JPS6349779A - Image density correcting device - Google Patents

Image density correcting device

Info

Publication number
JPS6349779A
JPS6349779A JP19275286A JP19275286A JPS6349779A JP S6349779 A JPS6349779 A JP S6349779A JP 19275286 A JP19275286 A JP 19275286A JP 19275286 A JP19275286 A JP 19275286A JP S6349779 A JPS6349779 A JP S6349779A
Authority
JP
Japan
Prior art keywords
photoreceptor
image
laser
time data
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19275286A
Other languages
Japanese (ja)
Other versions
JP2588880B2 (en
Inventor
Koji Yamazaki
晃司 山崎
Shigenori Ueda
重教 植田
Toshiyuki Ebara
俊幸 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61192752A priority Critical patent/JP2588880B2/en
Publication of JPS6349779A publication Critical patent/JPS6349779A/en
Application granted granted Critical
Publication of JP2588880B2 publication Critical patent/JP2588880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniform image density by correcting the exposure time of laser light based on a turn-on time data input corresponding to electrostatic charging irregularity characteristic and then correcting the exposure time of the laser light based on turn-on time data corresponding to sensitivity irregularity characteristics which are inputted thereafter. CONSTITUTION:When an input device 3 inputs turn-on time data regarding the light part potential characteristics of a photosensitive drum 17 to a correcting circuit 2d, the circuit 2d computes the laser exposure corrected time when a specific quantity of laser light is emitted. The exposure time of the laser light is corrected to raise the lowest light part potential to the highest light part potential. Then, the device 3 inputs turn-on time data 3b regarding the dark part potential characteristics of the drum 17 to the correcting circuit 2d, the circuit 2d computes the laser exposure time when a specific quantity of laser light is emitted. This operation is performed as to all picture elements in the generating line direction of the drum 17 to uniform the electrostatic charging potential of all picture elements in the generating line direction of the drum 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、感光体上に画像信号に応じて変調されるレ
ーザ光を走査して画像を形成する画像記録装置に係り、
特に形成される画像濃度ムラを感光体の軸方向感度ムラ
に応じて補正する装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an image recording device that forms an image by scanning a photoreceptor with a laser beam modulated according to an image signal.
In particular, the present invention relates to an apparatus that corrects uneven density of a formed image in accordance with uneven axial sensitivity of a photoreceptor.

〔従来の技術〕[Conventional technology]

従来、この種の装置においては、リーダ(原稿読取り装
置)やコンピュータ等から主副走査方向に走査分割し、
読み込まれた画像信号を半導体レーザのオン/オフ信号
に変調し、これを円筒状回転感光体の軸方向の各mjを
鏡面仕上げした回転多面体ミラー(ポリゴンミラー)を
介して定速度で走査し、定速度で回転する感光体りに静
′七潜像を形成する0次いで、公知の電子写真プロセス
による現像、転写、定着を行い搬送される記録媒体上、
例えば記録紙上に現像した画像を定着させることができ
るように構成されている。
Conventionally, in this type of device, scanning is divided in the main and sub-scanning directions from a reader (original reading device) or computer, etc.
The read image signal is modulated into an on/off signal of a semiconductor laser, which is scanned at a constant speed through a mirror-finished rotating polygon mirror (polygon mirror) for each mj in the axial direction of a cylindrical rotating photoreceptor. A static latent image is formed on a photoreceptor rotating at a constant speed.Then, development, transfer, and fixation are performed by a known electrophotographic process on a recording medium to be transported.
For example, it is configured to be able to fix an image developed on recording paper.

上述した感光体は、従来より若干の感度ムラを有してお
り、特にプラズマCVD等により成膜されるアモルファ
スシリコン感光体において、前述の感度ムラを20V以
内に抑えることは製造上、難しく、ざらにレーザ光学系
を有する電子写真装置、例えばレーザビームプリンタに
おいては干渉による入射光量の不均一 とも相まって均
一な電位を得ることが難しかった。
The above-mentioned photoreceptors have conventionally had some sensitivity unevenness, and it is difficult to suppress the aforementioned sensitivity unevenness within 20 V in manufacturing, especially in amorphous silicon photoreceptors formed by plasma CVD, etc. In an electrophotographic device having a laser optical system, such as a laser beam printer, it is difficult to obtain a uniform potential due to the unevenness of the amount of incident light due to interference.

