JPS63501372A - Method for determining the shape of side-entry turbine blades that can be designed using scale models - Google Patents

Method for determining the shape of side-entry turbine blades that can be designed using scale models

Info

Publication number
JPS63501372A
JPS63501372A JP50447686A JP50447686A JPS63501372A JP S63501372 A JPS63501372 A JP S63501372A JP 50447686 A JP50447686 A JP 50447686A JP 50447686 A JP50447686 A JP 50447686A JP S63501372 A JPS63501372 A JP S63501372A
Authority
JP
Japan
Prior art keywords
root
tower
blade
wing
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50447686A
Other languages
Japanese (ja)
Inventor
アンドリュウス,ロバート・ピー
Original Assignee
ウエスチングハウス・エレクトリック・コ−ポレ−ション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウエスチングハウス・エレクトリック・コ−ポレ−ション filed Critical ウエスチングハウス・エレクトリック・コ−ポレ−ション
Publication of JPS63501372A publication Critical patent/JPS63501372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 東更皇皇塁 比例尺により設計可能なサイドエントリー型タービン翼の製法 関連出願 本願は1985年7月30日付出願第067780.387号の一部継続出願つ ェスチングハウス・エレクトリック・コーポレーションと国防省の間に結ばれた 契約第N00024−79−C−4175号に基づきアメリカ合衆国政府は本発 明に対し権利を有するものである。[Detailed description of the invention] Tosho Emperor's Fortress Manufacturing method for side-entry turbine blades that can be designed using proportional scales Related applications This application is a continuation in part of Application No. 067780.387 dated July 30, 1985. A contract between Eschinghouse Electric Corporation and the Department of Defense. Pursuant to Contract No. N00024-79-C-4175, the United States Government have the right to

及豆Ω貨遣 本発明は蒸気タービンの翼、更に詳細にはサイドエントリー型タービン翼の根元 、溝及び塔状部分の製法に係る。サイドエントリー型タービン翼はクリスマスツ リー形の根元を有し、タービンの回転子を形成するディスクに前記根元に対応す るように形成された溝にその根元が嵌着される0gの遠心負荷及び曲げ負荷によ る応力集中をできる限り軽減するのに寄与する特異な幾何学形状がすでに開発さ れており、サイズの成る範囲にわたり比例尺による設計が可能である。Oimu Ω money transfer The present invention relates to the roots of steam turbine blades, and more particularly to the roots of side-entry turbine blades. , relating to the method of manufacturing grooves and tower-shaped parts. Side entry type turbine blades are Christmas tree The disk forming the rotor of the turbine has a Lee-shaped root and corresponds to said root. Under centrifugal load and bending load of 0g, the base is fitted into the groove formed so as to Specific geometries have already been developed that contribute to reducing stress concentrations as much as possible. It is possible to design on a proportional scale over a range of sizes.

及吸旦豊ヌ それぞれの翼の根元及び塔状部分における応力集中を均等化することのできる本 発明によるタービン翼の根元、塔状部分及び溝の製法は、同じ形状を呈するよう に翼の根元、溝及び塔状部分を形成し、翼と塔状部分との間の唯一の接触域とな る傾斜面を有するように翼の根元及び塔状部分を形成し、翼の根元、溝及び塔状 部分の比例寸法モデルを作成し、前記モデルにおけるすべての寸法に定数を乗算 することによりこの寸法モデルから任意のサイズの翼の根元、塔状部分及び溝を 比例尺により設計製造できるようにすることを特徴とする。Toyonu Osudan A book that can equalize the stress concentration at the root and tower part of each wing The method of manufacturing the roots, towers and grooves of the turbine blade according to the invention is such that they have the same shape. forming the root, groove and tower part of the blade, and being the only contact area between the blade and the tower part. The root and tower-like parts of the blade are formed so as to have sloped surfaces. Create a proportional dimension model of the part and multiply all dimensions in said model by a constant From this dimensional model, the root, tower, and groove of any size can be created by It is characterized by being able to be designed and manufactured using a proportional scale.

