JP4626981B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP4626981B2
JP4626981B2 JP2005022127A JP2005022127A JP4626981B2 JP 4626981 B2 JP4626981 B2 JP 4626981B2 JP 2005022127 A JP2005022127 A JP 2005022127A JP 2005022127 A JP2005022127 A JP 2005022127A JP 4626981 B2 JP4626981 B2 JP 4626981B2
Authority
JP
Japan
Prior art keywords
gradation
pixel
exposure
correction
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005022127A
Other languages
Japanese (ja)
Other versions
JP2006208852A (en
Inventor
英樹 石田
真悟 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2005022127A priority Critical patent/JP4626981B2/en
Priority to US11/320,436 priority patent/US7692814B2/en
Publication of JP2006208852A publication Critical patent/JP2006208852A/en
Application granted granted Critical
Publication of JP4626981B2 publication Critical patent/JP4626981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fax Reproducing Arrangements (AREA)

Description

本発明は,電子写真方式の画像形成装置に関し,特に,感光体表面の露光感度のムラや帯電のムラによって生じる露光後の電位の過不足を適正に調節する画像形成装置に関するものである。   The present invention relates to an electrophotographic image forming apparatus, and more particularly to an image forming apparatus that appropriately adjusts the excess or deficiency of a post-exposure potential caused by uneven exposure sensitivity or uneven charging on the surface of a photoreceptor.

電子写真方式の画像形成装置(複写機,プリンタ,ファクシミリ装置等)では,帯電装置(帯電手段)により感光体の表面を所定の初期電位まで一様に帯電させ,その帯電済みの感光体表面をレーザ光の走査やLEDアレイ等の露光手段で露光することによって静電潜像を書き込む。
ここで,画像形成が行われる際には,まず,所定の画像処理手段により画像形成対象となる画像データに基づいて画素ごとの濃淡レベルを表す画素階調が決定され,予め帯電装置により帯電済みの感光体の表面を前記画像処理手段により決定された前記画素階調を所定の変換情報に基づいて露光量に変換され(通常は線形変換),これにより得られる露光量に従って露光手段により露光される。
ところで,感光体にはその表層部の膜厚や材料特性のばらつき等に起因する個体差があり,その表面を帯電装置により一定条件で一様に帯電させても,感光体ごとに固有の電位の分布が生じる。これがいわゆる帯電ムラである。また,初期電位が等しい領域各々を同一の露光量で露光しても,必ずしも同じ電位にまで下がるわけではなくばらつきが生じる。即ち,露光量の差異に対する電位低下量の差異の比(傾き)に分布(ムラ)がある状況であり,これがいわゆる感度ムラである。
このような各々固有の帯電ムラや感度ムラを有する感光体の表面の各領域について,前記画素階調から前記露光量への変換を同一の(共通の)変換情報に基づいて行うと,同じ露光量で露光しても領域ごとに露光後の電位が異なってしまい,トナーによって現像される濃度(現像濃度)が本来あるべき濃度に対して過不足が生じ,現像ムラ(濃度ムラ)となって表れる。
一般に,画像の濃淡を複数画素の前記画素階調の配列で表現する面積階調方式で階調表現を行う装置(いわゆるデジタル機)の場合,画像の濃淡を画素単位の濃淡のみで表現する装置(いわゆるアナログ機)に比べ,微小な感度ムラや帯電ムラが画像の濃度ムラとして表れにくいものの,空間周期が比較的大きな帯電ムラが存在する場合,面積階調方式で階調表現を行うデジタル機においても濃度ムラを防ぎきれない。
特に,CMYK(シアン,マゼンタ,イエロー,ブラック)の4色のトナー像を重ねるカラー画像形成装置では,CMYの3色のトナー像を重ねて混色グレーの画像を形成するが,露光後の感光体表面に帯電ムラがあると,CMYのバランスが崩れて均一な混色グレー像が形成されない(濃度ムラが生じる)。
In electrophotographic image forming apparatuses (copiers, printers, facsimile machines, etc.), the surface of the photoreceptor is uniformly charged to a predetermined initial potential by a charging device (charging means), and the charged photoreceptor surface is An electrostatic latent image is written by exposure with exposure means such as laser light scanning or an LED array.
Here, when image formation is performed, first, a pixel gradation representing a gray level for each pixel is determined based on image data to be image formed by a predetermined image processing unit, and charged in advance by a charging device. The pixel gradation determined by the image processing means is converted into an exposure amount based on predetermined conversion information (usually linear conversion), and the surface of the photoconductor is exposed by the exposure means according to the exposure amount obtained thereby. The
By the way, there are individual differences due to variations in film thickness and material characteristics of the surface layer of the photoconductor. Even if the surface is uniformly charged by a charging device under a certain condition, a unique potential is generated for each photoconductor. Distribution occurs. This is so-called charging unevenness. Further, even if each region having the same initial potential is exposed with the same exposure amount, it does not necessarily decrease to the same potential, but causes variations. That is, there is a distribution (unevenness) in the ratio (slope) of the difference in potential drop amount to the difference in exposure amount, which is so-called sensitivity unevenness.
When the conversion from the pixel gradation to the exposure amount is performed based on the same (common) conversion information for each region of the surface of the photoconductor having such inherent charging unevenness and sensitivity unevenness, the same exposure is performed. Even if the exposure is performed in an amount, the potential after exposure varies from region to region, and the density developed by the toner (development density) becomes excessive or insufficient with respect to the original density, resulting in development unevenness (density unevenness). appear.
In general, in the case of an apparatus (so-called digital machine) that performs gradation expression by an area gradation method that expresses the lightness and darkness of an image by the array of pixel gradations of a plurality of pixels, an apparatus that expresses the lightness and darkness of an image only by the lightness and darkness of a pixel unit Compared to (so-called analog machines), even though minute sensitivity unevenness and charging unevenness are less likely to appear as image density unevenness, if there is charging unevenness with a relatively large spatial period, a digital machine that expresses gradation using the area gradation method In this case, uneven density cannot be prevented.
In particular, in a color image forming apparatus that superimposes four color toner images of CMYK (cyan, magenta, yellow, and black), a mixed color gray image is formed by superimposing the three color toner images of CMY. If there is uneven charging on the surface, the CMY balance is lost and a uniform mixed color gray image is not formed (density unevenness occurs).

例えば,特許文献1によれば,露光後の電位に5V以上の電位ムラがあると,濃度ムラが顕著に表れるとされている。このような現象は,特に,いわゆるタンデム式のカラー画像形成装置において顕著である。また,a−Si感光体(感光層がアモルファスシリコンからなる感光体)では,一般にOPC感光体よりも帯電ムラが大きいため,画像の濃度ムラがより顕著となる。かといって,a−Si感光体において,帯電ムラが5V以下であることを品質規格(合格レベル)とすると,歩留まりが著しく悪化して現実的でない。
これに対し,特許文献1には,静電潜像書き込み用の露光前に,初期電位の分布を補正するための補助露光手段を設ける技術が示されている。
また,特許文献2には,感光体の感度情報に基づいて露光量を補正する技術が,特許文献3には,感光体の回転位置ごとに感度ムラを補正する技術が,特許文献4には,感光体の露光位置ごとに感度ムラを補正する技術が,特許文献5には,感光体の感度分布データに従って感度ムラを補正する技術が各々示されている。
特開2003−154706号公報 特開平10−31332号公報 特開2000−162834号公報 特開2004−61860号公報 特開2004−233694号公報
For example, according to Patent Document 1, if there is a potential unevenness of 5 V or more in the potential after exposure, the density unevenness appears remarkably. Such a phenomenon is particularly remarkable in a so-called tandem color image forming apparatus. In addition, since an a-Si photosensitive member (photosensitive member whose photosensitive layer is made of amorphous silicon) generally has larger charging unevenness than an OPC photosensitive member, unevenness in image density becomes more remarkable. However, in the a-Si photosensitive member, if the charging irregularity is 5 V or less as the quality standard (acceptable level), the yield is remarkably deteriorated, which is not realistic.
On the other hand, Patent Document 1 discloses a technique of providing auxiliary exposure means for correcting the distribution of the initial potential before exposure for writing an electrostatic latent image.
Patent Document 2 discloses a technique for correcting the exposure amount based on the sensitivity information of the photoconductor. Patent Document 3 discloses a technique for correcting sensitivity unevenness for each rotational position of the photoconductor. A technique for correcting the sensitivity unevenness for each exposure position of the photosensitive member is disclosed in Patent Document 5, and a technique for correcting the sensitivity unevenness according to the sensitivity distribution data of the photosensitive member is disclosed.
JP 2003-154706 A JP 10-31332 A JP 2000-162834 A JP 2004-61860 A JP 2004-233694 A

しかしながら,特許文献1に示されるように,静電潜像書き込み用の露光手段とは別個に独立した露光手段を設けることは,装置の大型化や高コスト化につながるため,適用が困難な場合が多いという問題点があった。特に,タンデム式のカラー画像形成装置の場合,複数(通常は4つ)の感光体ごとに新たな露光手段を設ける必要が生じ,スペース上及びコスト上の問題がより顕著となる。
また,特許文献1〜5に示される技術では,露光量の調節を画素単位で行われる。この場合,画素ごとの露光時間若しくは露光強度の調節,或いはそれらの組み合わせにより露光量調節を行うことになるが,そのような露光量調節では,調節分解能の制限から高精度での露光量調節ができないという問題点があった。
また,特許文献2〜5に示される技術は,いずれも感光体の感度ムラを補正するもの,即ち,基準となる感光体の露光特性(露光量と電位低下量との関係)と制御対象となる感光体の露光特性とにおける傾き(露光量の差異に対する電位低下量の差異の比)の相違分を補正するものであるため,帯電済み感光体の露光前の初期電位に分布がある(帯電ムラがある)場合には,その電位分布がそのままオフセットとして残り,画像の濃度ムラが解消されないという問題点があった。
However, as disclosed in Patent Document 1, providing an exposure unit that is independent from the exposure unit for writing an electrostatic latent image leads to an increase in the size and cost of the apparatus, and is difficult to apply. There was a problem that there were many. In particular, in the case of a tandem type color image forming apparatus, it is necessary to provide a new exposure unit for each of a plurality of (usually four) photoconductors, and space and cost problems become more prominent.
In the techniques disclosed in Patent Documents 1 to 5, the exposure amount is adjusted in units of pixels. In this case, the exposure amount is adjusted by adjusting the exposure time or exposure intensity for each pixel, or a combination thereof. In such exposure amount adjustment, the exposure amount can be adjusted with high accuracy due to the limitation of the adjustment resolution. There was a problem that it was not possible.
The techniques disclosed in Patent Documents 2 to 5 all correct the sensitivity unevenness of the photoconductor, that is, the exposure characteristics (relationship between the exposure amount and the potential decrease amount) of the photoconductor as a reference, and the control target. This is to correct the difference in slope (ratio of the difference in potential drop to the difference in exposure amount) from the exposure characteristics of the photosensitive member, so that there is a distribution in the initial potential of the charged photoreceptor before exposure (charging) In the case of unevenness), the potential distribution remains as an offset as it is, and there is a problem that the density unevenness of the image cannot be resolved.