このため、光源としてハロゲンランプまたは蛍光灯を使
用する画像記録装置においては、感光体の軸方向感度ム
ラに対して光源から感光体面に照射されるまでの光路中
に単一ないし複数枚よりなるスリットを設け、照射光量
を31fffiすることで、潜像電位を均一化して画像
ムラを補正している。
For this reason, in an image recording device that uses a halogen lamp or a fluorescent lamp as a light source, a single or multiple slit in the optical path from the light source to the surface of the photoreceptor is used to prevent uneven axial sensitivity of the photoreceptor. By setting the irradiation light amount to 31fffi, the latent image potential is made uniform and image unevenness is corrected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、レーザ走査光学系を有する画像記録装置におい
ては1画像形成に備えて帯電器により感光体の表面電位
を一様に帯電させるように制御しているが、感光体の母
線方向に?j1電ムラが発生して画像濃度ムラが発生し
てしまう問題点があった。また、画像データに基づいた
レーザ光の露光に際しても、感光体の母線方向に感度ム
ラが発生して画像濃度が起こり、同様の濃度ムラを話発
してしまう問題点があった。これらの濃度ムラを露光幅
調整による光量調整により改善するには技術的に困難で
あり、その改善が強く望まれているのが現状である。
However, in an image recording apparatus having a laser scanning optical system, the surface potential of the photoreceptor is controlled to be uniformly charged by a charger in preparation for one image formation, but is it possible to charge the surface potential of the photoreceptor uniformly in the direction of the generatrix of the photoreceptor? There was a problem in that j1 electric unevenness occurred, resulting in uneven image density. Further, even when exposed to laser light based on image data, sensitivity unevenness occurs in the direction of the generatrix of the photoreceptor, resulting in image density, and there is a problem in that similar density unevenness occurs. It is technically difficult to improve these density unevenness by adjusting the light amount by adjusting the exposure width, and at present there is a strong desire for improvement.

また、レーザ走査光学系の場合は、通常原稿露光する際
に、原稿の白地ないしディスプレイのグランド部を露光
するより、原稿の黒地部ないしキャラクタ部を露光する
方がレーザの発光時間を短くできるとともに、レーザス
ポットのすそひき。
In addition, in the case of a laser scanning optical system, when exposing an original, it is possible to shorten the laser emission time by exposing the black background or character area of the original, rather than exposing the white background of the original or the ground area of the display. , Laser spot hemline.

ゆらぎ等による潜像解像の低下防止に有効であることか
ら、反転現像が多く使用されてきた。この場合、明部電
位が画像黒地部となるため、感光体の感度ムラはとりも
なおさず画像濃度ムラとなって画質を低下させてしまう
等の問題点があった。
Reversal development has been widely used because it is effective in preventing deterioration in latent image resolution due to fluctuations and the like. In this case, since the potential of the bright area corresponds to the black background area of the image, there is a problem in that the sensitivity unevenness of the photoreceptor not only causes unevenness in image density, but also deteriorates the image quality.

この発明は、上記の問題点を解消するためになされたも
ので、感光体の軸方向の帯電ムラ特性および感度ムラ特
性に基づいてレーザ光の単位ドツト発光時間を補正させ
ることにより、感光体の軸方向の濃度ムラを解消して、
均一な画像濃度が得られる画像濃度補正装置を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and it corrects the unit dot emission time of the laser beam based on the axial charging unevenness characteristics and sensitivity unevenness characteristics of the photoreceptor. By eliminating density unevenness in the axial direction,
An object of the present invention is to obtain an image density correction device that can obtain uniform image density.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る感光体の画像濃度補正装置は、感光体の
母線方向の帯電ムラ特性および感度ムラ特性に応じた1
画素単位の画像信号の点灯時間データを入力する入力手
段と、この入力手段により入力される帯電ムラ特性に応
じた点灯時間データに基づいてレーザ光の露光時間を補
正するとともに、この補正終了後、入力手段より入力さ
れる感度ムラ特性に応じた点灯時間データに基づいてレ
ーザ光の露光時間を補正する補正手段とを設けたもので
ある。
The image density correcting device for a photoreceptor according to the present invention has an image density correction device according to the charging unevenness characteristics and the sensitivity unevenness characteristics in the generatrix direction of the photoreceptor.
An input means for inputting lighting time data of an image signal for each pixel, and correcting the exposure time of the laser beam based on the lighting time data inputted by the input means according to charging unevenness characteristics, and after completion of this correction, A correction means is provided for correcting the exposure time of the laser beam based on lighting time data corresponding to sensitivity unevenness characteristics inputted from the input means.

