JPS6349724A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS6349724A
JPS6349724A JP19463986A JP19463986A JPS6349724A JP S6349724 A JPS6349724 A JP S6349724A JP 19463986 A JP19463986 A JP 19463986A JP 19463986 A JP19463986 A JP 19463986A JP S6349724 A JPS6349724 A JP S6349724A
Authority
JP
Japan
Prior art keywords
light source
photoreceptor
photoelectric conversion
light
equal intervals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19463986A
Other languages
Japanese (ja)
Other versions
JPH0560850B2 (en
Inventor
Yasushi Ishikawa
泰 石川
Tetsuo Konno
哲郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP19463986A priority Critical patent/JPS6349724A/en
Publication of JPS6349724A publication Critical patent/JPS6349724A/en
Publication of JPH0560850B2 publication Critical patent/JPH0560850B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form dots at equal intervals without any optical correction by providing a photoelectric converting device which has many conversion parts at equal intervals in a photosensitive body, and driving a light source with large power with an image signal in synchronism with conversion part outputs. CONSTITUTION:The photoelectric converting device 5 constituted by arraying photoelectric conversion parts 5a... as many as dots formed on a scanning line 3 at equal intervals is provided in the photosensitive drum 1 on the side of a transparent base 11. The light source 2 is driven by a control circuit 8 normally with small power, so output pulses which are proportional to 1/tantheta are generated by the photoelectric converting device 5 by the rotation of a rotary polygon mirror 4. Then when the control circuit 8 receives an image data signal 9, the light source 2 is driven with the large power in synchronism with output pulses of the photoelectric converting device. Consequently, beam spots scanned on a scanning line are formed at equal intervals without any special correcting device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光プリンタなどに使用する光走査装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical scanning device used in an optical printer or the like.

(従来の技術) 公知の光走査装置は、光ビームを発生するレーザー等の
光源と、この光ビームを感光体の走査線にそって走査せ
しめる偏向器とからなっている。
(Prior Art) A known optical scanning device includes a light source such as a laser that generates a light beam, and a deflector that causes the light beam to scan along a scanning line of a photoreceptor.

偏向器としては、等速回転する回転多面鏡や一定振幅の
正弦振動モードで回動するガルバノミラ−などが用いら
れる。第4図は、偏向器として回転多面鏡aを使用した
場合の例である。光源からの光ビームL1は回転多面鏡
aにより反射されて感光体の走査面す上にビームスポッ
トとして照射される。このビームスポットは、回転多面
鏡aの回転と共に走査面す上を走査開始点x1から走査
終了点x2の範囲で移動する。回転多面鏡aの反射面か
ら走査面すまでの距離を1とすると、偏向ビームL2が
走査中心線に対して角度θで偏向されたときの走査面す
上でのビームスポットの位置Xは1−tanθで表わさ
れる。すなわちビームスポットの位置は角度θに比例せ
ずにtanθに比例し、その結果として得られるドツト
は、走査開始点X1または走査終了点x2に近づくにつ
れて、中央部におけるよりもドツト間隔が広がってしま
う。
As the deflector, a rotating polygon mirror that rotates at a constant speed, a galvanometer mirror that rotates in a sine vibration mode with a constant amplitude, or the like is used. FIG. 4 shows an example in which a rotating polygon mirror a is used as a deflector. The light beam L1 from the light source is reflected by the rotating polygon mirror a and is irradiated onto the scanning surface of the photoreceptor as a beam spot. This beam spot moves on the scanning surface in the range from the scanning start point x1 to the scanning end point x2 as the rotating polygon mirror a rotates. Assuming that the distance from the reflective surface of the rotating polygon mirror a to the scanning surface is 1, the position X of the beam spot on the scanning surface when the deflected beam L2 is deflected at an angle θ with respect to the scanning center line is 1. -tanθ. In other words, the position of the beam spot is not proportional to the angle θ but proportional to tan θ, and as the resulting dots approach the scanning start point X1 or the scanning end point x2, the dot spacing becomes wider than at the center. .