図10は,帯電ムラと感度ムラとが併存するa−Si感光体における前記画素階調とその画素階調に対応する露光量で露光した後の感光体の電位との関係を表すもの(図中,破線で表す)であり,図10(a)は露光量補正を行わない場合(太い破線g01で表す),同(b)は露光量の感度ムラ補正を行った場合(太い実線g02で表す)の各特性を表す。なお,図中,太い実線(g0)で表す特性は,基準となる(標準的な)露光体の特性(以下,基準特性という)を表す。
ここで,図10(a)に示すグラフは前記画素階調を横軸としているが,前記画素階調から前記露光量への変換を,ある一の変換式(係数は固定)或いは変換テーブルに基づいて行う限り,横軸を露光量と見ても等価である。即ち,図10(a)においては,基準となる感光体の特性を表すグラフ線g0と,制御対象となる測定対象である感光体の特性を表すグラフ線g01とは,いずれも同じ変換式(即ち,補正なし)に従って前記画素階調から前記露光量への変換が行われた例であるので,横軸を露光量に置き換えて露光特性(露光量に対する露光後の電位に特性)であるとして見ても等価である。
図10(a)に示すように,一般に,感光体(特に,a−Si感光体)における露光量と露光後の電位との対応を表す露光特性においては,露光量が増大するにつれてほぼ線形的に露光後の電位が下がり,残留電位(最大露光量で露光後に残る電位)への収束領域(露光量の増加に対して電位が低下する傾きがごく緩やとなる範囲)を除く部分ではほぼ線形の露光特性を示す。例えば,図10(a)における測定対象の感光体の露光特性g01においては,前記画素階調をI2としたときの帯電量E2以下の範囲でほぼ線形の露光特性を示し,基準となる感光体の露光特性g0においては,前記画素階調をIs2としたときの帯電量Es2以下の範囲でほぼ線形の露光特性を示している。
また,測定対象の感光体に帯電ムラと感度ムラとが併存する場合,図10(a)に示すように,前記基準露光特性g0との間で,初期電位(露光前の帯電電位,即ち,y切片)の差異(帯電ムラ相当分)と,露光特性の傾きの差異(感度ムラ相当分)とが生じる。このような感光体に対し,露光量の感度ムラ補正(傾きを一致させる補正)を行うと,図10(b)に示すように,帯電ムラに対応する電位差(初期電位の差分)がオフセットとして残り,これが画像の濃度ムラの原因となる。
FIG. 10 shows the relationship between the pixel gradation in the a-Si photosensitive member in which charging unevenness and sensitivity unevenness coexist and the potential of the photosensitive member after exposure with an exposure amount corresponding to the pixel gradation (FIG. 10). 10A shows a case where exposure amount correction is not performed (represented by a thick broken line g01), and FIG. 10B shows a case where exposure amount sensitivity unevenness correction is performed (thick solid line g02). Represent each characteristic. In the figure, the characteristic represented by the thick solid line (g0) represents the characteristic of the reference (standard) exposure object (hereinafter referred to as the reference characteristic).
Here, the graph shown in FIG. 10A has the pixel gradation as the horizontal axis, but the conversion from the pixel gradation to the exposure amount is converted into a certain conversion formula (coefficient is fixed) or a conversion table. As long as it is performed based on this, it is equivalent even if the horizontal axis is regarded as the exposure amount. That is, in FIG. 10A, the graph line g0 representing the characteristics of the photoconductor as the reference and the graph line g01 representing the characteristics of the photoconductor as the measurement target to be controlled are both the same conversion formula ( In other words, since the conversion from the pixel gradation to the exposure amount is performed according to (no correction), the horizontal axis is replaced with the exposure amount, and the exposure characteristic (characteristic of the potential after exposure with respect to the exposure amount) is assumed. It is equivalent to see.
As shown in FIG. 10A, in general, the exposure characteristic representing the correspondence between the exposure amount and the potential after exposure on the photosensitive member (particularly, a-Si photosensitive member) is almost linear as the exposure amount increases. After the exposure, the potential drops after exposure, and the area other than the convergence area (the range where the slope at which the potential decreases with increasing exposure dose) becomes very small is almost the same as the residual potential (the potential remaining after exposure at the maximum exposure dose). Linear exposure characteristics are shown. For example, the exposure characteristic g01 of the photoconductor to be measured in FIG. 10A shows a substantially linear exposure characteristic in a range equal to or less than the charge amount E2 when the pixel gradation is I2, and serves as a reference photoconductor. The exposure characteristic g0 shows a substantially linear exposure characteristic in a range equal to or less than the charge amount Es2 when the pixel gradation is Is2.
Further, in the case where the unevenness of charging and the unevenness of sensitivity coexist on the photoconductor to be measured, as shown in FIG. 10A, the initial potential (the charging potential before exposure, that is, the charging potential before exposure, i.e. A difference in y intercept (corresponding to charging unevenness) and a difference in inclination of exposure characteristics (corresponding to sensitivity unevenness) occur. When exposure unevenness correction (correction for matching the inclinations) is performed on such a photoconductor, as shown in FIG. 10B, a potential difference corresponding to charging unevenness (difference in initial potential) is used as an offset. This will cause uneven density in the image.

ところで,感光体上の各位置において,前記画素階調とその画素階調を変換して得られる露光量で露光した後の電位との対応特性(対応関係)を,前記画素階調が0階調である場合(露光がなされない場合)を除く他の全階調の範囲に渡って所定の基準特性に一致させるように前記画素階調から露光量への変換を行う(露光量の決定を行う)ことも考えられる。
図11のグラフg02’は,図10(a)のグラフg0に示した電ムラと感度ムラとが並存する感光体表面の露光に際し,0階調を除く全ての画素階調各々を設定して露光した後の電位を所定の基準特性に一致させるように前記画素階調から露光量への変換を行った場合の前記画素階調と露光後の電位との関係を表すグラフである。
しかしながら,図11に示す結果となるような露光量変換を行うと,露光前の初期電位と前記画素階調を1(0を除く最小値)に設定して露光した後の電位とのギャップΔV0が特に大きくなる。このギャップΔV0が大きすぎると,画像を中間調で表現する場合の濃度の連続性が阻害されるため画質が悪化するという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,装置の大型化や高コスト化を回避しつつ,帯電ムラが存在する感光体やそれに加えて感度ムラも併存する感光体について高精度(高分解能)で露光量調節を行うことにより,画像の濃度ムラが発生すること及び画像濃度の連続性を阻害して画質が悪化することを防止できる画像形成装置を提供することにある。
By the way, at each position on the photosensitive member, the correspondence characteristic (correspondence) between the pixel gradation and the potential after exposure with the exposure amount obtained by converting the pixel gradation is expressed as follows. Conversion from the pixel gradation to the exposure amount so as to coincide with a predetermined reference characteristic over a range of all other gradations except for the case of a key (when no exposure is performed) (determination of the exposure amount) To do).
A graph g02 ′ in FIG. 11 sets all pixel gradations except for the 0 gradation when the surface of the photoconductor in which the electric unevenness and the sensitivity unevenness shown in the graph g0 in FIG. It is a graph showing the relationship between the pixel gradation and the potential after exposure when conversion from the pixel gradation to the exposure amount is performed so that the potential after exposure matches a predetermined reference characteristic.
However, when exposure amount conversion is performed so as to obtain the result shown in FIG. 11, the gap ΔV0 between the initial potential before exposure and the potential after exposure with the pixel gradation set to 1 (minimum value excluding 0). Is particularly large. If the gap ΔV0 is too large, there is a problem that the image quality deteriorates because the density continuity is inhibited when the image is expressed in halftone.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to avoid the increase in size and cost of the apparatus, and also in the photosensitive member in which charging unevenness exists and in addition to the sensitivity unevenness. An image forming apparatus capable of preventing the occurrence of image density unevenness and the deterioration of image quality by inhibiting the continuity of image density by adjusting the exposure amount with high precision (high resolution) for the coexisting photoconductor It is to provide.

上記目的を達成するために本発明は,所定の画像データ,例えば,複写機における原稿からの読み取り画像データやプリンタにおける印刷ジョブ等の画像データに基づいて,画素ごとの濃淡レベルを表す画素階調を画像処理手段により決定し,予め帯電手段により帯電済みの感光体の表面を,前記画像処理手段により決定された前記画素階調を変換して得られる露光量に従って露光手段(静電潜像書き込み用の露光手段)により露光することにより,前記感光体に静電潜像を書き込む画像形成装置に適用されるものであり, 前記感光体の表面を複数に分割した各々複数画素分の領域からなる分割領域ごとに,該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分である差分情報を記憶する差分情報記憶手段と,前記分割領域ごとに,前記差分情報記憶手段に記憶された差分情報に基づいて予め面積階調方式の画像処理により決定された前記補正対象画素の配列及び該補正対象画素各々における前記画素階調の補正階調を示す補正画素&階調情報を決定する補正画素&階調決定手段と,前記補正画素&階調決定手段の決定結果に従って前記分割領域各々における各画素の前記画素階調を補正する前記画素階調補正手段と,前記画素階調補正手段により補正後の前記画素階調に応じた露光量で露光がなされるよう前記露光手段を制御する露光量制御手段と,を具備してなる画像形成装置において,前記分割領域各々の前記補正画素&階調情報における前記補正階調の平均値が,当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に応じた値であり,前記画素階調補正手段が,前記分割領域における全画素の前記画素階調が0階調である場合にも前記補正画素&階調情報に基づく前記画素階調の補正を行うものであることを特徴とする画像形成装置である。 In order to achieve the above object, the present invention provides a pixel gradation representing a gray level for each pixel based on predetermined image data, for example, image data read from an original in a copying machine or image data such as a print job in a printer. Is determined by the image processing means, and the surface of the photosensitive member charged in advance by the charging means is exposed according to the exposure amount obtained by converting the pixel gradation determined by the image processing means (electrostatic latent image writing). And an image forming apparatus that writes an electrostatic latent image on the photosensitive member by exposing the photosensitive member to a plurality of pixels, each of which is obtained by dividing the surface of the photosensitive member into a plurality of pixels. For each divided area, a difference that is a difference between an exposure characteristic indicating a correspondence between an average exposure amount of the entire divided area and a potential after exposure and a reference characteristic common to all the divided areas. Difference information storage means for storing information, an array of the correction target pixels determined in advance by area gradation method image processing based on the difference information stored in the difference information storage means for each of the divided regions, and Correction pixel & gradation determination means for determining correction pixel & gradation information indicating the correction gradation of the pixel gradation in each correction target pixel, and in each of the divided areas according to the determination result of the correction pixel & gradation determination means The pixel gradation correcting means for correcting the pixel gradation of each pixel, and exposure for controlling the exposure means so that exposure is performed with an exposure amount corresponding to the pixel gradation after the correction by the pixel gradation correcting means. In the image forming apparatus comprising the amount control means, the average value of the correction gradation in the correction pixel & gradation information of each of the divided areas is an average exposure amount and exposure of the entire divided area. A value corresponding to a difference between an exposure characteristic indicating a correspondence with a later potential and a reference characteristic common to all the divided areas, and the pixel gradation correction unit is configured to output the pixel gradation of all pixels in the divided area. The image forming apparatus is characterized in that the pixel gradation is corrected based on the correction pixel & gradation information even when is 0 gradation .

ここで,前記補正画素&階調情報の決定に用いられる面積階調方式としては,誤差拡散方式やスクリーン方式等が考えられる。
また,前記補正画素&階調情報は,前記分割領域ごとに予め記憶手段に記憶しておきこれを用いることや,或いは所定の情報に基づく画像処理により決定することが考えられる。
例えば,前記分割領域ごとに,その分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に関する差分情報を記憶手段に記憶させておき,前記分割領域ごとにその差分情報に基づいて前記補正画素&階調情報を決定した上で,その決定結果に従って前記分割領域各々における各画素の前記画素階調を補正することが考えられる。
また,前記分割領域ごとに,予め決定された前記補正画素&階調情報を記憶手段に記憶させておき,その記憶情報に従って前記分割領域各々における各画素の前記画素階調を補正してもよい。
このように,複数画素分の領域である前記分割領域の単位で,面積階調方式の画像処理により補正対象画素を分散させて露光量補正を行うことにより,画素各々の露光量調節の分解能が低くても,前記分割領域全体の露光量調節としては,その分割領域を構成する画素数に応じて,「分解能=m・(n−1)+1,但し,nは画素階調の分解能,mは分割領域の画素数」の関係で分解能が向上する(分割領域ごとの)。これにより,前記分割領域全体として高精度での露光量調節が可能となる。
特に,前記画像処理手段が,前記画像データに基づいて複数画素からなる単位画素群ごとに前記画素階調の配列を決定する面積階調方式で階調表現を行うもの(いわゆるデジタル機の画像処理手段)である場合,微小な感度ムラや帯電ムラが画像の濃度ムラとして表れることが抑制される上,空間周期が比較的大きい帯電ムラが存在しても,前記分割領域の単位での面積階調方式による露光量調節によってその帯電ムラが画像の濃度ムラとなって表れることを防止できる点で好適である。
Here, as the area gradation method used for determining the correction pixel & gradation information, an error diffusion method, a screen method, or the like can be considered.
Further, it is conceivable that the correction pixel & gradation information is stored in advance in a storage means for each of the divided areas and used, or determined by image processing based on predetermined information.
For example, for each of the divided areas, storage means stores difference information relating to a difference between an exposure characteristic indicating a correspondence between an average exposure amount of the entire divided area and a potential after exposure and a reference characteristic common to all the divided areas. The correction pixel & gradation information is determined for each divided region based on the difference information, and the pixel gradation of each pixel in each divided region is corrected according to the determination result. Can be considered.
Further, the correction pixel & gradation information determined in advance for each divided area may be stored in a storage means, and the pixel gradation of each pixel in each divided area may be corrected according to the stored information. .
In this way, by performing exposure amount correction by dispersing correction target pixels by area gradation method image processing in units of the divided regions, which are regions for a plurality of pixels, the resolution for adjusting the exposure amount of each pixel can be reduced. Even if it is low, the exposure amount adjustment for the entire divided area is “resolution = m · (n−1) +1, where n is the resolution of the pixel gradation, m according to the number of pixels constituting the divided area. The resolution is improved in relation to “the number of pixels in the divided area” (for each divided area). As a result, the exposure amount can be adjusted with high accuracy for the entire divided area.
In particular, the image processing means performs gradation expression by an area gradation method in which the pixel gradation arrangement is determined for each unit pixel group composed of a plurality of pixels based on the image data (so-called digital machine image processing). In other words, even if there are charging unevenness having a relatively large spatial period, it is possible to suppress minute sensitivity unevenness and charging unevenness from appearing as image density unevenness. It is preferable in that it is possible to prevent the charging unevenness from appearing as image density unevenness by adjusting the exposure amount by the adjustment method.

