JPS6349740B2 - - Google Patents

Info

Publication number
JPS6349740B2
JPS6349740B2 JP55077123A JP7712380A JPS6349740B2 JP S6349740 B2 JPS6349740 B2 JP S6349740B2 JP 55077123 A JP55077123 A JP 55077123A JP 7712380 A JP7712380 A JP 7712380A JP S6349740 B2 JPS6349740 B2 JP S6349740B2
Authority
JP
Japan
Prior art keywords
stainless steel
temperature
austenitic stainless
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077123A
Other languages
Japanese (ja)
Other versions
JPS572869A (en
Inventor
Yoshihisa Saito
Hideaki Takahashi
Tetsuo Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP7712380A priority Critical patent/JPS572869A/en
Publication of JPS572869A publication Critical patent/JPS572869A/en
Publication of JPS6349740B2 publication Critical patent/JPS6349740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高温腐食環境、たとえば火力発電用
ボイラ管部材、例えば過熱器などに使用されるオ
ーステナイトステンレス鋼に関する。 近年エネルギーの効率的利用あるいは電力供給
の信頼度向上という観点から発電用ボイラの過熱
器に使用される鋼管としては高温度における強
度、耐食性の共に優れた鋼種が強く要求されるよ
うになつた。 従来、これら用途の鋼にNi−Cr系オーステナ
イト鋼のSUS304、SUS321、SUS316および
SUS347などが開発され使用されているが、上記
した高温高圧のボイラにおいては重油燃焼ガスに
よつて蒸気温度が最高となる過熱器の鋼管外表面
に著しい高温腐食が発生して管肉厚を局部的に侵
食している。かかる現象は過熱器の信頼性を著し
く低下させるため、数年毎に新管材に取替えるこ
とが行なわれている。 わが国の事業用発電ボイラの殆んどは
SUS316、SUS321オーステナイト・ステンレス
鋼を採用しており、その約40%に高温腐食障害を
起していると報告されている。 このようなボイラ過熱器ステンレス鋼管の高温
腐食現象は、1950年代より研究され腐食の原因は
燃料に含有されているV、Na、およびSなどの
不純物が管表面に付着して低融点化合物(V2O5
−Na2SO4系)を形成するためであるとされてい
る。 元来、オーステナイト・ステンレス鋼は、表面
に形成されるCr2O3よりなるスピネル形酸化被膜
によつて保護されるため、すぐれた耐食性を有す
ることは周知のとおりである。 しかし、V2O5−Na2SO4系の低融点化合物はこ
のCr2O3保護被膜を破壊し加速的な酸化を起こし
て管材を侵食することが知られている。 しかし、実際のボイラ過熱器管外表面では燃料
重油の組成によつてはバナジウムによる加速酸化
の他に高いイオウ分圧にもとづく硫化腐食が起こ
り、さらに著しく減肉現象が観察されることが本
発明者の研究により確認された。 すなわち、燃料中の不純物であるイオウが酸素
分布の低い雰囲気において管材の構成元素である
Niと優先的に反応して低融点化合物Ni−Ni3S2
Cr2O3保護被膜中に島状に形成する。その結果、
Cr2O3被膜の緻密性はこのNi−Ni3S2の部分で阻
害されることになりCr2O3被膜の拡散障壁として
の機能は低下する。 したがつて、管材内方から拡散してくるFe、
Niなどの金属イオンの外方への移動を容易にし
腐食反応は促進される。 以上のような高温腐食機構に対して、従来より
行なわれて来た防食対策としては燃焼ガスあるい
は燃料油中にMg酸化物などよりなる高融点化合
物を添加して物理的な衝突や化学的吸着によつて
V2O5−Na2SO4系低融点化合物の融点を高めるこ
とが試みられている。 しかし、この方法は添加効果を定量的に評価す
ることが困難であり、経費も多額になるなど難点
があるため採用しているボイラは僅少である。 そのため、前述のような定期的な管取替が実施
されている実情である。 この発明は上記事情に鑑みてなされたものであ
つて、耐高温腐食性の改善と同時に高温強度、特
にクリープ強度の向上を図ることができるオース
テナイトステンレス鋼を提供することを目的とす
る。 すなわち、この発明は重量%にて、Mo2.00〜
3.00%、Ti0.4〜0.6%およびNb0.8〜1.0%から選
ばれる少なくとも1種と、C0.08%以下と、
Si0.75%以下と、Mn2.00%以下と、P0.03%以下
と、S0.03%以下と、Cr16.00〜18.00%と、
Ni11.00〜14.00%と、Ce0.002〜0.130%と、残部
Feとからなることを特徴とする高温腐食環境用
オーステナイトステンレス鋼を提供するものであ
る。 本発明者はオーステナイトステンレス鋼にCe
を適当量含有せしめることにより、耐食性および
クリープ強度の向上を図り得ることを見出し、本
発明に到達したものである。 本発明において添加されるCe量は0.002〜0.130
重量%の範囲であることが好ましい。Ceは高温
耐食性の点では比較的多いことが望ましいが
0.130重量%より多くなるとクリープ強度が悪く
なり好ましくない。他方、Ce量が0.002重量%よ
りも少ない場合も高温耐食性の点で好ましくな
く、かつ、クリープ強度の改善も奏し得ない。 なお、Ce量の特に好ましい範囲としては0.005
〜0.130%である。また、他の金属については従
来のSUS316、SUS321、SUS347等の場合とほぼ
同様である。 本発明に係わるオーステナイトステンレス鋼に
おいて耐高温耐食性の向上が得られる理由として
は以下の如き機構に基づくものと思われる。 すなわち、オーステナイトステンレス鋼に添加
されたCeが外方から侵入してくる酸素、硫黄と
優先的に反応して硫化物や酸化物をつくり、この
セリウム硫化物、酸化物の融点が高いため、内部
金属とスケールとの界面に生成されたCr2O3被膜
中に固溶して該被膜の密着性を向上させるため、
内部金属の外方拡散が阻止させるためと思われ
る。 次に本発明に係わるオーステナイトステンレス
鋼および比較例の高温腐食試験例について述べ
る。 まず、下記表1の如き成分からなる試験片(20
×10×2.0(mm))を用意し、各試験片にV2O5(85
%)とNa2SO4(10%)とFe2O3(5%)よりなる
腐食剤を1cm2当り20mg塗布したのち、それぞれ磁
性皿に載せて反応容器に収容し、これを電気炉内
に収容し、大気中および硫化雰囲気中で温度650
℃、100時間で試験をおこなつた。硫化雰囲気は
標準混合ガス(1.5%SO2+14%CO2+1.26%O2