また偏向器としてガルバノミラ−を使用した場合は、そ
の逆に走査線の中央部がその両側よりもドツト間隔が拡
がってしまう。
If a galvano mirror is used as a deflector, on the other hand, the dot spacing will be wider at the center of the scanning line than at both sides.

このため従来にあっては、走査面す上でビームスポット
を等速度で移動せしめるために、偏向器aと走査面すと
の間にfθレンズやarcs1nθレンズなどの光学補
正装置を設けていた。またレーザープリンタにおいては
、変調光を得るときにクロックパルスの周期を変化させ
ることによりビームスポットを走査面上で等速度で移動
させることも行なわれていた。しかし光学補正装置は通
常複数のレンズ群によって構成され、各レンズの位i;
1121整が非常に複雑で多大の時間と労力を要し、か
つレンズそのものが高精度のものが要求され高価である
ので製造コストが上昇する。またクロックパルスの周期
を変化させる場合は、回路構成が複雑になり、走査方向
のビームスポットの間隔はあるT<Mを持っているため
その誤差を小さくするには膨大なメモリー容量が必要と
な°る。
For this reason, in the past, an optical correction device such as an fθ lens or an arcs1nθ lens was provided between the deflector a and the scanning surface in order to move the beam spot at a constant speed on the scanning surface. Furthermore, in laser printers, when obtaining modulated light, the beam spot has been moved at a constant speed on the scanning surface by changing the period of the clock pulse. However, an optical correction device is usually composed of a plurality of lens groups, and the position of each lens is i;
The 1121 adjustment is very complicated and requires a lot of time and effort, and the lens itself requires high precision and is expensive, increasing manufacturing costs. In addition, when changing the period of the clock pulse, the circuit configuration becomes complicated, and since the interval between the beam spots in the scanning direction has a certain value T<M, a huge amount of memory capacity is required to reduce the error. °ru

そこで本願出願人は上記問題を解決するものとして、先
に特願昭60−128497号において、画像信号に対
応した変調光を発生する第1の光源と、連続光を発生す
る第2の光源と、変調光を感光体上の走査線にそって、
また連続光を光電変換装置上の走査線にそって走査せし
める偏向器とを含み、光電変換装置はその走査線にそっ
て等間隔に整列した多数の光電変換部を有し、光電変換
装置の出力を介して第1の光源の駆動を制御するようし
たものを提案している。
Therefore, in order to solve the above problem, the applicant of the present application previously proposed in Japanese Patent Application No. 128497/1982 a first light source that generates modulated light corresponding to an image signal, and a second light source that generates continuous light. , modulated light along the scanning line on the photoreceptor,
The photoelectric conversion device also includes a deflector that scans the continuous light along the scanning line on the photoelectric conversion device, and the photoelectric conversion device has a large number of photoelectric conversion sections arranged at equal intervals along the scanning line. It has been proposed that the driving of the first light source is controlled via the output.

(発明が解決しようとする問題点) しかし上記本願出願人が先に提案した発明では、2つの
光源を必要とし、それだけコストの上昇をまねくことに
なる。
(Problems to be Solved by the Invention) However, the invention previously proposed by the applicant requires two light sources, leading to an increase in cost.

そこで本発明の目的は、光学補正装置を用いることなし
にかつ1つの光源によって、感光体上の走査線にそって
ビームスポットを等速性をもって走査できるようにし、
低価格で提供できるようにすることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable a beam spot to be uniformly scanned along a scanning line on a photoreceptor by a single light source without using an optical correction device;
The aim is to be able to provide it at a low price.

