire, 15...Hanger (heated object installation means), 17, 18...Rectangular waveguide (radiator), 19...
Microwave oscillator, E... electric field direction.

Claims (1)

【特許請求の範囲】 1 平行して配列された複数のスチールワイヤを
内部に埋設してなる樹脂体に、マイクロ波電力を
照射して加熱する方法において、 上記スチールワイヤの上記樹脂体への埋設方向
に対して、上記マイクロ波の電界方向が斜めにな
るようにして照射することを特徴とするマイクロ
波加熱方法。 2 マイクロ波オーブンと、このオーブン内に被
加熱物を所定位置に設置する手段と、この被加熱
物設置手段に近接して設けられ被加熱物にマイク
ロ波電力を照射する矩形導波管形輻射器とを具備
し、上記輻射器をその長手方向を軸にして開口面
を回転可能に構成してなることを特徴とするマイ
クロ波加熱装置。
[Claims] 1. A method of heating a resin body in which a plurality of steel wires arranged in parallel are buried by irradiating microwave power, the method comprising: embedding the steel wires in the resin body; A microwave heating method characterized in that irradiation is performed such that the direction of the electric field of the microwave is oblique with respect to the direction. 2. A microwave oven, a means for installing an object to be heated at a predetermined position within the oven, and a rectangular waveguide type radiation radiator installed close to the means for installing an object to be heated and irradiating the object to be heated with microwave power. What is claimed is: 1. A microwave heating device comprising: a radiator, the opening surface of the radiator being rotatable around its longitudinal direction;
JP5454380A 1980-04-24 1980-04-24 Microwave heating method and device used for said method Granted JPS56150531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5454380A JPS56150531A (en) 1980-04-24 1980-04-24 Microwave heating method and device used for said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5454380A JPS56150531A (en) 1980-04-24 1980-04-24 Microwave heating method and device used for said method

Publications (2)

Publication Number Publication Date
JPS56150531A JPS56150531A (en) 1981-11-21
JPS6350165B2 true JPS6350165B2 (en) 1988-10-07

Family

ID=12973586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5454380A Granted JPS56150531A (en) 1980-04-24 1980-04-24 Microwave heating method and device used for said method

Country Status (1)

Country Link
JP (1) JPS56150531A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824431A (en) * 1981-08-06 1983-02-14 Sumitomo Rubber Ind Ltd Method for preheating elastomer article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016782A (en) * 1973-06-15 1975-02-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016782A (en) * 1973-06-15 1975-02-21

Also Published As

Publication number Publication date
JPS56150531A (en) 1981-11-21

Similar Documents

Publication Publication Date Title
CA1145411A (en) Microwave cavity feed system
KR0185774B1 (en) Microwave oven including antenna for radiating microwave
JPH0839576A (en) Apparatus and method for producing
JPS6350165B2 (en)
JP2009068734A5 (en)
JPS587599Y2 (en) density range
JPS6337472B2 (en)
JPH01216522A (en) Heat treating method for semiconductor substrate and heat treating apparatus used for this method
KR20100082653A (en) Leaky coaxial cable capable for adjusting resonace frequency and manufacturing thereof
JP2009277559A (en) Heating cooker
JPH0317885Y2 (en)
JPS5915030Y2 (en) High frequency heating device
JPS5915031Y2 (en) High frequency heating device
JPH08148273A (en) Microwave oven
JPS5915032Y2 (en) High frequency heating device
JP3416299B2 (en) microwave
JPH04345788A (en) High frequency heating device
JPH0151270B2 (en)
JPS6250953B2 (en)
JPS607037Y2 (en) High frequency heating device
JP2970188B2 (en) High frequency heating equipment
JP2016052726A (en) Method for heating green tire, device therefor, and method for producing tire
JPS648915B2 (en)
JPH08124670A (en) High frequency heating device
JP3005393B2 (en) microwave