区国立囚皇n旦j 本発明の目的及び利点は添付図面に沿った以下の詳細な説明からさらに明らかに なるであろう。添付図面中:第1図は本発明に従って製造されたタービン翼の根 元、溝及び塔状部分を示すタービン・ディスクの部分断面図である。ward national prisoner ndanj The objects and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. It will be. In the accompanying drawings: FIG. 1 shows the roots of a turbine blade manufactured according to the invention. 1 is a partial cross-sectional view of a turbine disk showing the base, grooves and tower section; FIG.

第2図は本発明に従って製造された翼の根元及び塔状部分の比例寸法モデルの一 部を示す寸法図である。FIG. 2 is a proportional dimensional model of the root and tower portion of a blade manufactured according to the present invention. FIG.

干ましい 流側のフ日 第1図を詳細に参照して、タービン翼の根元3と、翼溝7を有する回転子ディス ク5の一部とを示しである。翼の根元3はその両側に1つづつ舌状部9.11を 有する。舌状部9.11はそれぞれ傾斜面13.15を有する。翼の根元3と同 じ形状の満7がこれも翼の根元3と同じ形状の塔状部分17を形成する。塔状部 分17はその両側に1つづつ舌状部19.21を有し、舌状部19.21は傾斜 面13.15と係合する傾斜面23.25をそれぞれ有する。この保合部だけが 翼の根元3と塔状部分17の接触域である。A dry day on the river side With detailed reference to FIG. This shows a part of Section 5. The wing root 3 has tongues 9.11, one on each side. have The tongues 9.11 each have an inclined surface 13.15. Same as wing root 3 A full 7 of the same shape forms a tower-shaped portion 17 which also has the same shape as the root 3 of the blade. tower-shaped part The portion 17 has tongues 19.21, one on each side thereof, the tongues 19.21 being inclined. Each has an inclined surface 23.25 that engages surface 13.15. Only this retention part This is the contact area between the blade root 3 and the tower-shaped portion 17.

翼の根元3、溝7及び塔状部分17は遠心負荷及び曲げ負荷に起因する応力集中 をできるだけ軽減するのに寄与するように設計された同じ形状を呈する。この形 状はサイズの成る範囲にわたって比例尺による設計が可能である。ここに述べる 2つの舌状部を有する比例尺により設計可能なサイドエントリー型タービン翼の 根元の幾何学的形状は遠心負荷及び曲げ負荷に起因する応力集中を既存の設計に 比較して著しく軽減する。重要な改良点は傾斜面と隣接する内径と外径の比を従 来の設計では1であったのに対し、2としたことにある。このように比を設定し だから、すべての応力集中点における応力を均等化することによって材料をより 有効に利用することができる。有限要素応力分析の結果、最大応力を遠心負荷に ついては28%、曲げ負荷については30%軽減できることが判明した。The blade root 3, groove 7 and tower portion 17 are subject to stress concentration due to centrifugal and bending loads. exhibiting the same shape designed to help reduce as much as possible. this shape The shapes can be designed to scale over a range of sizes. stated here A side-entry turbine blade that can be designed using a proportional scale with two tongues. The root geometry reduces stress concentrations caused by centrifugal and bending loads to existing designs. Significant reduction in comparison. An important improvement is to adjust the ratio of the inner and outer diameters adjacent to the sloped surface. The reason is that it is set to 2, whereas in the previous design it was set to 1. Set the ratio like this So by equalizing the stress at all stress concentration points the material becomes more It can be used effectively. As a result of finite element stress analysis, the maximum stress is determined by centrifugal load. It was found that the bending load could be reduced by 28% and the bending load by 30%.