ここで,前記分割領域各々の前記補正画素&階調情報としては,その情報における前記補正階調の平均値を,当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に応じた値とした情報とし,前記分割領域における全画素の前記画素階調が0階調である場合にも前記補正画素&階調情報に基づく前記画素階調の補正を行うことが考えられる。例えば,前記分割領域各々における前記補正階調の平均値を,当該分割領域全体の平均的な前記露光特性における初期電位と前記基準特性における初期電位との差分に応じた値(例えば,その差分をかさ上げする値)としたものが考えられる。
これにより,従来は露光が行われない前記画素階調が0階調である場合も含めて前記画素階調の補正(即ち,露光量の補正)が行われるので,初期電位のばらつき(基準初期電位との差分)に応じた露光量の補正(かさ上げ)がなされ,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップが抑えられることにより,中間調濃度の連続性を阻害して画質を悪化させることがない。
また,露光量補正における面積階調方式の単位である前記分割領域と,画像形成(静電潜像書き込み)用の画素階調を決定する面積階調方式の単位である前記単位画素群との相互間で,縦方向の画素数及び横方向の画素数を同一とすれば,それら各面積階調方式で決定された階調の配列の空間周期が同一となるので,それらの相互干渉によるモアレの発生を防止できる。
また,前記補正画素&階調情報の決定に用いられる面積階調方式と前記画像処理手段による前記画素階調の決定に用いられる面積階調方式とが,相互にスクリーン角が約15°以上ずれたスクリーン方式であっても,同様にモアレの発生を防止できる。
また,前記感光体がa−Si感光体である場合に,特に帯電ムラが顕著に表れることが多いため,本発明の適用に好適である。
Here, as the correction pixel & gradation information of each of the divided areas, the average value of the correction gradation in the information represents the correspondence between the average exposure amount of the entire divided area and the potential after exposure. The correction pixel & level is used even when the pixel gradation of all the pixels in the divided area is 0 gradation, with information having a value corresponding to the difference between the exposure characteristic and the reference characteristic common to all the divided areas. It is conceivable to correct the pixel gradation based on the key information. For example, the average value of the correction gradation in each of the divided areas is a value corresponding to the difference between the initial potential in the average exposure characteristic of the entire divided area and the initial potential in the reference characteristic (for example, the difference is The value to be raised) is considered.
As a result, since the pixel gradation is corrected (that is, the exposure amount is corrected) including the case where the pixel gradation that has not been conventionally exposed is 0 gradation, variations in the initial potential (reference initial value) are performed. The exposure amount is corrected (raised) according to the difference (potential difference), and the gap between the post-exposure potentials when the pixel gradation is 0 gradation and 1 gradation is suppressed. The image quality is not deteriorated by inhibiting the continuity of density.
In addition, the divided region, which is a unit of area gradation method in exposure amount correction, and the unit pixel group, which is a unit of area gradation method for determining a pixel gradation for image formation (electrostatic latent image writing) If the number of pixels in the vertical direction and the number of pixels in the horizontal direction are the same between each other, the spatial period of the gradation arrangement determined by each area gradation method is the same. Can be prevented.
In addition, an area gradation method used for determining the correction pixel & gradation information and an area gradation method used for determining the pixel gradation by the image processing unit are shifted from each other by about 15 ° or more. Even with the screen system, the occurrence of moiré can be similarly prevented.
In addition, when the photoconductor is an a-Si photoconductor, charging unevenness is particularly noticeable in many cases, which is suitable for application of the present invention.

本発明によれば,感光体の表面を複数に分割した複数画素分の分割領域の単位で,面積階調方式の画像処理によって決定された画素配列(補正階調の配列)の情報に従った画像形成用の画素階調の補正が行われるので,画素各々の露光量調節の分解能が低くても,前記分割領域全体の露光量調節としては,その分割領域を構成する画素数に応じて飛躍的に分解能が向上し,前記分割領域全体として高精度での露光量調節が可能となる。
特に,前記画像処理手段が,前記画像データに基づいて複数画素からなる単位画素群ごとに前記画素階調の配列を決定する面積階調方式で階調表現を行うもの(いわゆるデジタル機の画像処理手段)である場合,微小な感度ムラや帯電ムラが画像の濃度ムラとして表れることが抑制される上,空間周期が比較的大きい帯電ムラが存在しても,前記分割領域の単位での面積階調方式による露光量調節によってその帯電ムラが画像の濃度ムラとなって表れることを防止できる点で好適である。
また,前記分割領域各々の前記補正画素&階調情報における前記補正階調の平均値を,当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に応じた値とし,前記分割領域における全画素の前記画素階調が0階調である場合にも前記補正画素&階調情報に基づく前記画素階調の補正を行えば,従来は露光が行われない前記画素階調が0階調である場合も含めて前記画素階調の補正(即ち,露光量の補正)が行われるので,初期電位のばらつき(基準初期電位との差分)に応じた露光量の補正(かさ上げ)がなされ,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップが抑えられることにより,中間調濃度の連続性を阻害して画質を悪化させることがない。
また,露光量補正における面積階調方式の単位である前記分割領域と,画像形成(静電潜像書き込み)用の画素階調を決定する面積階調方式の単位である前記単位画素群との相互間で,縦方向の画素数及び横方向の画素数を同一とすることや,前記補正画素&階調情報の決定に用いられる面積階調方式と前記画像処理手段による前記画素階調の決定に用いられる面積階調方式とを,相互にスクリーン角が約15°以上ずれたスクリーン方式とすることにより,それら各面積階調方式で決定された階調の配列の相互干渉によるモアレの発生を防止できる。
According to the present invention, in accordance with the information on the pixel arrangement (corrected gradation arrangement) determined by the area gradation method image processing in units of divided areas corresponding to a plurality of pixels obtained by dividing the surface of the photosensitive member into a plurality of pixels. Since pixel gradation correction for image formation is performed, even if the resolution for adjusting the exposure amount of each pixel is low, the exposure amount adjustment for the entire divided region can be performed according to the number of pixels constituting the divided region. In particular, the resolution is improved, and the exposure amount can be adjusted with high accuracy for the entire divided area.
In particular, the image processing means performs gradation expression by an area gradation method in which the pixel gradation arrangement is determined for each unit pixel group composed of a plurality of pixels based on the image data (so-called digital machine image processing). In other words, even if there are charging unevenness having a relatively large spatial period, it is possible to suppress minute sensitivity unevenness and charging unevenness from appearing as image density unevenness. It is preferable in that it is possible to prevent the charging unevenness from appearing as image density unevenness by adjusting the exposure amount by the adjustment method.
In addition, the average value of the correction gradation in the correction pixel & gradation information of each of the divided areas, the exposure characteristics representing the correspondence between the average exposure amount of the entire divided area and the potential after exposure, Even if the pixel gradation of all the pixels in the divided area is 0 gradation, the value of the pixel gradation based on the correction pixel & gradation information is set to a value corresponding to the difference from the reference characteristic common to the divided area. If correction is performed, correction of the pixel gradation (that is, correction of the exposure amount) is performed including the case where the pixel gradation that is not conventionally exposed is 0 gradation. The exposure amount is corrected (raised) according to the difference from the reference initial potential, and the gap between the post-exposure potentials when the pixel gradation is 0 gradation and 1 gradation is suppressed. Do not deteriorate the image quality by inhibiting the continuity of halftone density. .
In addition, the divided region, which is a unit of area gradation method in exposure amount correction, and the unit pixel group, which is a unit of area gradation method for determining a pixel gradation for image formation (electrostatic latent image writing) The number of pixels in the vertical direction and the number of pixels in the horizontal direction are made the same between each other, the area gradation method used for determining the correction pixel & gradation information, and the determination of the pixel gradation by the image processing means The area gradation method used in the above is a screen method in which the screen angles are shifted from each other by about 15 ° or more, so that the generation of moire due to the mutual interference of the gradation arrangement determined by each of the area gradation methods. Can be prevented.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る画像形成装置Xの概略断面図,図2は画像形成装置Xの主要部の概略構成を表すブロック図,図3は画像形成装置Xにおける分割領域の画素階調平均とそれを差分情報の第1実施例に基づいて補正後の画素階調との対応関係及びその補正後画素階調に従って露光を行ったときの元の画素階調平均と露光後電位との関係を表すグラフ,図4は画像形成装置Xにおける分割領域の画素階調平均とそれを差分情報の第2実施例に基づいて補正後の画素階調との対応関係及びその補正後画素階調に従って露光を行ったときの元の画素階調平均と露光後電位との関係を表すグラフ,図5は画像形成装置Xにおける補正画素&階調情報の第1例を表す図,図6は画像形成装置Xにおける補正画素&階調情報の第2例を表す図,図7は画像形成装置Xにおける補正画素&階調情報の第3例を表す図,図8は画像形成装置Xにおける補正画素&階調情報の第4例を表す図,図9は画像形成装置Xにおける画像データに基づく画素階調の配列と補正画素&階調情報の第5例とを表す図,図10は帯電ムラと感度ムラとが並存する感光体表面における従来の画素階調と露光後の電位との関係の一例を表すグラフ,図11は帯電ムラと感度ムラとが並存する感光体表面の露光に際し0を除く全ての画素階調各々を設定して露光した後の電位を基準特性に一致させるように露光量変換を行った場合の画素階調と露光後の電位との関係を表すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
1 is a schematic sectional view of an image forming apparatus X according to an embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of a main part of the image forming apparatus X, and FIG. 3 is a divided region in the image forming apparatus X. Pixel gradation average and the corresponding pixel gradation after correction based on the first embodiment of the difference information and the original pixel gradation average and exposure when exposure is performed according to the corrected pixel gradation FIG. 4 is a graph showing the relationship with the post-potential. FIG. 4 shows the correspondence between the pixel gradation average of the divided regions in the image forming apparatus X and the pixel gradation after correction based on the second embodiment of the difference information, and the correction thereof. FIG. 5 is a graph showing the relationship between the original pixel gradation average and the post-exposure potential when exposure is performed according to the post-pixel gradation, and FIG. 5 is a diagram showing a first example of correction pixel & gradation information in the image forming apparatus X; FIG. 6 is a second example of correction pixel & gradation information in the image forming apparatus X. FIG. 7 is a diagram illustrating a third example of correction pixel & gradation information in the image forming apparatus X, FIG. 8 is a diagram illustrating a fourth example of correction pixel & gradation information in the image forming apparatus X, and FIG. FIG. 10 is a diagram showing an arrangement of pixel gradations based on image data in the image forming apparatus X and a fifth example of correction pixel & gradation information. FIG. 10 shows a conventional pixel level on the surface of the photosensitive member where uneven charging and uneven sensitivity exist. FIG. 11 is a graph showing an example of the relationship between the tone and the potential after exposure, and FIG. 11 shows a state after exposure by setting all the pixel gradations except for 0 in the exposure of the surface of the photoreceptor where charging unevenness and sensitivity unevenness coexist. It is a graph showing the relationship between the pixel gradation and the potential after exposure when the exposure amount conversion is performed so that the potential matches the reference characteristic.

まず,図1に示す断面図を用いて,本発明の実施形態に係る画像形成装置Xの全体構成について説明する。
画像形成装置Xは,ブラック(BK),マゼンダ(M),イエロー(Y),シアン(C),の4色のトナーを用いるタンデム方式の画像形成装置の一例であるプリンタである。
画像形成装置Xは,トナー像を形成し,記録紙に画像形成を行う画像形成部α1,その記録紙を前記画像形成部α1に供給する給紙部α2,及び画像形成の行われた記録紙の排出がなされる排紙部α3を有する。
パーソナルコンピュータ等の外部装置から不図示の通信部により受信された画像情報(印刷ジョブ)は,後述する画像処理部12によりブラック(BK),マゼンダ(M),イエロー(Y),シアン(C),の4色各々に対する画素ごとの濃淡値情報である画素階調に変換される。
First, the overall configuration of the image forming apparatus X according to the embodiment of the present invention will be described using the cross-sectional view shown in FIG.
The image forming apparatus X is a printer that is an example of a tandem type image forming apparatus that uses toner of four colors of black (BK), magenta (M), yellow (Y), and cyan (C).
The image forming apparatus X includes an image forming unit α1 that forms a toner image and forms an image on a recording sheet, a paper feeding unit α2 that supplies the recording sheet to the image forming unit α1, and a recording sheet on which image formation has been performed. Is discharged.
Image information (print job) received from a communication unit (not shown) from an external device such as a personal computer is black (BK), magenta (M), yellow (Y), cyan (C) by an image processing unit 12 to be described later. Are converted into pixel gradations which are grayscale information for each pixel for each of the four colors.

前記画像形成部α1は,上記4色各々の像を担持する4つの感光体ドラム1(ブラック用1BK,マゼンダ用1M,イエロー用1Y,シアン用1C),その感光体ドラム1各々の表面を一様に帯電させる帯電装置3(3BK,3M,3Y,3C),その帯電装置4により予め帯電済みの前記感光体ドラム1各々の表面を後述する画像処理部12により決定される前記画素階調に対応する露光量の光を画素ごとに照射する(露光する)ことにより前記感光体ドラム1に静電潜像を書き込む露光源2(2BK,2M,2Y,2C,露光手段の一例),その静電潜像にトナーを供給することによりトナー像として現像する現像装置5(5BK,5M,5Y,5C),前記感光体ドラム1各々の表面に形成されたトナー像が順次転写され,そのトナー像を記録紙に転写する中間転写ベルト7,記録紙を搬送する搬送ローラ8,記録紙上に転写されたトナー像を加熱定着させる定着装置9,トナー像を記録紙に転写後の前記感光体ドラム1表面の除電を行う除電装置4(4BK,4M,4Y,4C)等を備えて概略構成される。   The image forming portion α1 has four photosensitive drums 1 (1BK for black, 1M for magenta, 1Y for yellow, and 1C for cyan) carrying the images of the four colors, and the surface of each of the photosensitive drums 1. The charging device 3 (3BK, 3M, 3Y, 3C) to be charged in this manner, and the surface of each of the photosensitive drums 1 charged in advance by the charging device 4 to the pixel gradation determined by the image processing unit 12 described later. An exposure source 2 (2BK, 2M, 2Y, 2C, an example of exposure means) that writes an electrostatic latent image on the photosensitive drum 1 by irradiating (exposing) light with a corresponding exposure amount for each pixel, The toner image formed on the surface of each of the developing drums 5 (5BK, 5M, 5Y, 5C) and the photosensitive drum 1 for developing the toner image by supplying toner to the electrostatic latent image is sequentially transferred to the toner. An intermediate transfer belt 7 for transferring the toner image onto the recording paper, a conveying roller 8 for conveying the recording paper, a fixing device 9 for heating and fixing the toner image transferred onto the recording paper, and the photosensitive drum 1 after transferring the toner image onto the recording paper. It is schematically configured to include a static eliminator 4 (4BK, 4M, 4Y, 4C) or the like that performs static elimination on the surface.