(問題点を解決するための手段) 本発明の特徴は、透明支持体と透明電極と光導電層とか
らなる感光体を使用し、光源からの光を光学系によって
光導電層側から感光体の走査線にそって走査せしめる。
(Means for Solving the Problems) A feature of the present invention is that a photoconductor consisting of a transparent support, a transparent electrode, and a photoconductive layer is used, and light from a light source is transmitted from the photoconductive layer side to the photoconductor using an optical system. scan along the scanning line.

感光体の透明支持体側に光電変換装置が配設され、この
光電変換装置には走査線と平行に等間隔に整列した多数
の光電変換部を設けてあり、感光体を透過した光を受光
するものである。そして制御回路により平常は光源を小
パワーで継続的に駆動し、画像データ信号を受けたとき
光電変換装置の出力に同期して光源を大パワーで駆動す
るようにしたところにある。
A photoelectric conversion device is arranged on the transparent support side of the photoreceptor, and this photoelectric conversion device is provided with a large number of photoelectric conversion parts arranged at equal intervals parallel to the scanning line, and receives the light transmitted through the photoreceptor. It is something. The control circuit normally drives the light source continuously with low power, and when an image data signal is received, the light source is driven with high power in synchronization with the output of the photoelectric conversion device.

(作用) 平時は制御回路は光源を小パワーで継続的に駆動し、光
を光学系を介して感光体上の走査線にそって走査せしめ
る。この光では感光体上にビームスポットを形成するに
至るものではなく、感光体を透過して光電変換装置で受
光される。光電変換装置からは、光学系が回転多面鏡で
ある場合には1 / t a nθに比例した周期で出
力パルスを発生する。そこで制御回路は画像データ信号
を受けたときに、この光電変換装置の出力パルスに同期
して、光源を大パワーで駆動する。それにょつて光源か
らの大パワーの光により感光体上の走査線にそって走査
されるビームスポットつまりドツトは感光体上に等間隔
に形成されることになる。
(Function) During normal times, the control circuit continuously drives the light source with low power to scan the light along the scanning line on the photoreceptor through the optical system. This light does not form a beam spot on the photoreceptor, but is transmitted through the photoreceptor and received by the photoelectric conversion device. When the optical system is a rotating polygon mirror, the photoelectric conversion device generates output pulses at a period proportional to 1/tanθ. Therefore, when the control circuit receives the image data signal, it drives the light source with high power in synchronization with the output pulse of the photoelectric conversion device. As a result, beam spots, or dots, scanned along the scanning line on the photoreceptor by the high power light from the light source are formed at equal intervals on the photoreceptor.

(実施例) 以下、図面に基いて本発明の一実施例について説明する
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1.2図に示すように、感光体(感光体ドラム)1は
透明支持体11と透明電極12と光導電層13とからな
っている。Δは光学系であり、光源2と光源2から発せ
られる光L3を感光体1の走査線3に沿って走査せしめ
る偏光器4とから構成されている。この例では光源2と
しては半導体レーザー発振器が使用されている。また偏
光器4としては、等速度で回転する回転多面鏡(ポリゴ
ンミラー)が用いられているが、ガルバノミラ−その他
の適宜の偏光器が用いられることもある。
As shown in FIG. 1.2, a photoreceptor (photoreceptor drum) 1 consists of a transparent support 11, a transparent electrode 12, and a photoconductive layer 13. Δ is an optical system, which is composed of a light source 2 and a polarizer 4 that scans the light L3 emitted from the light source 2 along the scanning line 3 of the photoreceptor 1. In this example, a semiconductor laser oscillator is used as the light source 2. Further, as the polarizer 4, a rotating polygon mirror that rotates at a constant speed is used, but a galvanometer mirror or other appropriate polarizer may also be used.