〔作用〕[Effect]

この発明においては、入力手段より感光体の母線方向の
感度ムラ特性および帯電ムラ特性に応じた1画素単位の
画像信号の点灯時間データが入力されると、補正手段が
帯電ムラ特性に応じた点灯時間データに基づいてレーザ
光の露光時間を補正するとともに、この補正終了後、入
力手段より入力される感度ムラ特性に応じた点灯時間デ
ータに基づいてレーザ光の露光時間を補正する。
In this invention, when the lighting time data of the image signal for each pixel is input from the input means in accordance with the sensitivity unevenness characteristics and the charging unevenness characteristics in the generatrix direction of the photoreceptor, the correction means adjusts the lighting time according to the charging unevenness characteristics. The exposure time of the laser beam is corrected based on the time data, and after the correction is completed, the exposure time of the laser beam is corrected based on the lighting time data corresponding to the sensitivity unevenness characteristic inputted from the input means.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すレーザビームプリン
タの構成を説明するためのブロック図であり、]はリー
グ部で、画像読取り部1a  、増幅器1b、A/D変
換器1cより構成され、画像読取り部1aは、CCD等
撮像素子から構成されている。2はプリンタ部で、PW
M変換器2a  、レーザドライバ2b 、レーザユニ
ット2C,補正回イ路2d等から構成されている。PW
M変換器2dイ “′はA/D変換器1Cから送出される画像情報に基づ
いてレーザ光のオン・オフをパルス幅変調する。レーザ
ユニット2cは後述する補正テータ3dに基づいたレー
ザビームLBIおよび補正データ3bに基づいたレーザ
ビームLB2を発射する。補正回路2dは入力装置3よ
り入力される感光体の感度ムラ特性に応じた補正データ
(点灯時間データ)3aに基づいてP W M変換器2
aより出力される変調信号のパルス幅を所定量補正し。
FIG. 1 is a block diagram for explaining the configuration of a laser beam printer showing an embodiment of the present invention.] is a league section, which is composed of an image reading section 1a, an amplifier 1b, and an A/D converter 1c. , the image reading section 1a is composed of an image sensor such as a CCD. 2 is the printer section, PW
It is composed of an M converter 2a, a laser driver 2b, a laser unit 2C, a correction circuit 2d, etc. P.W.
The M converter 2d'' performs pulse width modulation on/off of the laser beam based on the image information sent from the A/D converter 1C.The laser unit 2c modulates the laser beam LBI based on the correction data 3d described later. The correction circuit 2d emits a laser beam LB2 based on the correction data 3b.The correction circuit 2d converts the PWM converter based on the correction data (lighting time data) 3a corresponding to the sensitivity unevenness characteristics of the photoreceptor inputted from the input device 3. 2
The pulse width of the modulation signal output from a is corrected by a predetermined amount.

補正したレーザ露光信号をこの発明の露光手段を兼ねる
レーザドライバ2bに出力する。また、補正回路2dは
入力装置3より入力される帯電ムラ特性に応じた補正デ
ータ(点灯時間データ) 3bに基づいて所定光量のレ
ーザ光を発射させるレーザ露光信号をレーザドライバ2
bに送出する。なお、入力装置3はデータシート等の紙
に記録された感光体の母線方向の感度ムラ特性および帯
電ムラ特性に応じた1画素単位の画像信号の点灯時間デ
ータを入力するディジタイザまたは前記点灯時間データ
があらかじめ書き込まれた磁気カードまたはROMチッ
プ等で構成される。
The corrected laser exposure signal is output to the laser driver 2b which also serves as exposure means of the present invention. Further, the correction circuit 2d sends a laser exposure signal to the laser driver 2 to emit a predetermined amount of laser light based on correction data (lighting time data) 3b input from the input device 3 according to the charging unevenness characteristics.
Send to b. The input device 3 is a digitizer that inputs lighting time data of an image signal for each pixel according to sensitivity unevenness characteristics and charging unevenness characteristics in the generatrix direction of the photoreceptor recorded on paper such as a data sheet, or the lighting time data. It is composed of a magnetic card or ROM chip, etc., in which is written in advance.