前記感光体ドラム1は,例えば,高硬度で性状が安定しているため耐久性に優れる一方,感度ムラに加えて帯電ムラが比較的顕著に表れやすいa−Si感光体等である。
前記帯電装置3は,前記感光体ドラム1の表面をその軸方向に沿って一様に帯電させるものであるが,前記感光体ドラム1に帯電ムラがある場合,前記帯電装置3による帯電後(露光前)の電位(初期電位)には分布が生じる。
図1に示す前記露光源2は,前記感光体ドラム1の軸方向(主走査方向)に1画素ごとに複数のLEDが配列されたLEDアレイにより構成されたものの例を示している。この他,前記露光源2は,レーザ光を前記感光体ドラム1の軸方向に走査するレーザスキャン装置等によって構成されたものであってもよい。
前記現像装置5は,前記感光体ドラム1にトナーを供給する現像ローラを備え,その現像ローラに印加された電位(現像バイアス電位)と前記感光体ドラム1表面の電位との電位ギャップに応じて,前記現像ローラ上のトナーが前記感光体ドラム1の面上に引き寄せられ,前記静電潜像がトナー像として顕像化される。
前記給紙部α2は,給紙カセット20,給紙ローラ6等を有して概略構成される。前記給紙カセット20に予め収容された記録紙は,前記給紙ローラ6が回転駆動することにより前記画像形成部α1に搬送される。
前記給紙部α2から送出された記録紙は,前記搬送ローラ8により搬送されつつ,前記中間転写ベルト7からトナー像が転写される。そして,トナー像が転写された記録紙は,前記定着装置9に搬送され,例えば加熱ローラ等により記録紙に加熱定着された後,前記排紙部α3に搬送されて排出される。
The photosensitive drum 1 is, for example, an a-Si photosensitive member that is excellent in durability because of its high hardness and stable properties, while charging unevenness is likely to appear relatively remarkably in addition to sensitivity unevenness.
The charging device 3 uniformly charges the surface of the photosensitive drum 1 along its axial direction. If the photosensitive drum 1 is unevenly charged, Distribution occurs in the potential (initial potential) before exposure.
The exposure source 2 shown in FIG. 1 shows an example in which the exposure source 2 is constituted by an LED array in which a plurality of LEDs are arranged for each pixel in the axial direction (main scanning direction) of the photosensitive drum 1. In addition, the exposure source 2 may be constituted by a laser scanning device or the like that scans laser light in the axial direction of the photosensitive drum 1.
The developing device 5 includes a developing roller that supplies toner to the photosensitive drum 1, and corresponds to a potential gap between a potential (developing bias potential) applied to the developing roller and a potential on the surface of the photosensitive drum 1. The toner on the developing roller is attracted onto the surface of the photosensitive drum 1, and the electrostatic latent image is visualized as a toner image.
The paper feeding unit α2 is roughly configured to include a paper feeding cassette 20, a paper feeding roller 6, and the like. The recording paper previously stored in the paper feed cassette 20 is conveyed to the image forming unit α1 when the paper feed roller 6 is driven to rotate.
The recording paper delivered from the paper feeding unit α2 is transferred by the transfer roller 8 and the toner image is transferred from the intermediate transfer belt 7. Then, the recording paper on which the toner image has been transferred is conveyed to the fixing device 9, and is heated and fixed on the recording paper by, for example, a heating roller, and then conveyed to the paper discharge unit α3 and discharged.

図2は,画像形成装置Xの主要部の概略構成を表すブロック図である。
画像形成装置Xは,前記帯電装置3,前記露光源2,前記現像装置5及び前記除電装置4に加え,MPU及びその周辺装置であるROM,RAM等から構成され,当該画像形成装置Xの各構成要素を制御する制御部10,利用者に対する情報の表示手段であるとともに,利用者の操作に従って情報を入力する手段でもある液晶タッチパネル等の表示操作部11,各種画像処理を行う画像処理部12,EEPROM等の読み書き自在の記憶手段であり各種データを記憶するデータ記憶部13,前記感光体ドラム1各々の回転方向の位置を検出する回転位置検出部14及び後述する差分情報に基づく画像処理を行う補正用画像処理部15等を備えている。
前記画像処理部12は,外部装置から不図示の通信制御部を介して入力される所定の画像データ(印刷ジョブ等)に基づいて,トナーの各色について画素ごとの濃淡レベルを表す画素階調をデジタル方式により決定する処理を実行する。
ここで,前記画像処理部12は,前記画像データに基づいて,複数画素からなる画素群(以下,単位画素群という)の単位で,印字する画素(描画画素)の配列,及び印字する画素の前記画素階調を決定する誤差拡散方式やスクリーン方式等の面積階調方式によって画像の濃度階調表現を行う。
前記データ記憶部13には,予め,前記感光体ドラム1各々について,その表面を複数に分割した領域であって複数画素分の領域からなる分割領域ごとに,その分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性(例えば,図10(a)のグラフg01の特性)と,全ての前記分割領域に共通の基準特性(例えば,図10(a)のグラフg0の特性)との差分を特定するための情報である差分情報が予め記憶されている(差分情報記憶手段の一例)。この差分情報の内容については後述する。
ここで,前記分割領域は,例えば,当該分割領域と前記画像処理部12における面積階調方式での画像処理で採用される前記単位画素群とで,相互に縦方向(副走査方向)の画素数及び横方向(主走査方向)の画素数を同一にした領域とすること等が考えられる。
前記補正用画像処理部15は,前記差分情報に基づいて面積階調方式の画像処理を行うことにより,後述する補正画素&階調情報を求めるものである。
FIG. 2 is a block diagram illustrating a schematic configuration of a main part of the image forming apparatus X.
The image forming apparatus X includes an MPU and its peripheral devices such as a ROM and a RAM in addition to the charging device 3, the exposure source 2, the developing device 5, and the charge eliminating device 4. A control unit 10 that controls the components, a display operation unit 11 such as a liquid crystal touch panel that is a unit for inputting information according to a user operation, and an image processing unit 12 that performs various types of image processing. , An EEPROM or other readable / writable storage means for storing various data, a rotational position detector 14 for detecting the position of each photosensitive drum 1 in the rotational direction, and image processing based on differential information described later. A correction image processing unit 15 is provided.
The image processing unit 12 calculates a pixel gradation representing a gray level for each pixel for each color of toner based on predetermined image data (print job or the like) input from an external device via a communication control unit (not shown). The process determined by the digital method is executed.
Here, based on the image data, the image processing unit 12 arranges pixels to be printed (drawing pixels) in units of a pixel group composed of a plurality of pixels (hereinafter referred to as a unit pixel group) and the pixels to be printed. The density gradation representation of the image is performed by an area gradation method such as an error diffusion method or a screen method for determining the pixel gradation.
In the data storage unit 13, the average exposure of the entire divided area for each divided area composed of a plurality of pixels, which is an area obtained by dividing the surface of each of the photosensitive drums 1 in advance. An exposure characteristic (for example, the characteristic of the graph g01 in FIG. 10A) indicating the correspondence between the amount and the potential after exposure, and a reference characteristic common to all the divided regions (for example, the graph g0 in FIG. 10A). Difference information, which is information for specifying the difference between the first and second characteristics), is stored in advance (an example of difference information storage means). The contents of the difference information will be described later.
Here, the divided regions are, for example, pixels in the vertical direction (sub-scanning direction) between the divided region and the unit pixel group employed in the image processing in the area gradation method in the image processing unit 12. It is conceivable that the number of pixels and the number of pixels in the horizontal direction (main scanning direction) are the same.
The correction image processing unit 15 obtains correction pixel & gradation information to be described later by performing area gradation image processing based on the difference information.

そして,前記制御部10は,前記画像処理部12により決定された前記画素階調を取得し,その画素階調と前記差分情報とに基づいて前記感光体1ごと,及び前記分割領域ごとに個別に前記露光源2における露光量を制御する(露光量制御手段の一例)。以下,この露光量制御を個別露光量制御という。その結果,前記露光源2各々により,前記個別露光量制御に従った露光量での前記分割領域各々の露光が行われる。
また,前記制御部10は,前記分割領域の各位置(露光位置)を認識して前記露光源2による露光を制御する。
即ち,前記露光源2にLEDアレイを用いる場合,画素ごとにLEDが配列されているので,前記制御部10は,前記感光体ドラム1表面の軸方向(主走査方向)の露光位置については,点灯させるLEDの配列位置(配列番号等)により認識する。
これに対し,前記感光体ドラム1表面の周方向(副走査方向)の露光位置については,前記回転位置検出部14により前記感光体ドラム1表面のいずれの位置が前記露光源2の光照射位置に位置するかを検出し,前記制御部10は,その検出結果を取得することにより認識する。
一方,前記データ記憶部13に,前記分割領域各々の識別情報として,LEDの識別情報(LEDの配列番号等)と前記回転位置検出部14の検出値との組み合わせを記憶しておき,さらにその組み合わせ(前記分割領域各々の識別情報)各々に対応づけて前記かさ上げ露光量を記憶しておく。
さらに,前記制御部10は,これから点灯させようとするLEDの位置(配列番号等)と前記回転位置検出部14の検出結果とに基づいて,前記個別露光量制御に用いる前記かさ上げ露光量を前記データ記憶部13から抽出(検索)して読み出す。
また,前記回転位置検出部14の構成としては,例えば,前記感光体ドラム1の回転軸に回転式のポテンショメータを設けて回転位置を検出する構成や,前記感光体ドラム1の回転軸に突起部等の基準部を設け,その基準部の通過位置を接触型のスイッチやフォトカプラ等により検出し,その検出時点からの経過時間を計時する構成等が考えられる。
なお,前記露光源2としてレーザスキャン装置を用いる場合,前記感光体ドラム1表面の軸方向(主走査方向)の露光位置については,レーザ光の走査に用いられるポリゴンミラーの回転位置を検出することや,或いは,レーザ光が所定の基点位置に偏向されたことが受光素子により検出されてからの経過時間を計時すること等により検出すればよい。
さらに前記制御部10は,所定のクロック信号の分周やカウント等を行うパルス信号制御回路(不図示)を備え,これにより生成された各種の信号を前記露光源2に出力することにより,前記露光源2の露光時間を制御する。ここで,露光時間は,前記画素階調に比例した時間が設定される。これにより,露光強度を一定とする限り,前記画素階調に比例した露光量での露光がなされることになる。
Then, the control unit 10 acquires the pixel gradation determined by the image processing unit 12, and individually for each of the photoreceptors 1 and for each divided region based on the pixel gradation and the difference information. The exposure amount in the exposure source 2 is controlled (an example of exposure amount control means). Hereinafter, this exposure amount control is referred to as individual exposure amount control. As a result, each of the divided regions is exposed by the exposure source 2 with the exposure amount according to the individual exposure amount control.
The controller 10 recognizes each position (exposure position) of the divided area and controls exposure by the exposure source 2.
That is, when an LED array is used for the exposure source 2, the LEDs are arranged for each pixel, so that the control unit 10 determines the exposure position in the axial direction (main scanning direction) of the surface of the photosensitive drum 1. Recognized by the array position (array number, etc.) of the LEDs to be lit.
On the other hand, with respect to the exposure position in the circumferential direction (sub-scanning direction) of the surface of the photosensitive drum 1, any position on the surface of the photosensitive drum 1 by the rotational position detector 14 is the light irradiation position of the exposure source 2. The control unit 10 recognizes by acquiring the detection result.
On the other hand, a combination of LED identification information (LED array number, etc.) and detection value of the rotational position detection unit 14 is stored in the data storage unit 13 as identification information for each of the divided regions. The raised exposure amount is stored in association with each combination (identification information of each divided region).
Further, the control unit 10 determines the raised exposure amount used for the individual exposure amount control based on the position of the LED to be lit (array number, etc.) and the detection result of the rotational position detection unit 14. Data is extracted (searched) from the data storage unit 13 and read out.
The rotational position detector 14 may be configured to detect a rotational position by providing a rotary potentiometer on the rotating shaft of the photosensitive drum 1 or a protrusion on the rotating shaft of the photosensitive drum 1. It is conceivable to provide a reference portion such as the above, detect the passing position of the reference portion with a contact-type switch, a photocoupler, or the like, and measure the elapsed time from the detection point.
When a laser scanning device is used as the exposure source 2, the rotational position of the polygon mirror used for scanning the laser beam is detected for the exposure position in the axial direction (main scanning direction) of the surface of the photosensitive drum 1. Alternatively, it may be detected by measuring the elapsed time after the light receiving element detects that the laser beam has been deflected to the predetermined base position.
Further, the control unit 10 includes a pulse signal control circuit (not shown) that divides and counts a predetermined clock signal, and outputs various signals generated thereby to the exposure source 2, thereby The exposure time of the exposure source 2 is controlled. Here, the exposure time is set in proportion to the pixel gradation. As a result, as long as the exposure intensity is constant, exposure is performed with an exposure amount proportional to the pixel gradation.