感光体ドラム1の内部、すなわち透明支持体11側には
、光電変換装置5が配設されている。光電変換装置5は
走査vA3に平行に、等間隔に多数の光電変換部5a・
・・が備わっているもので、第2図に拡大して示すよう
に、絶縁性基板51と、その上面に形成された全面電極
52と、その上面に形成された光導電性材料の薄膜層5
3と、その上面に形成された透明電極54とで構成され
、この透明電極54はくし歯状の多数の電極要素54a
を有している。電極要素54aの本数つまり光電変換部
5aの個数は、感光体の走査線3上に形成すべきドツト
数に対応し、そのピッチは光電変換装置5の光学系Aか
らの距離によって決定される。
A photoelectric conversion device 5 is disposed inside the photosensitive drum 1, that is, on the transparent support 11 side. The photoelectric conversion device 5 includes a large number of photoelectric conversion units 5a and 5a arranged at equal intervals in parallel to the scanning vA3.
As shown in an enlarged view in FIG. 2, it is equipped with an insulating substrate 51, a full-surface electrode 52 formed on its upper surface, and a thin film layer of photoconductive material formed on its upper surface. 5
3 and a transparent electrode 54 formed on its upper surface, and this transparent electrode 54 includes a large number of comb-shaped electrode elements 54a.
have. The number of electrode elements 54a, that is, the number of photoelectric conversion parts 5a, corresponds to the number of dots to be formed on the scanning line 3 of the photoreceptor, and the pitch thereof is determined by the distance from the optical system A of the photoelectric conversion device 5.

透明電極54にはバイアス電圧VBが供給してあり、全
面電極52は比較器6に接続されれている。
A bias voltage VB is supplied to the transparent electrode 54, and the entire surface electrode 52 is connected to the comparator 6.

比較器6にはそれに基準レベルを与える基準電圧源7が
接続しである。光電変換装置5上を光が走査されるとき
に、光ビームが透明電極54のくし歯状の電極要素54
aを照射すると、当該電極要素54aと全面電極52と
の間の光導電性の薄膜層53の電気抵抗が低下し、バイ
アス電圧VBが比較器6に供給され、そのとき比較器6
はレベル1のパルスを発生する。光電変換装置5上を移
動する光ビームの移動速度はtanθ(θは第4図参照
)に比例するから、光電変換装置5つまりは比較器6が
発生するパルス列の周期は1 / t a nθに比例
する。比較器6は制御回路8に接続されており、制御回
路8を介して比較器6の出力と画像データ信号9とのA
ND信号により光rfj2が制御される。すなわち平時
は制御回路8は光源2を小パワーで継続的に駆動してい
るが、画像データ信号9を受けたときは、光電変換装置
5の出力に同期して、すなわち1 / t a nθに
比例した周期で光源2を大パワーで駆動する。
A reference voltage source 7 is connected to the comparator 6 for providing a reference level thereto. When the light is scanned over the photoelectric conversion device 5, the light beam hits the comb-shaped electrode elements 54 of the transparent electrode 54.
When irradiated with a, the electrical resistance of the photoconductive thin film layer 53 between the electrode element 54a and the entire surface electrode 52 decreases, and a bias voltage VB is supplied to the comparator 6;
generates a level 1 pulse. Since the speed of the light beam moving on the photoelectric conversion device 5 is proportional to tanθ (θ is shown in FIG. 4), the period of the pulse train generated by the photoelectric conversion device 5, that is, the comparator 6, is 1/tanθ. Proportional. The comparator 6 is connected to a control circuit 8, and the output of the comparator 6 and the image data signal 9 are connected to each other via the control circuit 8.
The light rfj2 is controlled by the ND signal. That is, in normal times, the control circuit 8 drives the light source 2 continuously with low power, but when it receives the image data signal 9, it drives the light source 2 in synchronization with the output of the photoelectric conversion device 5, that is, at 1/tanθ. The light source 2 is driven with high power at a proportional period.