残部N2)を反応容器に流すことによつて形成し
た。 試験終了後、腐食生成物を化学洗滌法で除去
し、試験片重量の単位面積当りの減量を求めた。
その結果を同じく表1に示す。
This invention relates to austenitic stainless steel used in high-temperature corrosive environments, such as boiler tube members for thermal power generation, such as superheaters. In recent years, there has been a strong demand for steel pipes that have excellent strength and corrosion resistance at high temperatures for use in superheaters of power generation boilers from the perspective of efficient energy use and improved reliability of power supply. Conventionally, Ni-Cr austenitic steels SUS304, SUS321, SUS316 and
SUS347 and other materials have been developed and used, but in the high-temperature, high-pressure boilers mentioned above, significant high-temperature corrosion occurs on the outer surface of the steel pipes of the superheater, where the steam temperature reaches the highest due to heavy oil combustion gas, causing local pipe wall thickness to deteriorate. It is encroaching. Since this phenomenon significantly reduces the reliability of the superheater, the pipe material is replaced every few years with new pipe material. Most of Japan's commercial power generation boilers are
SUS316 and SUS321 austenitic stainless steels are used, and it is reported that about 40% of them have high-temperature corrosion problems. The high-temperature corrosion phenomenon of boiler superheater stainless steel tubes has been studied since the 1950s, and the cause of corrosion is that impurities such as V, Na, and S contained in fuel adhere to the tube surface and cause low-melting-point compounds (V 2 o 5
-Na 2 SO 4 system). It is well known that austenitic stainless steel originally has excellent corrosion resistance because it is protected by a spinel-type oxide film made of Cr 2 O 3 formed on the surface. However, it is known that V 2 O 5 -Na 2 SO 4 -based low melting point compounds destroy this Cr 2 O 3 protective film, cause accelerated oxidation, and corrode the pipe material. However, in actual boiler superheater tube outer surfaces, depending on the composition of fuel heavy oil, in addition to accelerated oxidation due to vanadium, sulfide corrosion occurs due to high sulfur partial pressure, and furthermore, significant thinning phenomenon is observed. This was confirmed through research by researchers. In other words, sulfur, an impurity in the fuel, is a constituent element of the pipe material in an atmosphere with a low oxygen distribution.
Reacts preferentially with Ni to form a low melting point compound Ni−Ni 3 S 2
Forms islands in the Cr 2 O 3 protective film. the result,
The denseness of the Cr 2 O 3 film is inhibited by this Ni-Ni 3 S 2 portion, and the function of the Cr 2 O 3 film as a diffusion barrier is reduced. Therefore, Fe diffusing from inside the pipe material,
It facilitates the outward movement of metal ions such as Ni and accelerates corrosion reactions. Conventionally, anti-corrosion measures against the above-mentioned high-temperature corrosion mechanisms include adding high-melting point compounds such as Mg oxide to combustion gas or fuel oil to prevent physical collision or chemical adsorption. by