第2図はこの発明の一実施例を示すレーザビームプリン
タのレーザ露光動作を説明するための図であり、第1図
と同一のものには同じ符号を付している。
FIG. 2 is a diagram for explaining the laser exposure operation of a laser beam printer showing an embodiment of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

この図において、]1はDCコントローラで、BD同期
信号発生回路11aを有し、レーザドライバ2bにビデ
オ信号を送出する。12はスキャナドライバ回路で、D
Cコントローラ11から送出されるドライブ信号に基づ
いてスキャナモータ13を一定速度に駆動させる。14
は回転多面休校(ポリゴンミラー)で、例えば10面の
鏡面で構成され、スキャナモータ13により一定速度で
矢印方向に回転し、レーザユニy)”2cから発射され
るレーザ光を偏向し、結像レンズ15.走査ミラー16
を介して偏向されたレーザ光を、例えばアモルファスシ
リコン感光体で構成される感光ドラム17に水平走査す
る。18は走査ミラーで、偏向されたレーザ光をファイ
バケーブル191に導く。ファイバケーブル19は偏向
されたレーザ光、すなわち画像書き込み開始信号となる
ビームディテクト信号(BD倍信号をBD同期信号発生
回路11aに送出する。
In this figure, ]1 is a DC controller, which has a BD synchronization signal generation circuit 11a and sends a video signal to a laser driver 2b. 12 is a scanner driver circuit, D
The scanner motor 13 is driven at a constant speed based on a drive signal sent from the C controller 11. 14
is a rotating polygon mirror, which is composed of, for example, 10 mirror surfaces, rotates in the direction of the arrow at a constant speed by the scanner motor 13, deflects the laser beam emitted from the laser unit 2c, and directs it to the imaging lens. 15. Scanning mirror 16
A photosensitive drum 17 made of, for example, an amorphous silicon photosensitive member is horizontally scanned with the laser beam deflected through the photosensitive drum 17 . A scanning mirror 18 guides the deflected laser beam to the fiber cable 191. The fiber cable 19 sends a deflected laser beam, that is, a beam detect signal (BD double signal) serving as an image writing start signal to the BD synchronization signal generation circuit 11a.

第3図は第2図に示した入力手段3から入力する補正デ
ータ3a、3bを説明するための特性図であり、縦軸は
表面電位(V)を示し、横軸は感光体の軸方向R(ff
lff1)を示す。なお、暗部平均電位は表面電位が4
00(V)の場合である。
FIG. 3 is a characteristic diagram for explaining the correction data 3a, 3b input from the input means 3 shown in FIG. 2, where the vertical axis shows the surface potential (V) and the horizontal axis shows the axial direction of the photoreceptor. R(ff
lff1). Note that the dark area average potential is the surface potential of 4
This is the case of 00 (V).

この図において、21は明部電位特性(感度ムラ特性)
を示し、A点が明部最高電位を示し、B点が明部最低電
位を示す。VLIは明部最高電位値を示し、Vl、2は
明部最低電位値を示す。22は暗部電位特性(帯電ムラ
特性)を示し、0点はサンプリング電位を示し、D点が
暗部最高電位を示し、E点が暗部最低電位を示す。VD
+は暗部最高電位値を示し、VD2は暗部最低電位値を
示す。
In this figure, 21 is the bright area potential characteristic (sensitivity unevenness characteristic)
, point A indicates the highest potential in the bright area, and point B indicates the lowest potential in the bright area. VLI indicates the highest potential value in the bright area, and Vl,2 indicates the lowest potential value in the bright area. 22 indicates dark area potential characteristics (charging unevenness characteristics), point 0 indicates sampling potential, point D indicates the highest potential in the dark area, and point E indicates the lowest potential in the dark area. V.D.
+ indicates the highest potential value in the dark area, and VD2 indicates the lowest potential value in the dark area.

次に第3図を参照しながら第1図に示した補正回路2d
の動作について説明する。
Next, referring to FIG. 3, the correction circuit 2d shown in FIG.
The operation will be explained.

まず、入力装置3より感光ドラム17の明部電位特性2
1 (第3図参照)に関する点灯時間データ3dを補正
回路2dに入力すると、補正回路2dが下記第(1)式
、第(2)式に基づいて所定光量のレーザ光を発射させ
るレーザ露光補正時間TB 、TCを演算する。
First, the bright area potential characteristics 2 of the photosensitive drum 17 are input from the input device 3.
1 (see Figure 3) is input to the correction circuit 2d, the correction circuit 2d performs laser exposure correction to emit a predetermined amount of laser light based on equations (1) and (2) below. Calculate time TB and TC.