ところで,本画像形成装置Xは,製造段階等において,それに組み込まれた前記感光体ドラム1個々の露光特性を得るための特性評価試験に供される。より具体的には,前記特性評価試験(予めの実測)は,前記帯電装置3により帯電された(帯電済みの)前記感光体ドラム1に対し,前記分割領域ごとに複数の露光量の条件下で前記露光源2による露光が行われるとともに,前記分割領域ごとの露光前の初期電位と露光後の電位とが実測され,前記分割領域各々の露光特性,即ち,露光量と露光後の電位との関係を表す特性(以下,実測露光特性という)が明らかにされる。図10(a)に示す太い破線グラフg0が,そのようにして明らかにされた露光特性の一例である。
ここで,前記分割領域各々の露光特性を測定する方法としては,例えば,前記分割領域各々について,密に露光量を切り替えて露光し,露光後の電位を測定すれば,正確な露光特性を測定できる。その他,図10(a)に示したように,露光特性の傾向(カーブの形)はある程度決まっており,係数のみ変更すれば共通の式で定式化できるのが一般的であるので,1又は複数の代表的な露光量で露光した後の電位を測定した結果に基づいて,露光特性を推定してもよい。
例えば,a−Si感光体ドラムであれば,残留電位は前記感光体ドラム1の表面の位置によらずほぼ一定であるので,初期電位と,前記略線形特性の範囲の1つの露光量で露光した後の電位とを測定すれば,十分な精度で露光特性を推定できる。
前記差分情報は,そのようにして測定(或いは測定に基づき推定)された前記分割領域ごとの露光特性に基づいて決定(設定)される。
By the way, the image forming apparatus X is subjected to a characteristic evaluation test for obtaining the exposure characteristics of each of the photosensitive drums 1 incorporated in the image forming apparatus X in a manufacturing stage or the like. More specifically, the characteristic evaluation test (preliminarily measured) is performed on the photosensitive drum 1 charged (charged) by the charging device 3 under a condition of a plurality of exposure amounts for each divided region. The exposure source 2 performs exposure and the initial potential before exposure and the potential after exposure for each divided region are measured, and the exposure characteristics of each divided region, that is, the exposure amount and the potential after exposure, The characteristics representing the relationship (hereinafter referred to as measured exposure characteristics) are clarified. A thick broken line graph g0 shown in FIG. 10A is an example of the exposure characteristic thus clarified.
Here, as a method for measuring the exposure characteristics of each of the divided areas, for example, the exposure characteristics of each of the divided areas are densely switched and exposed, and the potential after exposure is measured to measure accurate exposure characteristics. it can. In addition, as shown in FIG. 10 (a), the tendency (exposure curve) of the exposure characteristics is determined to some extent, and it is general that it can be formulated by a common equation if only the coefficient is changed. The exposure characteristics may be estimated based on the result of measuring the potential after exposure with a plurality of representative exposure amounts.
For example, in the case of an a-Si photosensitive drum, the residual potential is almost constant regardless of the position of the surface of the photosensitive drum 1, so that the exposure is performed with the initial potential and one exposure amount within the range of the substantially linear characteristic. By measuring the potential after the exposure, the exposure characteristics can be estimated with sufficient accuracy.
The difference information is determined (set) based on the exposure characteristics for each of the divided regions measured (or estimated based on the measurement).

<差分情報の第1実施例>
以下,前述した図10及び図3を用いて,a−Si感光体ドラム1の表面におけるある前記分割領域の平均的な露光特性が,図10(a)に示した特性,即ち,帯電ムラと感度ムラとが併存する露光特性(g0)である場合を例として,前記差分情報の第1実施例について説明する。
ここで,図3(b)は,図10(a)のグラフg01に示した露光特性を有する前記分割領域について,画像データに基づいて前記画像処理部12により決定される前記画素階調の平均値(以下,単に画素階調平均又は元の画素階調平均という)とそれを前記差分情報の第1実施例に基づいて補正した後の画素階調の平均値(以下,補正後画素階調平均という)との対応関係を表すグラフであり,図3(a)は,図3(b)に示す前記補正後画素階調平均を比例換算した露光量で露光を行った場合の前記元の画素階調平均と露光後の電位(露光後電位)との関係を表すグラフである。
ここで,図3(b)に示す一点破線は,前記元の画素階調平均Iaveと前記補正後画素階調平均Ixとが等しい場合(Ix=Iave),即ち,補正を行わない場合の対応関係を表す。なお,図10(a)のグラフg0,g01に示した特性は,前記元の画素階調平均をそのまま補正せずに,前記分割領域における平均露光量が,その元の画素階調平均を正比例換算した露光量となるように露光が行われた場合の特性である。
また,図3(b)に示す実線は,前記元の画素階調平均Iaveと前記補正後画素階調平均Ixとの対応関係(Ix=Iave+Ia,但し,Iaは前記分割領域ごとに設定される定数(後述するかさ上げ階調))を表す。この対応関係におけるy切片Iaが,前記分割領域ごとの前記差分情報の一例である「かさ上げ階調」として前記データ記憶部13に予め記憶されている。
ここで,前記かさ上げ階調Iaは,前記分割領域ごとに,その分割領域全体の平均的な前記露光特性(図10(a)のグラフg01)における初期電位Vx0と前記基準特性(図10(a)のグラフg0)における初期電位V0(基準初期電位)との差分(Vx0−V0)[V]を,前記画素階調に換算した値(差分に応じた値の一例)である。
即ち,前記かさ上げ画素階調Iaは,図10(a)に示すように,前記分割領域の平均的な露光特性g01に,前記かさ上げ画素階調Iaを予め定められた変換係数(分割領域全てに共通の係数(傾き))に基づいて線形変換して得られる露光量を適用すれば,露光後の電位が前述の差分(Vx0−V0)だけ降下するような画素階調である。
<First Example of Difference Information>
10 and 3 described above, the average exposure characteristic of a certain divided area on the surface of the a-Si photosensitive drum 1 is the characteristic shown in FIG. The first example of the difference information will be described by taking as an example the case where the exposure characteristic (g0) coexists with sensitivity unevenness.
Here, FIG. 3B shows an average of the pixel gradations determined by the image processing unit 12 based on image data for the divided regions having the exposure characteristics shown in the graph g01 in FIG. Value (hereinafter, simply referred to as pixel gradation average or original pixel gradation average) and the average value of pixel gradations after correction based on the first embodiment of the difference information (hereinafter referred to as corrected pixel gradation) 3 (a) is a graph showing a correspondence relationship with the average), and FIG. 3 (a) shows the original when the exposure is performed with an exposure amount obtained by proportionally converting the corrected pixel gradation average shown in FIG. 3 (b). It is a graph showing the relationship between pixel gradation average and the potential after exposure (potential after exposure).
Here, the one-dot broken line shown in FIG. 3B corresponds to the case where the original pixel gradation average Iave and the corrected pixel gradation average Ix are equal (Ix = Iave), that is, when correction is not performed. Represents a relationship. Note that the characteristics shown in the graphs g0 and g01 in FIG. 10A show that the original pixel gradation average is not corrected as it is, and the average exposure amount in the divided area is directly proportional to the original pixel gradation average. This is a characteristic when the exposure is performed so that the converted exposure amount is obtained.
Also, the solid line shown in FIG. 3B is a correspondence relationship between the original pixel gradation average Iave and the corrected pixel gradation average Ix (Ix = Iave + Ia, where Ia is set for each of the divided regions. A constant (a raised gradation described later). The y-intercept Ia in this correspondence relationship is stored in advance in the data storage unit 13 as “raised tone” that is an example of the difference information for each of the divided areas.
Here, the raised gradation Ia has the initial potential Vx0 in the average exposure characteristic (graph g01 in FIG. 10A) and the reference characteristic (FIG. This is a value obtained by converting the difference (Vx0−V0) [V] from the initial potential V0 (reference initial potential) in the graph g0) of a) into the pixel gradation (an example of a value corresponding to the difference).
That is, as shown in FIG. 10A, the raised pixel gradation Ia has an average exposure characteristic g01 of the divided area, and a conversion coefficient (divided area) that determines the raised pixel gradation Ia in advance. If an exposure amount obtained by linear conversion based on a coefficient (slope) common to all is applied, the pixel gradation is such that the potential after exposure drops by the difference (Vx0−V0).

ここで,前記制御部10(露光量制御手段の一例)により,前記画素階調及び前記かさ上げ階調Ia(差分情報)を,具体的にどのように各画素の露光量制御に反映させるかについては後述するが,前記分割領域ごとに,その平均的な露光量を,前記画素階調平均に比例した露光量に対して前記かさ上げ階調Iaに相当する露光量だけ加算(かさ上げ)した露光量で露光することにより,前記画素階調平均に対する露光後の電位の特性は,図3(a)のグラフgx1のようになる。
図3(a)のグラフgx1に示すように,帯電ムラが存在する前記感光体(帯電済みの感光体)について,前記画素階調平均に対する露光後の電位の特性が,全体的に前記基準初期電位V0を初期電位とする基準特性g0に近づく。その結果,前記感光体1表面の位置ごとの露光後電位のばらつきが抑えられ,画像の濃度ムラの発生を極力防止することができる。
さらに,従来は露光が行われない前記画素階調が0階調である画素についても,初期電位の差分に応じた前記かさ上げ画素階調Iaに相当する露光量での露光がなされるので,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップ(図11のΔV0)が抑えられ,中間調濃度の連続性を阻害して画質を悪化させることがない。
なお,図3に示す例では,前記画素階調平均が0階調を含む全範囲である場合について,前記かさ上げ階調Iaに基づく補正を行っているが,前記画素階調が0階調を含む一部の範囲である場合にのみ,前記かさ上げ階調Iaに基づく補正を行ってもよい。
例えば,図10(a)に示す特性g01のうち,前記画素階調平均が0階調から略線形特性を示す範囲内の階調である場合にのみ(即ち,露光後の電位が残留電位及びその近傍電位である場合を除く範囲),前記かさ上げ階調Iaに相当する露光量を加算する露光量制御を行うようにしても,前記分割領域各々における露光特性は基準となる露光特性とほぼ一致する。
Here, how the control unit 10 (an example of exposure amount control means) specifically reflects the pixel gradation and the raised gradation Ia (difference information) in the exposure amount control of each pixel. As will be described later, for each of the divided regions, the average exposure amount is added by the exposure amount corresponding to the raised gradation Ia to the exposure amount proportional to the pixel gradation average (raising). By performing exposure with the exposure amount thus obtained, the characteristics of the potential after exposure with respect to the average pixel gradation become as shown by a graph gx1 in FIG.
As shown in the graph gx1 in FIG. 3A, the characteristics of the potential after exposure with respect to the pixel gradation average of the photoconductor (charged photoconductor) in which charging unevenness exists are generally the reference initial value. It approaches the reference characteristic g0 having the potential V0 as the initial potential. As a result, variations in the post-exposure potential for each position on the surface of the photoreceptor 1 can be suppressed, and the occurrence of uneven density in the image can be prevented as much as possible.
Furthermore, since exposure is performed with an exposure amount corresponding to the raised pixel gradation Ia corresponding to the difference in the initial potential even for a pixel whose pixel gradation is 0 gradation, which is not conventionally exposed, The gap in the post-exposure potential (ΔV0 in FIG. 11) when the pixel gradation is 0 gradation and 1 gradation is suppressed, and the image quality is not deteriorated by inhibiting the continuity of halftone density. .
In the example shown in FIG. 3, correction based on the raised gradation Ia is performed when the pixel gradation average is the entire range including 0 gradation, but the pixel gradation is 0 gradation. The correction based on the raised gradation Ia may be performed only in a part of the range including.
For example, among the characteristics g01 shown in FIG. 10 (a), only when the pixel gradation average is a gradation within a range from 0 gradation to a substantially linear characteristic (that is, the potential after exposure is the residual potential and Even if the exposure amount control for adding the exposure amount corresponding to the raised gradation Ia is performed, the exposure characteristic in each of the divided areas is almost the same as the reference exposure characteristic. Match.