感光体1は前述したように3層構造になっているため、
感光体1の表面となっている光導電層13が光L3によ
って露光されると、光導電層13はその露光量に対応し
た電気伝導度を呈する為、感光体lの表面における電荷
は、光導電層13を介して透明電極にリークされ、露光
部における表面電位が低下する。このようにして感光体
表面に表面電位のコントラストによる静電潜像が形成さ
れる訳であるが、第3図に示した感光体1の光減衰特性
回線Rかられかるように露光量が小さい場合は、光導電
層の電気伝導度も小さいので、露光部における表面電位
は十分に低下せず、そのため所定の静電潜像を形成する
までに至らない。
Since the photoreceptor 1 has a three-layer structure as described above,
When the photoconductive layer 13 on the surface of the photoconductor 1 is exposed to the light L3, the photoconductive layer 13 exhibits electrical conductivity corresponding to the amount of exposure, so that the charge on the surface of the photoconductor 1 is reduced by the amount of light L3. It leaks to the transparent electrode through the conductive layer 13, and the surface potential at the exposed area decreases. In this way, an electrostatic latent image is formed on the surface of the photoreceptor due to the contrast of the surface potential, but as can be seen from the light attenuation characteristic line R of the photoreceptor 1 shown in FIG. 3, the amount of exposure is small. In this case, since the electrical conductivity of the photoconductive layer is also low, the surface potential at the exposed area is not sufficiently lowered, and therefore a predetermined electrostatic latent image cannot be formed.

そのため上述したように光源2を平時には小パワーで、
画像データの形成時には大パワーで駆動すると、大パワ
ーで駆動された際には露光量が大きいため感光体1上に
静電潜像が形成されるが、小パワーで駆動された際には
露光量が小さいため感光体1上に静電コントラストが形
成されることはない。したがって平時において光源が小
パワーで駆動されているときは感光体1を透過した光は
光電変換装置5で受光されて光電変換装置5から出力パ
ルスを発生するのには寄与するのみである。
Therefore, as mentioned above, the light source 2 is operated at low power during normal times,
When driving with high power when forming image data, an electrostatic latent image is formed on the photoreceptor 1 because the amount of exposure is large when driving with high power, but when driving with low power, the exposure amount is large. Since the amount is small, no electrostatic contrast is formed on the photoreceptor 1. Therefore, when the light source is driven with low power in normal times, the light transmitted through the photoreceptor 1 is received by the photoelectric conversion device 5 and only contributes to generating output pulses from the photoelectric conversion device 5.

(発明の効果) 上述した本発明に係る光走査装置によれば、ドツトを等
間隔に形成するために、高価で位置調整が必要な種々の
レンズからなる光学補正装置を設けたり、光の変調の周
期を変えるための特殊な回路を設けたり、2つの光源を
設けたりすることが一切不要である。したがって光学系
の構成が従来に比して簡単になり、低コストで製造でき
る。
(Effects of the Invention) According to the above-described optical scanning device according to the present invention, in order to form dots at equal intervals, an optical correction device consisting of various lenses that are expensive and require position adjustment is provided, and light modulation is required. There is no need to provide a special circuit for changing the period of the light or to provide two light sources. Therefore, the configuration of the optical system is simpler than before, and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光走査装置の一実施例を示す一部
切欠斜視図、第2図は第1図における感光体および光電
変換装置の断面構造を一緒に示した回路図、第3図は感
光体の光減衰特性回線を示すグラフ、第4図は従来例を
示すものであり、偏向器として回転多面鏡を使用した場
合の光ビームの偏向を示す説明図である。 1・・・感光体、 11・・・透明支持体、12・・・
透明電極、13・・・光導電層、2・・・光源、   
 3・・・走査線、5・・・光電変換装置、 5a・・・光電変換部、8・・・制御回路、9・・・画
像データ信号、 L3 ・・・光。 Δ・・・光学系 第2図 第3図 第4図
FIG. 1 is a partially cutaway perspective view showing an embodiment of an optical scanning device according to the present invention, FIG. 2 is a circuit diagram showing the cross-sectional structure of the photoreceptor and photoelectric conversion device in FIG. 1, and FIG. 4 is a graph showing a light attenuation characteristic line of a photoreceptor, and FIG. 4 shows a conventional example, and is an explanatory diagram showing the deflection of a light beam when a rotating polygon mirror is used as a deflector. DESCRIPTION OF SYMBOLS 1... Photoreceptor, 11... Transparent support, 12...
Transparent electrode, 13... Photoconductive layer, 2... Light source,
3... Scanning line, 5... Photoelectric conversion device, 5a... Photoelectric conversion unit, 8... Control circuit, 9... Image data signal, L3... Light. Δ...Optical system Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 透明支持体と透明電極と光導電層とからなる感光体と、 光源からの光を上記光導電層側から上記感光体の走査線
にそって走査せしめる光学系と、 上記感光体の上記透明支持体側に配設され、上記走査線
と平行に等間隔に整列した多数の光電変換部を有し上記
感光体を透過した上記光を受光する光電変換装置と、 平時は上記光源を小パワーで継続的に駆動し、画像デー
タ信号を受けたとき上記光電変換装置の出力に同期して
上記光源を大パワーで駆動する制御回路と で構成される光走査装置。
[Scope of Claims] A photoreceptor comprising a transparent support, a transparent electrode, and a photoconductive layer; an optical system that scans light from a light source along a scanning line of the photoreceptor from the photoconductive layer side; a photoelectric conversion device disposed on the transparent support side of the photoreceptor, having a large number of photoelectric conversion units arranged at equal intervals parallel to the scanning line, and receiving the light transmitted through the photoreceptor; An optical scanning device comprising: a control circuit that continuously drives a light source with low power, and drives the light source with high power in synchronization with the output of the photoelectric conversion device when receiving an image data signal.
JP19463986A 1986-08-20 1986-08-20 Optical scanner Granted JPS6349724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19463986A JPS6349724A (en) 1986-08-20 1986-08-20 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19463986A JPS6349724A (en) 1986-08-20 1986-08-20 Optical scanner

Publications (2)

Publication Number Publication Date
JPS6349724A true JPS6349724A (en) 1988-03-02
JPH0560850B2 JPH0560850B2 (en) 1993-09-03

Family

ID=16327859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19463986A Granted JPS6349724A (en) 1986-08-20 1986-08-20 Optical scanner

Country Status (1)

Country Link
JP (1) JPS6349724A (en)

Also Published As

Publication number Publication date
JPH0560850B2 (en) 1993-09-03

Similar Documents

Publication Publication Date Title
US6310681B1 (en) Method and apparatus for image forming
JP2584224B2 (en) Optical beam recording device
EP0529785B1 (en) Raster output scanner with process direction spot position control
JP3287289B2 (en) Image forming apparatus and control method of divided optical scanning device
EP1407371B1 (en) Method and apparatus for reducing printing artifacts of stitched images
US7858923B2 (en) Light beam scanning apparatus and image forming apparatus provided with the same
JP3291341B2 (en) Spot position control device
US5051757A (en) Optical scanning with cylindrical lens and beam slit
JPH0132700B2 (en)
JPH1039241A (en) Laser recording device
JPH10133135A (en) Light beam deflecting device
JPS6349724A (en) Optical scanner
US6222611B1 (en) Multi-beam image forming apparatus and method capable of precisely controlling image writing start position
JPH11202247A (en) Optical scanning device
JPS61285423A (en) Optical scanning device
JPS6137606B2 (en)
JP2005231327A (en) Dot position correcting method and imaging device to which this method is applied
JP3254275B2 (en) Image recording device
GB2101360A (en) Light scanning apparatus
JPS61173573A (en) Beam scanning device
JP3143489B2 (en) Image forming apparatus and method
JPS62219757A (en) Optical scanning device
JPS6317052A (en) Laser printer
JPH10324019A (en) Image-forming apparatus
JPH10186418A (en) Light deflector