サイドエントリー型タービン翼の根元3、溝7及び塔状部分17の製法はすべて が同じ形状を呈するように翼の根元3、溝7及び塔状部分17を形成し、それぞ れが両側に1つづつ舌状部9.11及び19.21を備えるように翼の根元3及 び塔状部分17を形成し、各舌状部の傾斜面13.15及び23.25だけが翼 の根元3と塔状部分17との接触域となり、翼の根元中心線と直交する線に対し てほぼ25°の角度に傾斜するようにし、翼の根元及び塔状部分内のすべての応 力集中点における応力が均等となる翼の根元及び塔状部分を形成するための、第 2図に示す比例寸法モデルを作成し、翼の根元傾斜接触面の中心間半径方向距離 を一定値Cとして設定し、半径方向外側傾斜接触面の中心を根元中心軸から0. 6203Cに設定し、半径方向内側接触面の中心を根元中心軸から0.3797 Gに設定し、半径方向内側傾斜面の中心を翼の根元の半径方向内端から0.49 90Cに設定し、その他の寸法を第2図に示す数の0倍に設定することにより、 1組の翼の根元、溝及び塔状部分を製造し、翼の根元の中心線に対して直角に測 った傾斜面中心部間の距離に等しく、かつ半径方向内側傾斜面の中心部位置にお ける塔状部分中心線と翼の根元の中心線との間の距離にほぼ等しい定数Cを変え ることによって翼の根元及び塔状部分を比例尺により拡大または縮小しても各組 の翼の根元及び塔状部分内のすべての応力集中点が均等化されるようにする段階 から成る。The manufacturing methods for the root 3, groove 7, and tower-shaped portion 17 of the side entry type turbine blade are all The blade root 3, groove 7, and tower-shaped portion 17 are formed so that they have the same shape, and The wing roots 3 and 19.21 are arranged so that they are provided with tongues 9.11 and 19.21, one on each side. and a tower portion 17, with only the sloped surfaces 13.15 and 23.25 of each tongue forming a wing. This is the contact area between the root 3 and the tower-shaped part 17, and the line perpendicular to the blade root center line at an angle of approximately 25°, ensuring that all stress in the root and tower section of the blade is The first step is to form the root and tower-shaped parts of the blade, where the stress at the point of force concentration is equalized. Create the proportional dimension model shown in Figure 2, and calculate the radial distance between the centers of the blade root inclined contact surface. is set as a constant value C, and the center of the radially outer inclined contact surface is set at 0.0 from the root center axis. 6203C, and the center of the radially inner contact surface is 0.3797 from the root center axis. G, and set the center of the radially inner inclined surface to 0.49 from the radially inner end of the root of the wing. By setting it to 90C and setting the other dimensions to 0 times the number shown in Figure 2, Fabricate one set of blade roots, grooves and towers and measure perpendicular to the blade root centerline. equal to the distance between the centers of the inclined surfaces, and at the center position of the radially inner inclined surface. By changing the constant C, which is approximately equal to the distance between the center line of the tower-like part and the center line of the root of the wing, Even if the root and tower-like parts of the blades are expanded or contracted proportionally, each set ensuring that all stress concentration points within the wing roots and towers are equalized; Consists of.

Claims (5)

【特許請求の範囲】[Claims] 1.同じ形状を呈するように翼の根元、溝及び塔状部分を形成し、翼と塔状部分 との間の唯一の接触域となる傾斜面を有するように翼の根元及び塔状部分を形成 し、翼の根元、溝及び塔状部分の比例寸法モデルを作成し、前記モデルにおける すべての寸法に翼の根元の中心線に直角な方向で測った傾斜面間の距離に等しい 定数を乗算することによりこの寸法モデルから任意サイズの翼の根元、塔状部分 及び溝を比例尺により設計できるようにすることを特徴とする、各翼の根元及び 塔状部分における応力集中を等しくするタービン翼の根元、塔状部分及び溝の製 法。1. Form the root, groove and tower-like part of the blade so that they have the same shape, and the blade and the tower-like part The root and tower-shaped portions of the blades are formed so that they have sloped surfaces that are the only contact area between the Then, create a proportional dimension model of the blade root, groove, and tower-like part, and All dimensions equal to the distance between the slopes measured perpendicular to the centerline of the wing root. From this dimensional model by multiplying by a constant The base of each wing The construction of the roots, towers and grooves of turbine blades to equalize the stress concentration in the towers. Law. 2.前記モデルに一定角度の傾斜接触面を形成することにより、前記モデルから 比例尺により設計された任意の組の翼の根元、溝及び塔状部分のそれぞれの翼の 根元及び塔状部分における応力集中を等しくする段階をも含むことを特徴とする 請求の範囲第1項に記載の方法。2. from the model by forming an inclined contact surface at a constant angle on the model. The root, groove and tower parts of each wing of any set of wings designed by proportional scale. characterized in that it also includes the step of equalizing the stress concentration in the root and tower-shaped parts. A method according to claim 1. 3.それぞれが傾斜接触面を有する舌状部を両側に1つづつ有する翼の根元及び 塔状部分を形成する段階をも含むことを特徴とする請求の範囲第2項に記載の方 法。3. the root of the wing, each having tongues on each side, each having an inclined contact surface; The method according to claim 2, characterized in that the method also includes a step of forming a tower-shaped portion. Law. 4.傾斜面と隣接する半径の比をほぼ2に設定する段階をも含むことを特徴とす る請求の範囲第1項に記載の方法。4. characterized in that it also includes the step of setting the ratio of the inclined surface to the adjacent radius to approximately 2. The method according to claim 1. 5.半径方向内側傾斜面の中心部における塔状部分及びこれと隣接する翼の根元 の中心線間距離をほぼ前記定数に等しい距離に設定する段階をも含むことを特徴 とする請求の範囲第1項に記載の方法。5. The tower-shaped portion at the center of the radially inner inclined surface and the root of the blade adjacent thereto The method also includes the step of setting a distance between center lines of The method according to claim 1.
JP50447686A 1985-07-30 1986-07-30 Method for determining the shape of side-entry turbine blades that can be designed using scale models Pending JPS63501372A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76038785A 1985-07-30 1985-07-30
US760387 1985-07-30
US872987 1997-06-11