<差分情報の第2実施例>
以下,前述した図10及び図3を用いて,a−Si感光体ドラム1の表面におけるある前記分割領域の平均的な露光特性が,図10(a)に示した特性,即ち,帯電ムラと感度ムラとが併存する露光特性(g0)である場合を例として,前記差分情報の第2実施例について説明する。
図4(b)は,図3(b)と同様に図10(a)のグラフg01に示した露光特性を有する前記分割領域について,前記元の画素階調平均とそれを前記差分情報の第2実施例に基づいて補正した前記補正後画素階調平均との対応関係を表すグラフであり,図4(a)は,図4(b)に示す前記補正後画素階調平均を比例換算した露光量で露光を行った場合の前記元の画素階調平均と露光後の電位(露光後電位)との関係を表すグラフである。
ここで,図4(b)に一点破線で示す特性は図3(b)の一点破線と同じものを表す。
また,図4(b)に示す実線は,前記元の画素階調平均Iaveと前記補正後画素階調平均Ixとの対応関係(Ix=k1・Iave+Ia,但し,k1は傾き,Iaは前記かさ上げ階調)を表す。k1は,前記分割領域各々について,前記元の画素階調平均を前記補正後画素階調平均へ線形変換する際の傾きを規定する傾き情報である。
この対応関係における前記かさ上げ階調Ia及び前記傾き情報k1が,前記差分情報の一例として,前記分割領域ごとに前記データ記憶部13に予め記憶されている。
<Second Example of Difference Information>
10 and 3 described above, the average exposure characteristic of a certain divided area on the surface of the a-Si photosensitive drum 1 is the characteristic shown in FIG. The second embodiment of the difference information will be described by taking as an example the case where the exposure characteristic (g0) coexists with sensitivity unevenness.
FIG. 4B shows the original pixel tone average and the difference information of the difference information for the divided region having the exposure characteristics shown in the graph g01 of FIG. FIG. 4A is a graph showing a correspondence relationship with the corrected pixel gradation average corrected based on Example 2, and FIG. 4A is a proportional conversion of the corrected pixel gradation average shown in FIG. It is a graph showing the relationship between the said original pixel gradation average at the time of exposing with exposure amount, and the electric potential after exposure (post-exposure electric potential).
Here, the characteristic indicated by the dashed line in FIG. 4B represents the same characteristic as the dashed line in FIG.
Also, the solid line shown in FIG. 4 (b) indicates the correspondence between the original pixel gradation average Iave and the corrected pixel gradation average Ix (Ix = k1 · Iave + Ia, where k1 is the slope, and Ia is the bulk. Represents a raised gradation). k1 is inclination information that defines an inclination when linearly converting the original pixel gradation average into the corrected pixel gradation average for each of the divided regions.
The raised gradation Ia and the inclination information k1 in this correspondence relationship are stored in advance in the data storage unit 13 for each of the divided areas as an example of the difference information.

ここで,前記制御部10(露光量制御手段の一例)により,前記画素階調及び前記かさ上げ階調Ia及び前記傾き情報k1(差分情報)を,具体的にどのように各画素の露光量制御に反映させるかについては後述するが,前記分割領域ごとに,その平均的な露光量を,前記画素階調平均に比例した露光量に対して前記かさ上げ階調Iaと前記傾き情報k1により特定される補正階調Iki(=Iave・(k1−1))とを加算した階調(Ia+Iki)に相当する露光量だけ加算した露光量で露光することにより,前記画素階調平均に対する露光後の電位の特性は,図4(a)のグラフgx2のようになる。
図4(a)のグラフgx2に示すように,帯電ムラ及び感度ムラが併存する前記感光体(帯電済みの感光体)について,初期電位のばらつき(帯電ムラ)に加え,露光特性における傾きのばらつき,即ち,感度ムラに起因する露光特性のばらつき分も補正されるため,前記画素階調平均に対する露光後の電位の特性は,基準となる特性g0とほぼ一致する。
その結果,帯電ムラと感度ムラとが併存する感光体ドラム1において,その表面の位置ごとの露光後電位のばらつきをほぼ無くすことができ,画像の濃度ムラ発生の防止効果をさらに高めることができる。
Here, the control unit 10 (an example of exposure amount control unit) specifically determines how the pixel gradation, the raised gradation Ia, and the inclination information k1 (difference information) are applied to the exposure amount of each pixel. Whether to reflect in the control will be described later. For each of the divided regions, the average exposure amount is determined by the raised gradation Ia and the inclination information k1 with respect to the exposure amount proportional to the pixel gradation average. After exposure with respect to the pixel gradation average, exposure is performed with an exposure amount corresponding to the gradation (Ia + Iki) obtained by adding the specified correction gradation Iki (= Iave · (k1-1)). The characteristic of the potential is as shown by a graph gx2 in FIG.
As shown in the graph gx2 in FIG. 4A, in the photosensitive member (charged photosensitive member) in which charging unevenness and sensitivity unevenness coexist, in addition to initial potential variation (charging unevenness), variation in inclination in exposure characteristics. That is, since the exposure characteristic variation due to the sensitivity unevenness is also corrected, the characteristic of the potential after the exposure with respect to the pixel gradation average substantially matches the reference characteristic g0.
As a result, in the photosensitive drum 1 in which charging unevenness and sensitivity unevenness coexist, variation in the post-exposure potential for each position on the surface can be almost eliminated, and the effect of preventing the occurrence of uneven image density can be further enhanced. .

次に,前記差分情報(かさ上げ階調Iaや傾き情報k1)をどのように各画素の露光量制御に反映させるかについて説明する。
本画像形成装置Xでは,前記補正用画像処理部15により,画像データに基づく画像処理を行う前に,予め前記分割領域ごとに,前記差分情報に基づいて面積階調方式の画像処理を行うことによって補正対象画素の配列及びその補正対象画素各々における前記画素階調の補正階調を表す補正画素&階調情報を決定する(補正画素&階調決定手段の一例)。
一般に,面積階調方式の画像処理においては,その処理単位となる複数の画素群(前記単位画素群)ごとに,その単位画素群全体の濃度階調の設定値(以下,設定濃度階調という)が与えられれば,その単位画素群における各画素の前記画素階調の平均値が,与えられた前記設定濃度階調となるように,また,描画画素が散在するように前記画素階調の配列が決定される。その決定規則は予め定められたものである。
従って,予め前記差分情報に基づく面積階調方式の画像処理(前記補正用画像処理部15の処理)の単位画素群の領域各々と前記分割領域各々とが対応するように設定しておき,前記差分情報に基づいて前記分割領域全体として補正すべき平均的な補正階調レベル(Ia又は(Ia+Iki))を決定し,その補正階調レベルを前記設定濃度階調として与えれば,前記分割領域における各画素の補正階調(画素階調に相当)の平均値が前記差分情報に対応する補正階調レベルとなるように,面積階調方式に基づく各画素の補正階調の配列が決定される。このようにして決定される補正階調の配列が,前記補正画素&階調情報(補正対象画素及びその各画素の補正階調)である。
Next, how the difference information (raised gradation Ia and inclination information k1) is reflected in the exposure amount control of each pixel will be described.
In the image forming apparatus X, the correction image processing unit 15 performs area gradation type image processing based on the difference information in advance for each of the divided regions before performing image processing based on image data. The correction pixel & gradation information indicating the correction gradation of the pixel gradation in each of the correction target pixels is determined by the correction target pixel array (an example of correction pixel & gradation determination means).
In general, in area gradation image processing, for each of a plurality of pixel groups (unit pixel group) as a processing unit, a set value of density gradation of the entire unit pixel group (hereinafter referred to as set density gradation). ), The average value of the pixel gradation of each pixel in the unit pixel group becomes the given set density gradation, and the pixel gradation of the pixel gradation is scattered so that the drawing pixels are scattered. The sequence is determined. The decision rule is predetermined.
Accordingly, the area of the unit pixel group of the area gradation method image processing based on the difference information (the processing of the correction image processing unit 15) is set so as to correspond to each of the divided areas. If an average corrected gradation level (Ia or (Ia + Iki)) to be corrected for the entire divided area is determined based on the difference information and the corrected gradation level is given as the set density gradation, An array of correction gradations for each pixel based on the area gradation method is determined so that an average value of correction gradations (corresponding to pixel gradations) of each pixel becomes a correction gradation level corresponding to the difference information. . The correction gradation array determined in this way is the correction pixel & gradation information (correction target pixel and correction gradation of each pixel).

例えば,前記かさ上げ階調Iaに基づいて前記補正画素&階調情報を決定する場合,前記分割領域ごとに,前記制御部10から前記補正用画像処理部15に対して前記かさ上げ階調Iaを前記設定濃度階調として与える。これにより,前記分割領域における各画素の補正階調が当該分割領域内に散在するように決定される。このようにして決定される補正階調の配列が前記補正画素&階調情報であり,その補正階調の平均値が前記かさ上げ階調Iaとなる。
同様に,前記かさ上げ階調Ia及び前記傾き情報k1に基づいて前記補正画素&階調情報を決定する場合,まず,前記制御部10により,前記分割領域ごとに,その領域に含まれる全画素の前記画素階調の平均値Iaveを求め,さらに前記傾き情報k1に基づく階調補正分Iki(=Iave・(k1−1))を求める。
次に,前記制御部10から前記補正用画像処理部15に対して前記かさ上げ階調Iaと前記傾き情報k1に基づく補正階調Ikiとを加算した階調(Ia+Iki)を前記設定濃度階調として与える。これにより,前記分割領域における各画素の補正階調が当該分割領域内に散在するように決定され,その補正階調の平均値が(Ia+Iki)となる。
以下,前記分割領域各々における前記差分情報に基づく全体の補正階調(Ia又は(Ia+Iki))を平均補正階調という。
For example, when the correction pixel & gradation information is determined based on the raised gradation Ia, the raised gradation Ia is supplied from the control unit 10 to the correction image processing unit 15 for each divided region. Is given as the set density gradation. Thereby, the correction gradation of each pixel in the divided area is determined so as to be scattered in the divided area. The correction gradation array thus determined is the correction pixel & gradation information, and the average value of the correction gradations is the raised gradation Ia.
Similarly, when the correction pixel & gradation information is determined based on the raised gradation Ia and the inclination information k1, first, all the pixels included in the divided area are determined by the control unit 10 for each divided area. The average value Iave of the pixel gradation is obtained, and further, a gradation correction amount Iki (= Iave · (k1-1)) based on the inclination information k1 is obtained.
Next, a gradation (Ia + Iki) obtained by adding the raised gradation Ia and the corrected gradation Iki based on the inclination information k1 from the control unit 10 to the correction image processing unit 15 is set as the set density gradation. Give as. As a result, the correction gradation of each pixel in the divided area is determined to be scattered in the divided area, and the average value of the correction gradation is (Ia + Iki).
Hereinafter, the overall correction gradation (Ia or (Ia + Iki)) based on the difference information in each of the divided areas is referred to as an average correction gradation.

図5は,前記補正用画像処理部15により決定された前記補正画素&階調情報の第1例を表す図である。
図5に示す例は,面積階調方式として誤差拡散方式(2次元の誤差拡散方式)を用いた画像処理を行う前記補正用画像処理部15により決定された前記補正画素&階調情報の例である。
図5に示す前記補正画素&階調情報おける各マス目は1画素を表し,そのマス目内の数値は各画素の補正階調を表す。この例では,前記分割領域,即ち,面積階調方式の前記単位画素群の領域は,主走査方向10画素×副走査方向10画素=100画素に相当する領域である。また,前記平均補正階調(各画素の補正階調の平均値)は0.36である。この平均補正階調は,前述したように,当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性(図10におけるg01)と全ての前記分割領域に共通の基準特性(図10におけるg0)との差分に応じた値(Ia若しくは(Ia+Iki))となっている。このことは,後述する図6〜図8及び図9(b)に示す例においても同様である。
前記制御部10は,このように決定された前記補正画素&階調情報に従って,前記画像処理部12により画像データに基づき決定された前記画素階調を補正する(画素階調補正手段の一例)。具体的には,前記補正画素&階調情報における各画素の補正階調を対応する前記画素階調に対して加算することにより補正する。従って,前記制御部10は,前記分割領域における全画素の前記元の画素階調が0階調である場合にも,前記補正画素&階調情報に基づく前記画素階調の補正を行う(かさ上げする)ことになる。
その結果,前記分割領域ごとに,その領域全体の平均的な露光量が,前記平均補正階調に相当する露光量分だけ補正(加算)され,前記分割領域ごとの前記画素階調平均に対する露光後の電位の特性が,全体的に前記基準特性g0に近づく,或いはほぼ一致することになる(図3(a),図4(a)を参照)。
また,複数画素分の領域である前記分割領域の単位で,面積階調方式の画像処理により補正対象画素(図5における「1」階調の画素)を分散させて前記画素階調の補正(露光量のかさ上げ)補正を行うことにより,画素各々の露光量調節の分解能が低くても,前記分割領域全体の露光量調節としては,その分割領域を構成する画素数に応じて飛躍的に分解能が向上する。図5に示す例では,画素単位での前記画素階調の分解能が16であるとすると,前記分割領域ごとの分解能は,100×(16−1)+1=1501(階調)となる。これにより,前記分割領域全体として高精度での露光量調節が可能となる。
特に,前記画像処理部12が,画像データに基づいて面積階調方式で階調表現を行うもの(いわゆるデジタル機の画像処理手段)である場合,微小な感度ムラや帯電ムラが画像の濃度ムラとして表れることが抑制される上,空間周期が比較的大きい帯電ムラが存在しても,前記分割領域の単位での面積階調方式による露光量調節によってその帯電ムラが画像の濃度ムラとなって表れることを防止できる点で好適である。
FIG. 5 is a diagram illustrating a first example of the correction pixel & gradation information determined by the correction image processing unit 15.
The example shown in FIG. 5 is an example of the correction pixel & gradation information determined by the correction image processing unit 15 that performs image processing using an error diffusion method (two-dimensional error diffusion method) as an area gradation method. It is.
Each square in the correction pixel & gradation information shown in FIG. 5 represents one pixel, and a numerical value in the square represents a correction gradation of each pixel. In this example, the divided region, that is, the region of the unit pixel group of the area gradation method is a region corresponding to 10 pixels in the main scanning direction × 10 pixels in the sub-scanning direction = 100 pixels. The average correction gradation (the average value of the correction gradation of each pixel) is 0.36. As described above, the average correction gradation is determined by the exposure characteristic (g01 in FIG. 10) indicating the correspondence between the average exposure amount of the entire divided area and the potential after exposure, and a reference common to all the divided areas. It is a value (Ia or (Ia + Iki)) corresponding to the difference from the characteristic (g0 in FIG. 10). This also applies to the examples shown in FIGS. 6 to 8 and FIG. 9B described later.
The control unit 10 corrects the pixel gradation determined based on the image data by the image processing unit 12 according to the correction pixel & gradation information determined in this way (an example of a pixel gradation correction unit). . Specifically, correction is performed by adding the correction gradation of each pixel in the correction pixel & gradation information to the corresponding pixel gradation. Therefore, the control unit 10 corrects the pixel gradation based on the correction pixel & gradation information even when the original pixel gradation of all the pixels in the divided region is 0 gradation (capacity). Will be raised).
As a result, for each of the divided regions, the average exposure amount of the entire region is corrected (added) by an exposure amount corresponding to the average correction gradation, and the exposure for the pixel gradation average for each of the divided regions is performed. The characteristic of the subsequent potential approaches or substantially matches the reference characteristic g0 as a whole (see FIGS. 3 (a) and 4 (a)).
In addition, in the unit of the divided region, which is a region for a plurality of pixels, the correction target pixels (pixels of “1” gradation in FIG. 5) are dispersed by area gradation method image processing to correct the pixel gradation ( By increasing the exposure amount), even if the resolution of adjusting the exposure amount of each pixel is low, the exposure amount adjustment of the entire divided area is dramatically increased according to the number of pixels constituting the divided area. Resolution is improved. In the example shown in FIG. 5, if the resolution of the pixel gradation in pixel units is 16, the resolution for each divided area is 100 × (16−1) + 1 = 1501 (gradation). As a result, the exposure amount can be adjusted with high accuracy for the entire divided area.
In particular, when the image processing unit 12 performs gradation expression by an area gradation method based on image data (so-called image processing means of a digital machine), minute sensitivity unevenness and charging unevenness are image density unevenness. In addition, even if there is charging irregularity with a relatively large spatial period, the charging irregularity becomes image density irregularity by adjusting the exposure amount by the area gradation method in the unit of the divided area. It is preferable in that it can be prevented from appearing.