TE  =   (VLB −Vl2)  零 K 1
      ・・・・・・ (1)TC= (VLC−
Vl2)零K 1  −・・・−(2)ただし、K1は
1画素フル点灯の場合の、レーザ光量が、例えば4.0
μJ/cm2である場合は、に=64/400=0.1
6 (発光単位/V)となる。
TE = (VLB - Vl2) 0 K 1
...... (1) TC= (VLC-
Vl2) Zero K 1 -...- (2) However, K1 is such that the amount of laser light when one pixel is fully lit is, for example, 4.0
If μJ/cm2, then = 64/400 = 0.1
6 (light emission unit/V).

このため、B点の電位ムラ(Vte−Vl2)が30(
V)であり、かつこのドツトの画像信号発光時間が61
/64 (3D/3F (16進))とすると、補正後
の点灯時間は、57(61−10,16*301=57
)となり、光量3,8pJ/cm2が:3 、6 p、
 J 7cm2 に補正される。これにより、B点の表
面電位がA点の表面電位まで上昇する。なお、0点につ
いても同様の処理を行うことにより同様に表面電位をA
点の表面電位まで上昇させることができ、感光ドラム1
7の母線方向の全画素の表面電位、すなわち明部電位を
均一・化できる。
Therefore, the potential unevenness (Vte-Vl2) at point B is 30 (
V), and the image signal emission time of this dot is 61
/64 (3D/3F (hexadecimal)), the lighting time after correction is 57 (61-10, 16*301=57
), and the light amount of 3.8 pJ/cm2 is: 3,6 p,
Corrected to J 7cm2. As a result, the surface potential at point B increases to the surface potential at point A. In addition, by performing the same process for the 0 point, the surface potential is similarly changed to A.
The surface potential of the photosensitive drum 1 can be raised to
The surface potential of all pixels in the direction of the bus line of No. 7, that is, the bright area potential can be made uniform.

次に暗部電位の均一化について説明する。Next, uniformization of the dark potential will be explained.

第4図は第2図に示した感光ドラム17のE−■4¥性
を説明するための図であり、縦軸は感光ドラム】7の表
面電圧(V)を示し、横軸はレーザ光の露光量(p−J
 7cm2)を示す。
FIG. 4 is a diagram for explaining the E-■4 characteristics of the photosensitive drum 17 shown in FIG. Exposure amount (p-J
7cm2).

この図において、31はE−V特性を示し、K2は前記
E−V特性31の傾き(ΔE/Δv(ただし、ΔEは光
量変量を示し、ΔVは表面電位差を示し))で、感光ド
ラム77が、例えばアモルファスシリコン感光体で構成
される場合には、E−V特性31は直線、すなわち1次
関数となることが分かっており、S eTe系感光体、
OPC感光体に比べてアモルファスシリコン感光体のE
−V特性31は直線性に最も優れているので、感度補正
制御が簡単となる。また、強度、#久性にも優れている
ので、この実施例ではアモルファスシリコン感光体で感
光ドラム17を構成している。まず、入力装置3より感
光ドラム17の暗部電位特性22(第3図参照)に関す
る点灯時間データ3bを補正回路2dに入力すると、補
正回路2dが下記第(3)式、第(4)式に基づいて所
定光量のレーザ光を発射させるレーザ露光時間TD、T
Fを演算する。
In this figure, 31 indicates the EV characteristic, K2 is the slope of the EV characteristic 31 (ΔE/Δv (where ΔE indicates the light quantity variation, and ΔV indicates the surface potential difference)) However, it is known that, for example, in the case of an amorphous silicon photoreceptor, the EV characteristic 31 becomes a straight line, that is, a linear function.
E of amorphous silicon photoconductor compared to OPC photoconductor
Since the -V characteristic 31 has the best linearity, sensitivity correction control becomes simple. In addition, in this embodiment, the photosensitive drum 17 is made of an amorphous silicon photosensitive material because it has excellent strength and durability. First, when the lighting time data 3b regarding the dark area potential characteristic 22 (see FIG. 3) of the photosensitive drum 17 is inputted from the input device 3 to the correction circuit 2d, the correction circuit 2d calculates the following equations (3) and (4). Laser exposure time TD, T for emitting a predetermined amount of laser light based on
Calculate F.

TD= (Vo −VE )零に2  ・・・・・・(
3)T F = (VF −VE ) 零K 2   
=(4)演算したレーザ露光時間TD、TFは補正回路
2dよりレーザドライバ2bに送出され、レーザユニッ
ト2Cよりレーザ露光時間TD、TFに基づいて画像書
き込み開始位置前にレーザど−ムLB2を感光ドラム1
7に照射すると、感光ドラム17のD点、F点の帯電電
位を、例えば暗部平均電位400(V)にすることがで
きる。この操作を感光ドラム17の母線方向の全画素に
対して行うことにより、感光ドラト17の母線方向の全
画素の帯電電位を均一化できる。
TD=(Vo −VE)0 to 2・・・・・・(
3) TF = (VF - VE) zero K 2
= (4) The calculated laser exposure times TD and TF are sent from the correction circuit 2d to the laser driver 2b, and the laser unit 2C exposes the laser beam LB2 before the image writing start position based on the laser exposure times TD and TF. drum 1
7, the charged potential at points D and F of the photosensitive drum 17 can be set to, for example, an average dark area potential of 400 (V). By performing this operation on all pixels in the generatrix direction of the photosensitive drum 17, the charged potentials of all the pixels in the generatrix direction of the photosensitive drum 17 can be made uniform.

なお、上記実施例では、ワンチップからなるデを単一の
回転多面休校14により感光体]7を露光した場合につ
いて説明したが、明部電位を補正するレーザビームLB
Iのフォーカス精度に比べて暗部電位を補正するレーザ
ビームLB2のフォーカス精度は要求されないので、別
のポリゴンミラーからレーザビームLB2を振ればよい
。また、レーザ素子の個数を適宜増やしてもよい。
Incidentally, in the above embodiment, a case has been described in which the photoreceptor 7 is exposed using a single rotary multi-facet 14 in a single-chip device.
Since the focus precision of the laser beam LB2 for correcting the dark potential is not required as compared to the focus precision of I, the laser beam LB2 may be swung from another polygon mirror. Further, the number of laser elements may be increased as appropriate.

さらに、暗部電位を補正するレーザビームLB2の露光
量は僅かでよいので、NDフィルタで減光したり、レー
ザビームLB2の波長を感光ドラム17のピーク感度波
長からずらした方が好ましい。
Furthermore, since the amount of exposure of the laser beam LB2 for correcting the dark area potential only needs to be small, it is preferable to attenuate the light with an ND filter or to shift the wavelength of the laser beam LB2 from the peak sensitivity wavelength of the photosensitive drum 17.

また、アモルファスシリコン感光体で感光ドラム17を
構成した場合、ピーク感度は680〜700nmである
ため、通常の半導体レーザ、波長が778〜788nm
のものを使用すると、ピーク感度に比べてかなり低い感
度域で半導体レーザを発振させることになる。このため
、Boonffi付近の波長を有する半導体レーザを使
用することにより、通常の半導体レーザに比べて約半分
の感度となり、レーザパワーを極端に下げなくとも、コ
ントロール可能となる。しかし、波長が820r+m以
上になると、?12主に影響を与えるので使用は800
nm以上820r+m以下に留めるのが望ましい。
In addition, when the photosensitive drum 17 is made of an amorphous silicon photoreceptor, the peak sensitivity is 680 to 700 nm, so the wavelength of a normal semiconductor laser is 778 to 788 nm.
If a semiconductor laser is used, the semiconductor laser will oscillate in a sensitivity range that is considerably lower than its peak sensitivity. Therefore, by using a semiconductor laser having a wavelength near Boonffi, the sensitivity is about half that of a normal semiconductor laser, and control is possible without drastically lowering the laser power. However, what happens when the wavelength exceeds 820r+m? 12 Since it mainly affects, use 800.
It is desirable to keep it within a range of nm or more and 820r+m or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は感光体の母線方向の帯
電ムラ特性および感度ムラ特性に応じた1画素単位の画
像信号の点灯時間データを入力する入力手段と、この入
力手段により入力される帯電ムラ特性に応じた点灯時間
データに基づいてレーザ光の露光時間を補正するととも
に、この補正終了後、入力手段より入力される感度ムラ
特性に応じた点灯時間データに基づいてレーザ光の露光
時間を補正する補正手段とを設けたので、感光体を母線
方向に一様帯電できるとともに、明部電位のみならず中
間調に至るまで感光ドラムの感度ムラを精度よく補正で
き、画像濃度を均一化できる優れた利点を有する。
As described above, the present invention includes an input means for inputting lighting time data of an image signal for each pixel in accordance with charging unevenness characteristics and sensitivity unevenness characteristics in the generatrix direction of a photoconductor, and charging data inputted by this input means. The exposure time of the laser beam is corrected based on the lighting time data corresponding to the unevenness characteristics, and after this correction is completed, the exposure time of the laser beam is corrected based on the lighting time data corresponding to the sensitivity unevenness characteristics inputted from the input means. Since a correction means for correction is provided, the photoreceptor can be charged uniformly in the generatrix direction, and sensitivity unevenness of the photoreceptor drum can be accurately corrected not only in the bright area potential but also in the intermediate tones, and image density can be made uniform. Has excellent advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すレーザビームプリン
タの構成を説明するだめのブロック[A、第2図はこの
発明の一実施例を示すレーザビームプリンタのレーザ露
光動作を説明するための図、第3図は第2図に示した入
力手段から入力する補正データを説明するだめの特性図
、第4図はこの発明による感光体のE−V特性を説明す
るための図である。 図中、1はリーグ部、2はプリンタ部、2dは補正回路
、3は入力装置である。 第1図 第2図 第3図 第4図 −露光量
FIG. 1 is a block diagram for explaining the configuration of a laser beam printer according to an embodiment of the present invention [A], and FIG. 2 is a block diagram for explaining the laser exposure operation of a laser beam printer according to an embodiment of the present invention. 3 are characteristic diagrams for explaining the correction data inputted from the input means shown in FIG. 2, and FIG. 4 is a diagram for explaining the EV characteristics of the photoreceptor according to the present invention. In the figure, 1 is a league part, 2 is a printer part, 2d is a correction circuit, and 3 is an input device. Figure 1 Figure 2 Figure 3 Figure 4 - Exposure amount

Claims (3)

【特許請求の範囲】[Claims] (1)感光体上に画像信号に応じて変調されるレーザ光
を走査して画像を形成する画像記録装置において、前記
感光体の母線方向の帯電ムラ特性および感度ムラ特性に
応じた1画素単位の画像信号の点灯時間データを入力す
る入力手段と、この入力手段により入力される帯電ムラ
特性に応じた点灯時間データに基づいて前記レーザ光の
露光時間を補正するとともに、この補正終了後、前記入
力手段より入力される前記感度ムラ特性に応じた点灯時
間データに基づいて前記レーザ光の露光時間を補正する
補正手段とを具備したことを特徴とする画像濃度補正装
置。
(1) In an image recording device that forms an image by scanning a photoreceptor with a laser beam modulated according to an image signal, each pixel is determined in units of one pixel according to charging unevenness characteristics and sensitivity unevenness characteristics in the generatrix direction of the photoreceptor. an input means for inputting lighting time data of the image signal of the image signal; and correcting the exposure time of the laser beam based on the lighting time data inputted by the input means according to the charging unevenness characteristics; An image density correction apparatus comprising: a correction means for correcting the exposure time of the laser beam based on lighting time data corresponding to the sensitivity unevenness characteristic inputted from an input means.
(2)露光手段は、感光体の回転方向の画像書き込み位
置直前に、入力手段により入力される帯電ムラ特性に応
じて補正手段が補正した点灯時間データに基づいてレー
ザ光を前記感光体の母線方向に露光することを特徴とす
る特許請求の範囲第(1)項記載の画像濃度補正装置。
(2) The exposure means directs the laser beam to the generatrix of the photoreceptor based on the lighting time data corrected by the correction means in accordance with the charging unevenness characteristics inputted by the input means immediately before the image writing position in the rotational direction of the photoreceptor. An image density correction device according to claim 1, wherein the image density correction device performs exposure in a direction.
(3)感光体は、アモルファスシリコン感光体で構成す
ることを特徴とする特許請求の範囲第(1)項記載の画
像濃度補正装置。
(3) The image density correction device according to claim (1), wherein the photoreceptor is an amorphous silicon photoreceptor.
JP61192752A 1986-08-20 1986-08-20 Image density correction device Expired - Lifetime JP2588880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192752A JP2588880B2 (en) 1986-08-20 1986-08-20 Image density correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192752A JP2588880B2 (en) 1986-08-20 1986-08-20 Image density correction device

Publications (2)

Publication Number Publication Date
JPS6349779A true JPS6349779A (en) 1988-03-02
JP2588880B2 JP2588880B2 (en) 1997-03-12

Family

ID=16296459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192752A Expired - Lifetime JP2588880B2 (en) 1986-08-20 1986-08-20 Image density correction device

Country Status (1)

Country Link
JP (1) JP2588880B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181883A (en) * 2004-12-28 2006-07-13 Kyocera Mita Corp Image forming apparatus
JP2006192846A (en) * 2005-01-17 2006-07-27 Kyocera Mita Corp Image forming apparatus
JP2006208612A (en) * 2005-01-26 2006-08-10 Kyocera Mita Corp Image forming apparatus
JP2006208852A (en) * 2005-01-28 2006-08-10 Kyocera Mita Corp Image forming apparatus
JP2006231707A (en) * 2005-02-24 2006-09-07 Kyocera Mita Corp Image forming device
US7692814B2 (en) 2004-12-28 2010-04-06 Kyocera Mita Corporation Image forming apparatus
US7751737B2 (en) 2006-01-12 2010-07-06 Canon Kabushiki Kaisha Image forming apparatus which corrects charge potential on an image carrier
JP2011158761A (en) * 2010-02-02 2011-08-18 Canon Inc Image forming apparatus and light quantity correction method
JP2011158760A (en) * 2010-02-02 2011-08-18 Canon Inc Image forming apparatus and light quantity correction method therefor
US8068751B2 (en) 2008-11-05 2011-11-29 Canon Kabushiki Kaisha Image forming apparatus
JP2012224032A (en) * 2011-04-21 2012-11-15 Canon Inc Exposure apparatus and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886648U (en) * 1981-12-04 1983-06-11 横河電機株式会社 optical recording device
JPS6026854U (en) * 1983-08-01 1985-02-23 沖電気工業株式会社 optical print head
JPS6064869A (en) * 1983-09-21 1985-04-13 Canon Inc Optical printer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886648U (en) * 1981-12-04 1983-06-11 横河電機株式会社 optical recording device
JPS6026854U (en) * 1983-08-01 1985-02-23 沖電気工業株式会社 optical print head
JPS6064869A (en) * 1983-09-21 1985-04-13 Canon Inc Optical printer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692814B2 (en) 2004-12-28 2010-04-06 Kyocera Mita Corporation Image forming apparatus
JP2006181883A (en) * 2004-12-28 2006-07-13 Kyocera Mita Corp Image forming apparatus
JP2006192846A (en) * 2005-01-17 2006-07-27 Kyocera Mita Corp Image forming apparatus
JP4480591B2 (en) * 2005-01-17 2010-06-16 京セラミタ株式会社 Image forming apparatus
JP2006208612A (en) * 2005-01-26 2006-08-10 Kyocera Mita Corp Image forming apparatus
JP2006208852A (en) * 2005-01-28 2006-08-10 Kyocera Mita Corp Image forming apparatus
JP4626981B2 (en) * 2005-01-28 2011-02-09 京セラミタ株式会社 Image forming apparatus
JP2006231707A (en) * 2005-02-24 2006-09-07 Kyocera Mita Corp Image forming device
JP4526413B2 (en) * 2005-02-24 2010-08-18 京セラミタ株式会社 Image forming apparatus
US7751737B2 (en) 2006-01-12 2010-07-06 Canon Kabushiki Kaisha Image forming apparatus which corrects charge potential on an image carrier
US8068751B2 (en) 2008-11-05 2011-11-29 Canon Kabushiki Kaisha Image forming apparatus
JP2011158761A (en) * 2010-02-02 2011-08-18 Canon Inc Image forming apparatus and light quantity correction method
JP2011158760A (en) * 2010-02-02 2011-08-18 Canon Inc Image forming apparatus and light quantity correction method therefor
JP2012224032A (en) * 2011-04-21 2012-11-15 Canon Inc Exposure apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2588880B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US4794413A (en) Image recording apparatus
JP3096910B2 (en) Image recording device
JPS6349779A (en) Image density correcting device
JPS6367073A (en) Laser light modulating system
JP2893133B2 (en) Image forming device
JPH11112810A (en) Image formation device, control method therefor and storage medium
JPH0219668B2 (en)
JP3147458B2 (en) Digital imaging method
US5812174A (en) Device for driving a laser diode and an electrophotography type image forming apparatus using the same
JPH11112809A (en) Image formation device, control method therefor and storage medium
JP2972254B2 (en) Image forming device
JP2872271B2 (en) Image forming device
JPS6349778A (en) Image density correcting device
JP3491915B2 (en) Image forming device
JP3705337B2 (en) Thin line scanning recording method
US6836279B2 (en) Light beam scanning apparatus and image forming apparatus
JP2685799B2 (en) Image forming device
JPH05114962A (en) Image forming device
JPH0254992B2 (en)
JPH0266584A (en) Image forming device
JP3144835B2 (en) Image forming apparatus and image forming method
JP2005017514A (en) Image forming apparatus
JPH0655771A (en) Laser beam optical system
JPH1128836A (en) Image forming apparatus
JPS62235972A (en) Image recording device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term