Attempts have been made to increase the melting point of V2O5 - Na2SO4 - based low melting point compounds. However, this method has drawbacks such as difficulty in quantitatively evaluating the effect of addition and high costs, so only a few boilers employ it. Therefore, the actual situation is that the pipes are replaced periodically as described above. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an austenitic stainless steel that can improve high-temperature corrosion resistance and high-temperature strength, particularly creep strength. That is, this invention has Mo2.00~
3.00%, at least one selected from Ti0.4-0.6% and Nb0.8-1.0%, and C0.08% or less,
Si0.75% or less, Mn2.00% or less, P0.03% or less, S0.03% or less, Cr16.00-18.00%,
Ni11.00~14.00%, Ce0.002~0.130%, balance
The present invention provides an austenitic stainless steel for use in high-temperature corrosive environments, which is characterized by consisting of Fe. The inventor has discovered that Ce in austenitic stainless steel
The present invention was achieved based on the discovery that corrosion resistance and creep strength can be improved by containing an appropriate amount of. The amount of Ce added in the present invention is 0.002 to 0.130
A range of % by weight is preferred. It is desirable to have a relatively large amount of Ce in terms of high-temperature corrosion resistance.
If it exceeds 0.130% by weight, the creep strength will deteriorate, which is not preferable. On the other hand, if the amount of Ce is less than 0.002% by weight, it is also unfavorable in terms of high-temperature corrosion resistance and does not improve creep strength. Note that a particularly preferable range for the amount of Ce is 0.005
~0.130%. In addition, other metals are almost the same as in the case of conventional SUS316, SUS321, SUS347, etc. The reason why the austenitic stainless steel according to the present invention has improved high-temperature corrosion resistance is believed to be based on the following mechanism. In other words, Ce added to austenitic stainless steel preferentially reacts with oxygen and sulfur entering from the outside to create sulfides and oxides, and because the melting points of these cerium sulfides and oxides are high, In order to improve the adhesion of the Cr 2 O 3 film formed at the interface between the metal and scale by solid solution,
This is thought to be due to the prevention of outward diffusion of the internal metal. Next, high temperature corrosion test examples of the austenitic stainless steel according to the present invention and a comparative example will be described. First, a test piece (20
× 10 × 2.0 (mm)), and each specimen was coated with V 2 O
%), Na 2 SO 4 (10%), and Fe 2 O 3 (5%) at 20 mg per 1 cm 2 , each was placed on a magnetic plate and placed in a reaction vessel, which was placed in an electric furnace. Temperature 650 in air and sulfide atmosphere
The test was conducted at ℃ for 100 hours. The sulfiding atmosphere is a standard mixed gas (1.5% SO 2 + 14% CO 2 + 1.26% O 2 +
The balance N 2 ) was formed by flowing into the reaction vessel. After the test was completed, corrosion products were removed by a chemical cleaning method, and the weight loss of the test piece per unit area was determined.
The results are also shown in Table 1.

【表】 この結果から明らかな如く、本発明のオーステ
ナイトステンレス鋼は従来のSUS316と較べて、
酸化性雰囲気では40〜50%、硫化性雰囲気でも約
35%の減量改善がなされている。 次に、本発明に係わるステンレス鋼のクリープ
試験例を比較例とともに説明する。なお、このク
リープ試験は中心部を細くした長さ40mm、厚み3
mmの試験片をカンテイレバー式試験機に装着し、
大気雰囲気中で、温度620℃、荷重25Kg/mm2でお
こなつたものである。 この試験結果を図面に示す。本図中、曲線
“O”は前記表1に示した比較例(SUS316)と
同一の組成からなる材料、曲線“A”は同じく表
1の実施例1に相当する材料、曲線“B”は同実
施例2に相当する材料、曲線“C”は同実施例1
においてCe量を0.002%とした以外は同様の組成
からなる材料を示している。なお、図中の矢印は
破断点を示している。 この図から明らかなようにCe量が0.005%(曲
線A)の破断時間は従来のSUS316(曲線O)の
ものの約3倍であり、クリープ強度の著しい向上
を示している。 以上、詳述したように本発明に係わるオーステ
ナイトステンレス鋼は高温耐食性が従来の
SUS347と同程度に改善することができ、同時に
クリープ強度も従来のSUS316、321鋼以上に向
上させることができ、熱間加工性が向上するなど
高温腐食環境用材料として極めて優れている。
[Table] As is clear from the results, the austenitic stainless steel of the present invention has a higher
40-50% in oxidizing atmosphere, approximately 40% in sulfuric atmosphere
A 35% weight loss improvement has been achieved. Next, creep test examples of stainless steel according to the present invention will be explained together with comparative examples. In addition, this creep test was performed using a sample with a length of 40 mm and a thickness of 3 mm with the center narrowed.
Attach a mm test piece to a cantilever tester,
The tests were carried out in an air atmosphere at a temperature of 620°C and a load of 25 kg/ mm2 . The test results are shown in the drawing. In this figure, curve "O" is a material made of the same composition as the comparative example (SUS316) shown in Table 1, curve "A" is a material corresponding to Example 1 in Table 1, and curve "B" is Material corresponding to Example 2, curve “C” is Example 1
shows a material with the same composition except that the amount of Ce was 0.002%. Note that the arrow in the figure indicates the breaking point. As is clear from this figure, the rupture time with a Ce content of 0.005% (curve A) is about three times that of conventional SUS316 (curve O), indicating a significant improvement in creep strength. As detailed above, the austenitic stainless steel according to the present invention has higher high temperature corrosion resistance than the conventional one.
It can be improved to the same degree as SUS347, and at the same time, the creep strength can be improved over conventional SUS316 and 321 steels, and it has improved hot workability, making it extremely excellent as a material for high-temperature corrosive environments.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はクリープ強度の試験例を示す線図であ
る。
The drawing is a diagram showing a test example of creep strength.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にて、Mo2.00〜3.00%、Ti0.4〜0.6%
およびNb0.8〜1.0%から選ばれる少なくとも1種
と、C0.08%以下と、Si0.75%以下と、Mn2.00%
以下と、P0.03%以下と、S0.03%以下と、
Cr16.00〜18.00%と、Ni11.00〜14.00%と、
Ce0.002〜0.130%と、残部Feとからなるオーステ
ナイトステンレス鋼製火力発電用ボイラ管部材。
1 Weight%: Mo2.00~3.00%, Ti0.4~0.6%
and at least one selected from Nb0.8~1.0%, C0.08% or less, Si0.75% or less, and Mn2.00%
Below, P0.03% or less, S0.03% or less,
Cr16.00~18.00%, Ni11.00~14.00%,
An austenitic stainless steel boiler tube member for thermal power generation consisting of 0.002 to 0.130% Ce and the balance Fe.
JP7712380A 1980-06-10 1980-06-10 Austenite stainless steel for hot corrosive environment Granted JPS572869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7712380A JPS572869A (en) 1980-06-10 1980-06-10 Austenite stainless steel for hot corrosive environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7712380A JPS572869A (en) 1980-06-10 1980-06-10 Austenite stainless steel for hot corrosive environment

Publications (2)

Publication Number Publication Date
JPS572869A JPS572869A (en) 1982-01-08
JPS6349740B2 true JPS6349740B2 (en) 1988-10-05

Family

ID=13625010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7712380A Granted JPS572869A (en) 1980-06-10 1980-06-10 Austenite stainless steel for hot corrosive environment

Country Status (1)

Country Link
JP (1) JPS572869A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017082A (en) 2006-10-10 2010-01-28 Ajinomoto Co Inc Method for producing l-amino acid
JP2010041920A (en) 2006-12-19 2010-02-25 Ajinomoto Co Inc Method for producing l-amino acid
EP2711013A4 (en) 2011-05-18 2015-03-04 Ajinomoto Kk Immunostimulant for animals, feed containing same, and method for manufacturing same
WO2013069634A1 (en) 2011-11-11 2013-05-16 味の素株式会社 Method for producing target substance by fermentation
KR101773755B1 (en) 2013-05-13 2017-09-01 아지노모토 가부시키가이샤 Method for producing l-amino acid
JP2016165225A (en) 2013-07-09 2016-09-15 味の素株式会社 Method for producing useful substance
BR112016008830B1 (en) 2013-10-23 2023-02-23 Ajinomoto Co., Inc METHOD FOR PRODUCING A TARGET SUBSTANCE
JP6623690B2 (en) 2015-10-30 2019-12-25 味の素株式会社 Method for producing glutamic acid-based L-amino acid
JP7066977B2 (en) 2017-04-03 2022-05-16 味の素株式会社 Manufacturing method of L-amino acid
CN111183239B (en) 2017-10-03 2022-04-29 日本制铁株式会社 Austenitic stainless steel weld metal and welded structure
KR102458203B1 (en) 2017-10-03 2022-10-24 닛폰세이테츠 가부시키가이샤 austenitic stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373415A (en) * 1976-12-02 1978-06-29 Allegheny Ludlum Ind Inc Austenite stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373415A (en) * 1976-12-02 1978-06-29 Allegheny Ludlum Ind Inc Austenite stainless steel

Also Published As

Publication number Publication date
JPS572869A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
JPS6349740B2 (en)
EA008761B1 (en) Metal dusting resistant product
WO2002063056A1 (en) Steel excellent in resistance to sulfuric acid dew point corrosion and preheater for air
JP2000017382A (en) Steel excellent in sulfuric acid corrosion resistance
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
CN1639365A (en) Copper-base alloy and its use in carburizing environments
WO2002002459A1 (en) Fuel reforming reactor
Pint et al. Oxidation of superalloys in extreme environments
JP2008156692A (en) Ferritic stainless steel for high-temperature device of fuel cell
JP3827988B2 (en) Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance
Chou et al. Hydrogen sulfide corrosion in low-NOX combustion systems
JP3747729B2 (en) Ni-base alloy coated arc welding rod
Dömstedt et al. High Temperature Corrosion of a Lean Alloyed FeCrAl-steel and the Effects of Impurities in Liquid Lead
Yépez On the Mechanism of High Temperature Corrosion
JPH11189848A (en) Austenitic stainless steel excellent in sulfuric acid corrosion resistance
RU2155821C1 (en) Heat resistant steel
JP3303024B2 (en) Ni-base alloy with excellent sulfuric acid corrosion resistance and workability
US3900315A (en) Nickel-chromium-iron alloy
CN1169994C (en) Iron-nickel-chromium base cast high temperature alloy resisting metal cineration and carbonizing
JPH0570694B2 (en)
Nakagawa et al. Effect of HCI on the corrosion of waterwall tubes in a waste incineration plant
JPS61227152A (en) Surface covered heat resisting steel pipe for boiler for recovering black liquor
JP2001279395A (en) Chromium - nickel based heat resisting alloy
SU990862A1 (en) Steel
Fujikawa et al. Selection of stainless steel tubes to minimize hot corrosion in utility boilers