図6は,前記補正用画像処理部15により決定された前記補正画素&階調情報の第2例を表す図である。
図6に示す例は,面積階調方式としてスクリーン方式を用いた画像処理を行う前記補正用画像処理部15により決定された前記補正画素&階調情報の例である。
この例も,前記分割領域は100画素に相当する領域であり,また,前記平均補正階調は2.40である。
また,このように決定された前記補正画素&階調情報に基づく前記画素階調の補正方法は,図5で説明した方法と同様である。この点は,後述する図7〜図10に示す例においても同様である。
このように,面積階調方式としてスクリーン方式を採用しても,同様の作用効果が得られる。
FIG. 6 is a diagram illustrating a second example of the correction pixel & gradation information determined by the correction image processing unit 15.
The example shown in FIG. 6 is an example of the correction pixel & gradation information determined by the correction image processing unit 15 that performs image processing using the screen method as the area gradation method.
Also in this example, the divided area is an area corresponding to 100 pixels, and the average correction gradation is 2.40.
Further, the pixel gradation correction method based on the correction pixel & gradation information determined in this way is the same as the method described in FIG. This also applies to the examples shown in FIGS.
Thus, even if the screen method is adopted as the area gradation method, the same effect can be obtained.

図7は,前記補正用画像処理部15により決定された前記補正画素&階調情報の第3例を表す図である。
図7に示す例は,面積階調方式として,主走査方向(前記感光体ドラム1の軸方向)にのみ補正階調を拡散させる誤差拡散方式を用いた場合に前記補正用画像処理部15により決定された前記補正画素&階調情報の例である。
また,図8は,前記補正用画像処理部15により決定された前記補正画素&階調情報の第4例を表す図である。
図8に示す例は,面積階調方式として,副走査方向(前記感光体ドラム1の周方向)にのみ補正階調を拡散させる誤差拡散方式を用いた場合に前記補正用画像処理部15により決定された前記補正画素&階調情報の例である。
これら図7及び図8に示す例も,前記分割領域は100画素に相当する領域であり,また,前記平均補正階調は2.40である。
このように,面積階調方式として一次元の誤差拡散方式を採用しても,同様の作用効果が得られる。
FIG. 7 is a diagram illustrating a third example of the correction pixel & gradation information determined by the correction image processing unit 15.
In the example shown in FIG. 7, the correction image processing unit 15 uses the error diffusion method in which the correction gradation is diffused only in the main scanning direction (the axial direction of the photosensitive drum 1) as the area gradation method. It is an example of the determined correction pixel & gradation information.
FIG. 8 is a diagram illustrating a fourth example of the correction pixel & gradation information determined by the correction image processing unit 15.
In the example shown in FIG. 8, the correction image processing unit 15 uses the error diffusion method in which the correction gradation is diffused only in the sub-scanning direction (the circumferential direction of the photosensitive drum 1) as the area gradation method. It is an example of the determined correction pixel & gradation information.
In the examples shown in FIGS. 7 and 8, the divided region is a region corresponding to 100 pixels, and the average correction gradation is 2.40.
As described above, even if the one-dimensional error diffusion method is adopted as the area gradation method, the same effect can be obtained.

図9は,前記画像処理部12により決定された画像データに基づく前記画素階調の配列(a)と前記補正画素&階調情報の第5例(b)とを表す図である。
図9(a)に示す例は,画像データに基づく画像処理に用いる面積階調方式としてスクリーン方式を採用した場合に,前記画像処理部12により決定された前記画素階調の配列の例である。
前記単位画素群は,10画素×10画素である。
また,図9(b)に示す例は,前記差分情報に基づく画像処理に用いる面積階調方式としてスクリーン方式を用いた場合に,前記補正用画像処理部15により決定された前記補正画素&階調情報の例である。
この例も,前記分割領域は100画素に相当する領域であり,また,前記平均補正階調は2.40である。
ここで,図9(a),(b)に示す太い一点鎖線は,各スクリーン方式の画像処理におけるスクリーン角の方向を表す。図9に示すように,前記補正用画像処理部15による前記補正画素&階調情報の決定に用いられる面積階調方式と,前記画像処理部12による前記画素階調の決定に用いられる面積階調方式とは,相互にスクリーン角がずれたスクリーン方式である。
このスクリーン角のずれが,15°以上であれば,それら前記画素階調と前記補正階調とを加算(重ね合わせ)したときに,各々の階調の相互干渉によるモアレの発生を防止できる。なお,図9は,スクリーン角が相互に約37°ずれている場合の例を表している。
また,前記補正用画像処理部15による前記補正画素&階調情報の決定に用いられる面積階調方式の処理単位である前記分割領域と,前記画像処理部12による前記画素階調の決定に用いられる面積階調方式の処理単位である前記単位画素群との相互間で,縦方向の画素数及び横方向の画素数を同一とすれば,それら各面積階調方式で決定された階調の配列の空間周期が同一となる。これによってもモアレの発生を防止できる。
FIG. 9 is a diagram illustrating the pixel gradation array (a) based on the image data determined by the image processing unit 12 and the fifth example (b) of the correction pixel & gradation information.
The example shown in FIG. 9A is an example of the array of pixel gradations determined by the image processing unit 12 when the screen method is adopted as the area gradation method used for image processing based on image data. .
The unit pixel group is 10 pixels × 10 pixels.
Further, the example shown in FIG. 9B shows the correction pixel & floor determined by the correction image processing unit 15 when the screen method is used as the area gradation method used for the image processing based on the difference information. It is an example of key information.
Also in this example, the divided area is an area corresponding to 100 pixels, and the average correction gradation is 2.40.
Here, the thick alternate long and short dash line shown in FIGS. 9A and 9B represents the direction of the screen angle in the image processing of each screen method. As shown in FIG. 9, the area gradation method used for determining the correction pixel & gradation information by the correction image processing unit 15 and the area gradation used for determining the pixel gradation by the image processing unit 12. The adjustment method is a screen method in which the screen angles deviate from each other.
If the screen angle deviation is 15 ° or more, when the pixel gradation and the correction gradation are added (overlapped), it is possible to prevent the occurrence of moire due to mutual interference between the gradations. FIG. 9 shows an example in which the screen angles are shifted from each other by about 37 °.
The correction image processing unit 15 is used to determine the correction pixel & gradation information, the divided region which is an area gradation method processing unit, and the image processing unit 12 to determine the pixel gradation. If the number of pixels in the vertical direction and the number of pixels in the horizontal direction are the same among the unit pixel groups that are processing units of the area gradation method, the gradations determined by each of the area gradation methods are the same. The spatial period of the array is the same. This can also prevent the occurrence of moire.

以上示した実施形態では,前記分割領域ごとに,その分割領域全体の平均的な露光特性と共通の基準特性との差分に関する前記差分情報を予め前記データ記憶部13に記憶しておき,前記分割領域ごとにその前記差分情報に基づいて前記補正画素&階調情報を決定する例について示した。
しかしこれに限らず,例えば,前記分割領域ごとに予め求めた前記補正画素&階調情報を前記データ記憶部13に記憶しておき(補正画素&階調情報記憶手段の一例),前記制御部10(画素階調補正手段の一例)により,その記憶情報に従って前記分割領域各々における各画素の前記画素階調を補正するよう構成したものも考えられる。これにより,前記データ記憶部13の容量が増えるものの,画像形成の際の前記補正用画像処理部15の処理が不要となる分,演算負荷を軽減でき,構成を簡素化できる。
In the embodiment described above, for each of the divided areas, the difference information regarding the difference between the average exposure characteristic of the entire divided area and the common reference characteristic is stored in the data storage unit 13 in advance, and the divided area is stored. An example in which the correction pixel & gradation information is determined for each region based on the difference information is shown.
However, the present invention is not limited to this. For example, the correction pixel & gradation information obtained in advance for each of the divided regions is stored in the data storage unit 13 (an example of correction pixel & gradation information storage unit), and the control unit A configuration in which the pixel gradation of each pixel in each of the divided regions is corrected according to the stored information by 10 (an example of pixel gradation correction means) is also conceivable. Accordingly, although the capacity of the data storage unit 13 is increased, the calculation load can be reduced and the configuration can be simplified because the processing of the correction image processing unit 15 at the time of image formation becomes unnecessary.

また,前述の実施形態では,前記分割領域を,前記感光体ドラム1表面をそのその軸方向及び周方向の両方に複数分割した領域としたが,これに限るものではない。
例えば,主として前記感光体ドラム1の軸方向若しくは周方向のいずれかの帯電ムラや感度ムラが問題となる場合には,前記分割領域を前記感光体ドラム1の表面をその軸方向にのみ複数分割した領域(前記感光体ドラム1を輪切り状に分割した領域)若しくは周方向にのみ複数分割した領域とすることも考えられる。
また,前記実施形態及び実施例では,前記差分情報として前記かさ上げ階調Iaや前記傾き情報k1を例に示したが,これに限らず,前記分割領域ごとの当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に関する情報であれば,他の情報であってもかまわない。
例えば,前記かさ上げ階調Iaの代わりに,前記基準初期電位に対する各分割領域の初期電位の差分そのものを記憶しておき,画像形成の際にその初期電位の差分を前記かさ上げ階調Iaに換算すること等も考えられる。
また,前記傾き情報k1の代わりに,前記元の画素階調の軸と前記補正後画素階調の軸とからなる座標系について傾きを特定する座標情報等を前記データ記憶部13に記憶しておくこと等も考えられる。
In the above-described embodiment, the divided area is an area obtained by dividing the surface of the photosensitive drum 1 into a plurality of both the axial direction and the circumferential direction. However, the present invention is not limited to this.
For example, when charging unevenness or sensitivity unevenness mainly in the axial direction or circumferential direction of the photosensitive drum 1 is a problem, the divided region is divided into a plurality of parts only on the surface of the photosensitive drum 1 in the axial direction. It is also conceivable to use a region obtained by dividing the photosensitive drum 1 in a ring shape or a region obtained by dividing the photosensitive drum 1 in the circumferential direction.
In the embodiments and examples, the raised gradation Ia and the inclination information k1 are shown as examples of the difference information. However, the present invention is not limited to this, and the average of the entire divided area for each divided area is not limited thereto. Other information may be used as long as the information relates to the difference between the exposure characteristic indicating the correspondence between the exposure amount and the potential after exposure and the reference characteristic common to all the divided areas.
For example, instead of the raised gradation Ia, the difference between the initial potentials of the divided areas with respect to the reference initial potential is stored, and the difference in the initial potential is stored in the raised gradation Ia when forming an image. Conversion is also possible.
Further, instead of the tilt information k1, coordinate information or the like for specifying a tilt for a coordinate system including the original pixel gradation axis and the corrected pixel gradation axis is stored in the data storage unit 13. It can be considered.