Publications (1)

Publication Number Publication Date
JPS63501372A true JPS63501372A (en) 1988-05-26

Family

ID=25058961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50447686A Pending JPS63501372A (en) 1985-07-30 1986-07-30 Method for determining the shape of side-entry turbine blades that can be designed using scale models

Country Status (1)

Country Link
JP (1) JPS63501372A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191509A (en) * 1977-12-27 1980-03-04 United Technologies Corporation Rotor blade attachment
US4260331A (en) * 1978-09-30 1981-04-07 Rolls-Royce Limited Root attachment for a gas turbine engine blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191509A (en) * 1977-12-27 1980-03-04 United Technologies Corporation Rotor blade attachment
US4260331A (en) * 1978-09-30 1981-04-07 Rolls-Royce Limited Root attachment for a gas turbine engine blade

Similar Documents

Publication Publication Date Title
US4692976A (en) Method of making scalable side entry turbine blade roots
US5295789A (en) Turbomachine flow-straightener blade
ES2024761A6 (en) Mounting of integral platform turbine blades with skewed side entry roots
CN102108880A (en) Airfoil for a compressor blade
JPS63227906A (en) Assembly method and device for steam turbine reducing relative motion
ES8501837A1 (en) Turbine blade with integral shroud and method of assembling the blades in a circular array.
CN102108969A (en) Airfoil for compressor blade
JP2007187164A5 (en)
MY110847A (en) Centrifugal fan and manufacturing method thereof and appararus having centrifugal fan.
JPS63501372A (en) Method for determining the shape of side-entry turbine blades that can be designed using scale models
SU693041A1 (en) Turbomachine runner
JPS61129405A (en) Fixing method of turbine moving blade
Cai et al. Some analytical solutions applicable to verify 3-D numerical methods in turbomachines
JPH0586803A (en) Triple pin bucket
CA1278175C (en) Method of making scalable side entry turbine
MILLOUR 3 D flow computations in a centrifugal compressor with splitter blade including viscous effect simulation
SU723230A1 (en) Axial-flow turbo-machine impeller
US1522771A (en) Anemometer
JP3100275B2 (en) Turbine blade
KAYSER et al. Some aerodynamic characteristics of a projectile shape with a nonaxisymmetric boattail at Mach numbers of 0. 91 and 3. 02[Final Report]
ANDO Investigations on efficient numerical method for subsonic lifting surfaces
Narramore Navier-Stokes computations of fuselage drag increments
Happel et al. Application of a 3-D time-marching Euler code to transonic turbomachinery flow
JPS60192284U (en) Movable blade structure of movable blade water turbine
REDIN et al. An approach to the generalization of data on the efficiency of grooves above a rotor((in axial flow compressors))(Podkhod k obobshcheniiu dannykh po effektivnosti nadrotornykh ustroistv)