本発明は,画像形成装置への利用が可能である。   The present invention can be used for an image forming apparatus.

本発明の実施形態に係る画像形成装置Xの概略断面図。1 is a schematic sectional view of an image forming apparatus X according to an embodiment of the present invention. 画像形成装置Xの主要部の概略構成を表すブロック図。2 is a block diagram illustrating a schematic configuration of a main part of the image forming apparatus X. FIG. 画像形成装置Xにおける分割領域の画素階調平均とそれを差分情報の第1実施例に基づいて補正後の画素階調との対応関係及びその補正後画素階調に従って露光を行ったときの元の画素階調平均と露光後電位との関係を表すグラフ。Correspondence between the pixel gradation average of the divided areas in the image forming apparatus X and the pixel gradation after correction based on the first embodiment of the difference information, and the original when the exposure is performed according to the corrected pixel gradation The graph showing the relationship between the pixel gradation average of and the electric potential after exposure. 画像形成装置Xにおける分割領域の画素階調平均とそれを差分情報の第2実施例に基づいて補正後の画素階調との対応関係及びその補正後画素階調に従って露光を行ったときの元の画素階調平均と露光後電位との関係を表すグラフ。Correspondence between the pixel gradation average of the divided areas in the image forming apparatus X and the pixel gradation after correction based on the second embodiment of the difference information, and the original when exposure is performed according to the corrected pixel gradation The graph showing the relationship between the pixel gradation average of and the electric potential after exposure. 画像形成装置Xにおける補正画素&階調情報の第1例を表す図。6 is a diagram illustrating a first example of correction pixel & gradation information in the image forming apparatus X. FIG. 画像形成装置Xにおける補正画素&階調情報の第2例を表す図。FIG. 10 is a diagram illustrating a second example of correction pixel & gradation information in the image forming apparatus X. 画像形成装置Xにおける補正画素&階調情報の第3例を表す図。FIG. 10 is a diagram illustrating a third example of correction pixel & gradation information in the image forming apparatus X. 画像形成装置Xにおける補正画素&階調情報の第4例を表す図。FIG. 10 is a diagram illustrating a fourth example of correction pixel & gradation information in the image forming apparatus X. 画像形成装置Xにおける画像データに基づく画素階調の配列と補正画素&階調情報の第5例とを表す図。10 is a diagram illustrating an array of pixel gradations based on image data and a fifth example of correction pixel & gradation information in the image forming apparatus X. FIG. 帯電ムラと感度ムラとが並存する感光体表面における従来の画素階調と露光後の電位との関係の一例を表すグラフ。The graph showing an example of the relationship between the conventional pixel gradation and the potential after exposure on the surface of the photoreceptor where charging unevenness and sensitivity unevenness coexist. 帯電ムラと感度ムラとが並存する感光体表面の露光に際し0を除く全ての画素階調各々を設定して露光した後の電位を基準特性に一致させるように個別露光量変換を行った場合の画素階調と露光後の電位との関係を表すグラフ。When the exposure on the surface of the photoconductor in which charging unevenness and sensitivity unevenness coexist, the individual exposure amount conversion is performed so that all pixel gradations except for 0 are set and the potential after exposure is matched with the reference characteristics. The graph showing the relationship between a pixel gradation and the electric potential after exposure.

符号の説明Explanation of symbols

X…本発明の実施形態に係る画像形成装置
1BK,1M,1Y,1C…感光体ドラム
2BK,2M,2Y,2C…露光源
3BK,3M,3Y,3C…帯電装置
4BK,4M,4Y,4C…除電装置
5BK,5M,5Y,5C…現像装置
6…給紙ローラ
7…中間転写ベルト
8…搬送ローラ
9…定着装置
10…制御部
11…表示操作部
12…画像処理部
13…データ記憶部
14…回転位置検出部
15…補正用画像処理部
X: Image forming apparatuses 1BK, 1M, 1Y, 1C according to embodiments of the present invention: Photosensitive drums 2BK, 2M, 2Y, 2C ... Exposure sources 3BK, 3M, 3Y, 3C ... Charging devices 4BK, 4M, 4Y, 4C ... Static elimination devices 5BK, 5M, 5Y, 5C... Development device 6... Feed roller 7. Intermediate transfer belt 8. Conveyance roller 9. Fixing device 10 Control unit 11 Display operation unit 12 Image processing unit 13 Data storage unit 14: Rotation position detector 15 ... Image processor for correction

Claims (7)

所定の画像データに基づいて画素ごとの濃淡レベルを表す画素階調を決定する画像処理手段と,予め帯電手段により帯電済みの感光体の表面を前記画像処理手段により決定された前記画素階調に基づく露光量で画素ごとに露光することにより前記感光体に静電潜像を書き込む露光手段とを具備する画像形成装置であって,
前記感光体の表面を複数に分割した各々複数画素分の領域からなる分割領域ごとに,該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分である差分情報を記憶する差分情報記憶手段と,
前記分割領域ごとに,前記差分情報記憶手段に記憶された差分情報に基づいて予め面積階調方式の画像処理により決定された前記補正対象画素の配列及び該補正対象画素各々における前記画素階調の補正階調を示す補正画素&階調情報を決定する補正画素&階調決定手段と,
前記補正画素&階調決定手段の決定結果に従って前記分割領域各々における各画素の前記画素階調を補正する前記画素階調補正手段と,
前記画素階調補正手段により補正後の前記画素階調に応じた露光量で露光がなされるよう前記露光手段を制御する露光量制御手段と,
を具備してなる画像形成装置において,
前記分割領域各々の前記補正画素&階調情報における前記補正階調の平均値が,当該分割領域全体の平均的な露光量と露光後の電位との対応を表す露光特性と全ての前記分割領域に共通の基準特性との差分に応じた値であり,
前記画素階調補正手段が,前記分割領域における全画素の前記画素階調が0階調である場合にも前記補正画素&階調情報に基づく前記画素階調の補正を行うものであることを特徴とする画像形成装置。
An image processing means for determining a pixel gradation representing a light and shade level for each pixel based on predetermined image data; and a surface of the photosensitive member charged in advance by a charging means to the pixel gradation determined by the image processing means. An image forming apparatus comprising: an exposure unit that writes an electrostatic latent image on the photoconductor by exposing each pixel with an exposure amount based on
For each divided area composed of a plurality of pixels each obtained by dividing the surface of the photosensitive member into a plurality of areas, the exposure characteristics indicating the correspondence between the average exposure amount of the whole divided area and the potential after exposure and all the divisions Difference information storage means for storing difference information that is a difference from a reference characteristic common to the area;
For each of the divided regions, the correction target pixel array determined in advance by the area gradation method image processing based on the difference information stored in the difference information storage unit, and the pixel gradation of each of the correction target pixels. Correction pixel & gradation determination means for determining correction pixel & gradation information indicating correction gradation;
The pixel gradation correction means for correcting the pixel gradation of each pixel in each of the divided regions according to the determination result of the correction pixel & gradation determination means;
Exposure amount control means for controlling the exposure means so that exposure is performed at an exposure amount corresponding to the pixel gradation after correction by the pixel gradation correction means;
In images forming apparatus ing comprises a,
The average value of the correction gradation in the correction pixel & gradation information of each of the divided areas is an exposure characteristic indicating a correspondence between an average exposure amount of the entire divided area and a potential after exposure, and all the divided areas. Is a value according to the difference from the standard characteristics common to
The pixel gradation correction means corrects the pixel gradation based on the correction pixel & gradation information even when the pixel gradation of all the pixels in the divided region is 0 gradation. An image forming apparatus.
前記分割領域各々の前記補正画素&階調情報における前記補正階調の平均値が,当該分割領域全体の平均的な前記露光特性における初期電位と前記基準特性における初期電位との差分に応じた値である請求項に記載の画像形成装置。 An average value of the correction gradations in the correction pixel & gradation information of each of the divided areas is a value corresponding to a difference between an average initial potential in the exposure characteristic and an initial potential in the reference characteristic of the entire divided area. The image forming apparatus according to claim 1 , wherein 前記補正画素&階調情報の決定に用いられる面積階調方式が,誤差拡散方式若しくはスクリーン方式である請求項1あるいは2のいずれかに記載の画像形成装置。 3. The image forming apparatus according to claim 1, wherein the area gradation method used for determining the correction pixel & gradation information is an error diffusion method or a screen method. 前記画像処理手段が,前記画像データに基づいて複数画素からなる単位画素群ごとに前記画素階調の配列を決定する面積階調方式で階調表現を行うものである請求項1〜のいずれかに記載の画像形成装置。 Any said image processing means, according to claim 1 to 3 in which the gradation expressed by an area gradation method to determine the sequence of the pixel gray scale for each unit pixel group composed of a plurality of pixels based on the image data An image forming apparatus according to claim 1. 前記分割領域と前記単位画素群との相互間で,縦方向の画素数及び横方向の画素数が同一である請求項に記載の画像形成装置。 The image forming apparatus according to claim 4 , wherein the number of pixels in the vertical direction and the number of pixels in the horizontal direction are the same between the divided region and the unit pixel group. 前記補正画素&階調情報の決定に用いられる面積階調方式と前記画像処理手段による前
記画素階調の決定に用いられる面積階調方式とが,相互にスクリーン角が略15°以上ずれたスクリーン方式である請求項又はのいずれかに記載の画像形成装置。
A screen in which an area gradation method used for determination of the correction pixel & gradation information and an area gradation method used for determination of the pixel gradation by the image processing means deviate from each other by about 15 ° or more. the image forming apparatus according to claim 4 or 5 is a scheme.
前記感光体がa−Si感光体である請求項1〜のいずれかに記載の画像形成装置。 The image forming apparatus according to any one of claims 1 to 6, wherein the photoconductor is an a-Si photosensitive member.
JP2005022127A 2004-12-28 2005-01-28 Image forming apparatus Expired - Fee Related JP4626981B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005022127A JP4626981B2 (en) 2005-01-28 2005-01-28 Image forming apparatus
US11/320,436 US7692814B2 (en) 2004-12-28 2005-12-28 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022127A JP4626981B2 (en) 2005-01-28 2005-01-28 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2006208852A JP2006208852A (en) 2006-08-10
JP4626981B2 true JP4626981B2 (en) 2011-02-09

Family

ID=36965769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022127A Expired - Fee Related JP4626981B2 (en) 2004-12-28 2005-01-28 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4626981B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535483B2 (en) * 2006-07-25 2009-05-19 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method
JP5227603B2 (en) * 2008-02-13 2013-07-03 京セラドキュメントソリューションズ株式会社 Image forming apparatus and exposure amount adjusting method thereof
JP6489861B2 (en) * 2015-02-19 2019-03-27 キヤノン株式会社 Image forming apparatus
CN113347376B (en) * 2021-05-27 2023-03-24 哈尔滨工程大学 Method for compensating adjacent pixel crosstalk of image sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349779A (en) * 1986-08-20 1988-03-02 Canon Inc Image density correcting device
JPH11265098A (en) * 1998-03-18 1999-09-28 Canon Inc Device and method for image forming
JP2002067387A (en) * 2000-09-01 2002-03-05 Canon Inc Image forming device
JP2004061860A (en) * 2002-07-29 2004-02-26 Ricoh Co Ltd Image forming apparatus, sensitivity information acquisition method and copying machine
JP2004351721A (en) * 2003-05-28 2004-12-16 Casio Electronics Co Ltd Printing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349779A (en) * 1986-08-20 1988-03-02 Canon Inc Image density correcting device
JPH11265098A (en) * 1998-03-18 1999-09-28 Canon Inc Device and method for image forming
JP2002067387A (en) * 2000-09-01 2002-03-05 Canon Inc Image forming device
JP2004061860A (en) * 2002-07-29 2004-02-26 Ricoh Co Ltd Image forming apparatus, sensitivity information acquisition method and copying machine
JP2004351721A (en) * 2003-05-28 2004-12-16 Casio Electronics Co Ltd Printing device

Also Published As

Publication number Publication date
JP2006208852A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5794471B2 (en) Control apparatus, image forming apparatus, and control method
JP5631221B2 (en) Image forming apparatus
JP5534693B2 (en) Image forming apparatus and image density correction method thereof
JP4626981B2 (en) Image forming apparatus
JP4526413B2 (en) Image forming apparatus
JP4827417B2 (en) Image forming apparatus
JP2014240950A (en) Image forming apparatus
JP2007286524A (en) Image forming apparatus
JP6445871B2 (en) Image forming apparatus
US7557960B2 (en) Image forming apparatus
JP5040622B2 (en) Image forming apparatus, image forming control apparatus, and program
JP4480591B2 (en) Image forming apparatus
JP2006247903A (en) Image forming device
US7692814B2 (en) Image forming apparatus
JP4236255B2 (en) Color image forming apparatus and color control method
JP4656934B2 (en) Image forming apparatus
JP4771691B2 (en) Image forming apparatus
JP2006181883A (en) Image forming apparatus
JP4575142B2 (en) Image forming apparatus
JP4832150B2 (en) Image correction method and image forming apparatus
JP6745062B2 (en) Image forming device
JP7412942B2 (en) Image forming device
JP2006181783A (en) Image forming apparatus
JP7458748B2 (en) Image forming device
JP2023110986A (en) Image density measuring method and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees