JPS6349717B2 - - Google Patents

Info

Publication number
JPS6349717B2
JPS6349717B2 JP55181270A JP18127080A JPS6349717B2 JP S6349717 B2 JPS6349717 B2 JP S6349717B2 JP 55181270 A JP55181270 A JP 55181270A JP 18127080 A JP18127080 A JP 18127080A JP S6349717 B2 JPS6349717 B2 JP S6349717B2
Authority
JP
Japan
Prior art keywords
nickel
coating
carbon
base material
based alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55181270A
Other languages
Japanese (ja)
Other versions
JPS57105485A (en
Inventor
Keizo Konogi
Takayori Shinohara
Keiichi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP18127080A priority Critical patent/JPS57105485A/en
Publication of JPS57105485A publication Critical patent/JPS57105485A/en
Publication of JPS6349717B2 publication Critical patent/JPS6349717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • B01J19/0026Avoiding carbon deposits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は液状または/およびガス状の炭化水
素を炭化水素単独もしくは水蒸気,酸素含有ガス
等の補助原料および/または水素,一酸化炭素,
二酸化炭素等の反応生成物と共に(以下これらを
単に炭化水素含有物という)熱分解,水蒸気改
質,部分酸化等の化学反応あるいはその他の高温
処理を行う方法の改良に関するものである。 近時、上記の如き炭化水素含有物を高温,高圧
下に触媒を用いあるいは触媒を用いずに熱分解,
水蒸気改質,部分酸化、あるいはこれら3者の反
応の内の2者または3者を併用する化学反応を使
用し、エチレン,水素,水素および酸化炭素の混
合物等の大規模製造が行われ、これら諸反応およ
びこれら諸反応に伴なう炭化水素含有物の高温処
理を行う際、主原料である炭化水素の熱分解に起
因する固形炭素の析出現象が起り、この析出固形
炭素が反応器,その他の高温ガスと接触する装置
各部に蓄積するのを防止するため、連続操業を原
則とする製造装置を一時操業中止し、各種の方法
により、沈着炭素除去作業(いわゆるデコーキン
グ)を行つていることは周知である。これらの工
程で高温の炭化水素含有物と接触する装置材料と
しては高温下に充分な強度を保持するため、殆ど
の場合ニツケルを含有する鋼が使用されている。 この発明は上記の炭素沈着が高温における装置
材料として広く使用されているニツケルを含有す
る金属材料中のニツケルの触媒作用により促進さ
れていることを見出し、これらニツケルを含有す
る装置材料の該炭化水素含有物と接触する面をニ
ツケルを含まない耐熱性物質で被覆すれば上記ニ
ツケルの触媒作用を消去し炭素の沈着が減少する
と共に、尚且つ熱分解により若干発生する析出炭
素または炭素含有物のニツケルを含有する金属材
料中への拡散滲透(いわゆる滲炭現象)により起
る含ニツケル金属の脆化現象が著しく軽減できる
ことの発見に基づいている。以下にこの説明の内
容を具体的に説明する。 この発明において上記ニツケルを含有する装置
材料(以下単に母材という)の表面を被覆するた
めに使用できる材料の第一は次のような合金また
は金属である。 (1) ニツケルを含まない鋼または鉄基合金。 ここで鋼とは炭素含有量2%以下の鉄―炭素合
金をいう。また鉄基合金とは、合金成分中鉄の含
有量がもつとも多い合金をいうものとする。(以
下…基合金を全てこの意味で用いる。)これら合
金の例としては10〜30%の範囲のクロムを含む鉄
―クロム合金等が挙げられる。 (2) クロムまたはニツケルを含まないクロム基合
金。 この合金の例としてハフニウム1%,タリウム
1%,イツトリウム0.1%とクロムよりなる合金
が挙げられる。 (3) チタンまたはニツケルを含まないチタン基合
金。 例えば3%までのニオブを含むニオブとチタン
の合金。 (4) 銅またはニツケルを含まない銅基合金。 例えば3%までのベリリウムを含む銅―ベリリ
ウム合金。 の合金の如き単独金属あるいは合金である。 これらの単独金属あるいは合金による母材の被
覆方法としては如何なる方法でもよく、特に制限
はないが、管,板その他の形状に即に成形された
母材の被覆すべき面に被覆用金属の溶融物を流し
込むいわゆる鋳造法,アセチレンバーナーや電孤
等の如き高温発生手段により被覆用金属の溶融物
を付着させる方法,火焔溶射法,プラズマジエツ
ト法の如き被覆用金属の溶融物を噴射溶着させる
方法、これら金属の化合物の蒸気を母材表面に接
触させ化学反応により金属を母材表面に析出させ
る化学的蒸着法、また高真空中でこれら金属また
はその化合物の蒸気をイオン化し、電界中でイオ
ンに運動エネルギーを付与し、プラズマ中あるい
はその他の場所にイオンを導出し、母材表面に付
着させるかあるいは化学反応により母材表面に金
属を析出させるイオン沈着法,あるいは別に製作
した被覆用金属製の既に成形された管,板等を成
形済の母材に圧着させるいわゆるクラツド法等に
より被覆を行うのが通常である。この被覆用材料
として上記金属を用いる場合には、高温で使用す
る際、母材とこれら被覆金属の間に僅かである
が、相互拡散による成分の混合現象があり、結果
として長時間の使用に耐えるためには100ミクロ
ン以上の厚みで被覆しておくことが望ましい。 また被覆金属に母材との拡散による成分の混合
現象を起すように被覆金属と母材の種類に応じた
元素を加えることは、被覆金属と母材との密着性
や被覆金属自体の耐熱性を改善するために望まし
いことがある。例えば、上記(1)〜(4)の諸金属・合
金へのアルミニウムの添加あるいはアルミニウム
およびシリコンの同時添加等が有効である。この
ようにして製作された成形済で且つ被覆済の材料
を曲げ加工,拡管加工,溶接加工等を行うことに
より任意形状の装置あるいは部品を作製すること
ができる。しかし、母材が鋳造品である場合は被
覆後の曲げ加工,拡管加工等を行わないのが望ま
しい。 被覆に使用できる材料の第2は、 (5) 酸化クロム,アルミナまたは二酸化珪素など
の酸化物系セラミツクス (6) 窒化珪素または窒化硼素などの窒化物系セラ
ミツクス (7) 炭化珪素 などの化合物である。これらの化合物による母材
の被覆方法としては、酸化物の場合にはこれら酸
化物を火焔溶射法,プラズマジエツト法等の溶融
噴射法(いわゆる溶射法)等を用いて母材に被覆
する方法、窒化珪素,窒化硼素,炭化珪素の場合
にはそれぞれ珪素―窒素化学結合、窒素―硼素化
学結合、または炭素―珪素化学結合を含有する化
合物の液または溶液を被覆すべき母材表面に塗布
し、空気または不活性ガス中にて高温化学反応を
行わせて析出被覆する方法、あるいは前記と同様
プラズマジエツト法で既に粉末または棒状に作製
された炭化珪素,窒化硼素,窒化珪素を溶融噴射
する方法、化学的蒸着方法、イオン沈着方法等で
被覆することができる。尚、酸化物の場合にはこ
れら酸化物の懸濁液は母材に塗布後母材と共に高
温で焼成するいわゆる焼付法もあるが、この場合
には母材の溶融,変質を防止するため、酸化物の
溶融温度を母材の溶融温度以下に低下させるた
め、配合比の異なる酸化珪素,アルミナ,酸化硼
素,酸化石灰,酸化亜鉛,酸化バリウム,酸化ジ
ルコニウム等の混合物と混合焼付することが望ま
しい。しかしながら、この焼付法による被覆物の
使用温度は被覆層の溶融温度により制限を受け
る。 このような第二の種類の化合物を母材に被覆す
るさいの下地処理として、被覆材料の剥離を防止
するために、耐熱性と塑性変形能に富む金属また
は合金の層を予め母材に被覆しておくと有効な場
合がある。このような目的に用いる金属・合金の
例としては先に被覆に使用できる材料の第一とし
て掲げた(1)〜(4)の金属・合金が挙げられる。この
場合の下地処理用の被覆方法は既述の諸方法のい
ずれでも可能である。 これら第二の種類の化合物,被覆を必要とする
母材表面に被覆加工する際に使用できる母材の形
状は、第一の種類の金属の場合と同様に管,板,
その他の形状に形成されたもの全てに適用でき
る。これら第二の化合物を被覆する場合において
は、前記第一の金属または合金を被覆する場合と
は異なり厚み10ミクロン以上の被覆層を設ける必
要があるが、厚み1ミリメートル以上の被覆は装
置に使用せる際加熱工程等熱流がこの被覆層を通
過する場合に総括伝熱係数を低下させる外、母材
と被覆層の熱膨張率の差に起因する剥離を起し易
くなる故1ミリメートル以下の厚みが望ましい。
また前記の如く下地処理としての金属または合金
による被覆層の上層として第二の化合物による被
覆を行う場合においても同様の理由で、これら両
被覆層の厚みの合計が1ミリメートル以下である
ことが望ましい。 この発明による被覆対象となる母材の中では管
状のものが特に重要である。その理由は管状母材
が反応器,熱交換器等に使用されて高温の炭化水
素含有物に接触する場合が多いためである。従つ
て、この発明による母材の被覆は母材の片面とは
限らず、反応器,熱交換器等における炭化水素含
有物の通過経路によつて母材の内外両面を共に被
覆加工する必要のある場合も多い。 この発明の特長の第一は前記の如く炭化水素含
有物を500℃以上の高温で処理する際、また、こ
れら処理の中でも特に熱分解,水蒸気改質,部分
酸化の如き化学反応を触媒の存在下または不存在
下に行わせる反応器に適用する際、固型炭素の析
出および沈着を著しく軽減できることにある。固
型炭素の析出沈着は放置して置くと炭化水素含有
物の流通を妨害し、圧力損失の増加現象を生起す
るほか、更に上記化学反応を行わせるため、反応
熱を除去または供給する必要のある場合等におい
ては総括伝熱係数の著しい低下現象をも生起し、
操業の継続が困難となる。従つて、対策として定
期的に大規模な装置を一旦操業停止して多くの既
知手段による沈着炭素の除去作業を行う必要が生
ずる。この発明の適用により、この沈着炭素除去
作業は従来法の2/3以下の頻度に減らすことがで
きる。このような意味でこの発明の工業上の効果
は著しく大である。 この発明の特長の第二は含ニツケル装置材料に
対する滲炭現象が大巾に軽減できることである。
700℃以上の温度において炭素炭化水素,酸化炭
素等の炭素含有物質が炭素鋼やニツケル,クロ
ム,鉄等を含有する合金鋼に接触するといわゆる
滲炭現象と称される炭素分のこれら鋼の微細組織
内部への滲透拡散現象が生起され、これら鋼の強
度が脆弱化し、使用に耐えなくなることは既知と
なつている。この滲炭現象は沈着炭素の鋼の微細
構造の内部への拡散滲透によるのみでなく、ガス
状の炭素含有物質も原因の一つであるといわれて
いる。この発明は母材への沈着炭素およびガス状
炭素含有物の直接接触を効果的に遮断するため、
上記滲炭現象を著しく軽減することができる。こ
の効果により通常2〜3年毎に新品と交換する必
要のある前記反応管等の部材の寿命の延長を行う
ことができる。 この発明は500℃以上の温度で使用されるニツ
ケルを含有する耐熱鋼で製作された部品,部材,
装置等の炭化水素含有物の流れとの接触面に適用
することにより著しい効果を挙げることが可能
で、この際の部材および装置は如何なる形状に製
作されたものでもよいが、特に前記した反応器に
使用する管状部材への適用が重要である。その理
由は炭化水素含有物を500℃以上で処理する一連
の工程中では反応器において炭化水素含有する物
の流れが通常最高温度に達し且つその際多量の反
応熱を除去または供給する必要があるため、炭素
沈着が最も生起し易く且つ沈着炭素による総括伝
熱係数の低下が最も大きな障害を生起するからで
ある。 この発明で処理できる炭化水素はその種類を問
わない。メタン,エタン等の如き炭素数の小なる
炭化水素の場合においても、水蒸気,酸素含有ガ
ス等の補助原料の含有量小なる時、また炭化水素
が沸点の高いもの即ち1分子中に含まれる炭素原
子の数が多い時、特に原油の常圧蒸留残渣油を更
に真空蒸留した際の留出油の如き重質油処理の場
合には著効を生ずる。更にまたこの発明は500℃
以上においてガス状,液状の炭化水素の単独流お
よびこれら炭化水素と水蒸気,酸素含有ガス、等
の副原料を混合せるもの、また更に反応の結果生
ずる水素,一酸化炭素,二酸化炭素等を含む場合
においても炭化水素が成分として含有されている
場合について効果を有する。このような炭化水素
の処理は通常大気圧以上100Kg/cm2程度の圧力下
で実施されており、このような高温と加圧下の条
件は含ニツケル装置材料を苛酷な条件で使用する
必要があるため、この発明の実用上の効果が最も
よく発揮されるのである。 実施例 1 表1に記載の各種材料で被覆した鋼材の試験片
を供試材として(幅,奥行き各20mm,厚さ2mm)、
これを電気ヒータで加熱される試験用反応管内に
磁製ボートに載せて設置し、温度800℃で、モル
比1:1.5のエタン,水蒸気の混合流を流して暴
露し、1時間後の炭素析出による変化を重量増加
で調べた。被覆はプラズマ溶射法により、特に番
号6,7の材料では減圧アルゴン雰囲気下の真空
プラズマ溶射により、金属材料は300μm厚さに施
し、化合物材料はまずCr20%,C0.05%,残部Ni
からなる合金を80μm施した上に50μm施した。な
お鋼材はNi80%,Cr18%,Si0.8%,C0.5%,残
部Feからなる合金であり、上記被覆のないもの
を対照とした、また番号が数字のものは本発明の
例、aないしfは比較例である。 結果は表2の通り、 実施例 2 固体浸炭法により実施例1に用いたと同じ各供
試材の浸炭性を試験した。即ち鋼製容器に浸炭剤
(主成分:木炭)を供試材と共に充填し封入して
から、電気炉中600〜1000℃(100℃きざみ)で24
時間熱したのち供試材の外観と切断面の組織変化
を調べた。 その結果、番号3,4の供試材では900℃以上
で表面の酸化損耗と結晶の粗粒化が若干見られ、
また番号a〜cと対照では浸炭が見られた他は変
化がなかつた。 以上の実施例から、Ni合金ではNi含量が多け
れば浸炭性はよいがカーボン析出(コーキング)
の点で問題あるのに対し本発明の場合何れも良好
であるのが判る。
This invention can convert liquid or/and gaseous hydrocarbons into hydrocarbons alone or auxiliary raw materials such as water vapor, oxygen-containing gas, etc., and/or hydrogen, carbon monoxide, etc.
This invention relates to improvements in methods for conducting chemical reactions such as thermal decomposition, steam reforming, partial oxidation, or other high-temperature treatments together with reaction products such as carbon dioxide (hereinafter simply referred to as hydrocarbon-containing substances). Recently, hydrocarbon-containing materials such as those mentioned above have been thermally decomposed at high temperatures and pressures with or without catalysts.
Chemical reactions such as steam reforming, partial oxidation, or a combination of two or three of these reactions are used to produce large-scale products such as ethylene, hydrogen, and mixtures of hydrogen and carbon oxides. When performing various reactions and the high-temperature treatment of hydrocarbon-containing materials associated with these reactions, precipitation of solid carbon occurs due to thermal decomposition of the hydrocarbons, which are the main raw materials, and this precipitated solid carbon is deposited in the reactor, etc. In order to prevent carbon from accumulating in parts of the equipment that come in contact with high-temperature gases, production equipment that operates continuously is temporarily suspended and various methods are used to remove deposited carbon (so-called decoking). is well known. In most cases, nickel-containing steel is used as a material for equipment that comes into contact with high-temperature hydrocarbon-containing substances in these processes, in order to maintain sufficient strength at high temperatures. The present invention has discovered that the above-mentioned carbon deposition is promoted by the catalytic action of nickel in metal materials containing nickel, which are widely used as equipment materials at high temperatures. If the surface that comes into contact with the nickel-containing material is coated with a heat-resistant material that does not contain nickel, the catalytic action of nickel will be eliminated and carbon deposition will be reduced. This is based on the discovery that the embrittlement phenomenon of nickel-containing metals caused by diffusion into metal materials containing nickel (so-called charring phenomenon) can be significantly reduced. The content of this explanation will be specifically explained below. In this invention, the first material that can be used to coat the surface of the nickel-containing device material (hereinafter simply referred to as base material) is the following alloy or metal. (1) Steel or iron-based alloys that do not contain nickel. Here, steel refers to an iron-carbon alloy with a carbon content of 2% or less. Further, the term "iron-based alloy" refers to an alloy that has a high content of iron in its alloy components. (Hereinafter, all base alloys will be used in this sense.) Examples of these alloys include iron-chromium alloys containing 10 to 30% chromium. (2) Chromium-based alloys that do not contain chromium or nickel. An example of this alloy is an alloy consisting of 1% hafnium, 1% thallium, 0.1% yttrium, and chromium. (3) Titanium-based alloys that do not contain titanium or nickel. For example, alloys of niobium and titanium containing up to 3% niobium. (4) Copper-based alloys that do not contain copper or nickel. For example, copper-beryllium alloys containing up to 3% beryllium. It can be a single metal or an alloy, such as an alloy of. Any method may be used to coat the base material with these single metals or alloys, and there are no particular limitations. The so-called casting method in which a material is poured, the method of depositing a molten coating metal using a high temperature generating means such as an acetylene burner or an electric arc, and the injection welding of a molten coating metal such as a flame spraying method or a plasma jet method. chemical vapor deposition method, in which the vapor of these metal compounds is brought into contact with the surface of the base material and the metal is deposited on the surface of the base material through a chemical reaction; An ion deposition method in which kinetic energy is imparted to ions, the ions are guided into plasma or other locations, and the ions are attached to the surface of the base material or metal is deposited on the surface of the base material through a chemical reaction, or a separately manufactured metal coating The coating is usually carried out by the so-called cladding method, in which a molded pipe, plate, etc., is crimped onto a molded base material. When using the above-mentioned metals as coating materials, when used at high temperatures, there is a slight mixing phenomenon of components due to interdiffusion between the base material and these coating metals, resulting in long-term use. In order to withstand it, it is desirable to have a coating with a thickness of 100 microns or more. In addition, adding elements according to the types of the coating metal and base material to cause a mixing phenomenon of components by diffusion with the base metal to the coating metal is important for improving the adhesion between the coating metal and the base metal and the heat resistance of the coating metal itself. It may be desirable to improve For example, it is effective to add aluminum to the metals/alloys listed in (1) to (4) above, or to add aluminum and silicon simultaneously. By performing bending, tube expansion, welding, etc. on the thus formed and coated material, devices or parts of arbitrary shapes can be manufactured. However, if the base material is a cast product, it is desirable not to perform bending, tube expansion, etc. after coating. The second materials that can be used for the coating are (5) oxide-based ceramics such as chromium oxide, alumina or silicon dioxide, (6) nitride-based ceramics such as silicon nitride or boron nitride, and (7) compounds such as silicon carbide. . In the case of oxides, the base material may be coated with these compounds using a melt injection method (so-called thermal spray method) such as a flame spray method or a plasma jet method. In the case of silicon nitride, boron nitride, and silicon carbide, a liquid or solution of a compound containing a silicon-nitrogen chemical bond, a nitrogen-boron chemical bond, or a carbon-silicon chemical bond is applied to the surface of the base material to be coated. , by performing a high-temperature chemical reaction in air or inert gas to deposit and coat, or by melting and spraying silicon carbide, boron nitride, or silicon nitride that has already been made into a powder or rod shape using a plasma jet method similar to the above. The coating can be performed by a method such as a chemical vapor deposition method, an ion deposition method, or the like. In the case of oxides, there is also a so-called baking method in which a suspension of these oxides is applied to the base material and then fired together with the base material at a high temperature, but in this case, in order to prevent the base material from melting or altering, In order to lower the melting temperature of the oxide to below the melting temperature of the base material, it is desirable to mix and bake it with a mixture of silicon oxide, alumina, boron oxide, lime oxide, zinc oxide, barium oxide, zirconium oxide, etc. with different mixing ratios. . However, the use temperature of the coating produced by this baking method is limited by the melting temperature of the coating layer. When coating the base material with such a second type of compound, a layer of metal or alloy with high heat resistance and plastic deformability is coated on the base material in advance in order to prevent the coating material from peeling off. It may be effective to do so. Examples of metals and alloys used for this purpose include metals and alloys (1) to (4) listed above as the first materials that can be used for coating. In this case, any of the above-mentioned methods can be used as a coating method for base treatment. The shape of the base material that can be used when coating the surface of the base material that requires coating with these second type of compounds is the same as for the first type of metal, such as pipes, plates, etc.
It can be applied to all other shapes. When coating with these second compounds, unlike when coating the first metal or alloy, it is necessary to provide a coating layer with a thickness of 10 microns or more, but coatings with a thickness of 1 mm or more are used in the equipment. When the heat flow passes through this coating layer during the heating process, it not only reduces the overall heat transfer coefficient but also tends to cause peeling due to the difference in thermal expansion coefficient between the base material and the coating layer. is desirable.
Furthermore, when coating with a second compound as an upper layer of a metal or alloy coating layer as a base treatment as described above, it is desirable that the total thickness of both coating layers be 1 mm or less for the same reason. . Among the base materials to be coated according to the present invention, tubular materials are particularly important. The reason for this is that the tubular base material is often used in reactors, heat exchangers, etc. and comes into contact with high-temperature hydrocarbon-containing materials. Therefore, the coating of the base material according to the present invention is not limited to one side of the base material, but may need to be coated on both the inside and outside of the base material depending on the passage of hydrocarbon-containing substances in reactors, heat exchangers, etc. There are many cases. The first feature of this invention is that, as mentioned above, when treating hydrocarbon-containing materials at high temperatures of 500°C or higher, the presence of catalysts is particularly important for chemical reactions such as thermal decomposition, steam reforming, and partial oxidation. When applied to reactors operated under or in the absence of water, precipitation and deposition of solid carbon can be significantly reduced. If solid carbon precipitation is left untreated, it will obstruct the flow of hydrocarbon-containing substances and cause an increase in pressure loss. In some cases, a significant decrease in the overall heat transfer coefficient may occur,
Continuation of operations becomes difficult. Therefore, as a countermeasure, it becomes necessary to periodically temporarily shut down the large-scale equipment and remove the deposited carbon using a number of known means. By applying this invention, the frequency of this deposited carbon removal work can be reduced to two-thirds or less of the conventional method. In this sense, the industrial effects of this invention are extremely large. The second feature of this invention is that the decarburization phenomenon for nickel-containing device materials can be greatly reduced.
When carbon-containing substances such as carbon hydrocarbons and carbon oxides come into contact with carbon steel or alloy steel containing nickel, chromium, iron, etc. at temperatures of 700°C or higher, the carbon content of these steels undergoes the so-called decarburization phenomenon. It is known that a percolation-diffusion phenomenon occurs within the structure, weakening the strength of these steels and rendering them unusable. This decarburization phenomenon is said to be caused not only by the diffusion of deposited carbon into the microstructure of the steel, but also by gaseous carbon-containing substances. This invention effectively blocks direct contact of deposited carbon and gaseous carbon-containing substances to the base material.
The above-mentioned charring phenomenon can be significantly reduced. This effect makes it possible to extend the life of members such as the reaction tubes, which normally need to be replaced with new ones every 2 to 3 years. This invention applies to parts, members, etc. made of heat-resistant steel containing nickel that are used at temperatures of 500°C or higher.
It is possible to achieve a remarkable effect by applying it to the surface of equipment that comes into contact with a flow of hydrocarbon-containing materials, and the members and equipment in this case may be manufactured in any shape, but in particular, the above-mentioned reactor It is important to apply this to tubular members used in The reason is that during a series of processes in which hydrocarbon-containing substances are treated at temperatures above 500°C, the flow of hydrocarbon-containing substances in the reactor usually reaches a maximum temperature, and at this time a large amount of reaction heat needs to be removed or supplied. Therefore, carbon deposition is most likely to occur, and a decrease in the overall heat transfer coefficient due to the deposited carbon causes the greatest problem. Any type of hydrocarbon can be treated with this invention. Even in the case of hydrocarbons with a small number of carbon atoms such as methane, ethane, etc., when the content of auxiliary raw materials such as water vapor and oxygen-containing gas is small, or when the hydrocarbon has a high boiling point, that is, carbon contained in one molecule. When the number of atoms is large, it becomes particularly effective when treating heavy oils such as distillate oil obtained by further vacuum distillation of residual oil from atmospheric distillation of crude oil. Furthermore, this invention
In the above cases, a single stream of gaseous or liquid hydrocarbons, a mixture of these hydrocarbons with auxiliary raw materials such as water vapor, oxygen-containing gas, etc., or cases containing hydrogen, carbon monoxide, carbon dioxide, etc. produced as a result of the reaction It is also effective when hydrocarbons are contained as a component. Such hydrocarbon processing is usually carried out at pressures above atmospheric pressure of about 100 kg/cm 2 , and such high temperature and pressurized conditions require the use of nickel-containing equipment materials under harsh conditions. Therefore, the practical effects of this invention are best exhibited. Example 1 Steel specimens coated with various materials listed in Table 1 were used as test materials (width and depth 20 mm each, thickness 2 mm),
This was placed on a porcelain boat in a test reaction tube heated by an electric heater, and exposed to a mixed flow of ethane and water vapor at a molar ratio of 1:1.5 at a temperature of 800°C. Changes due to precipitation were investigated by weight increase. The coating was applied by plasma spraying, especially for materials No. 6 and 7, by vacuum plasma spraying in a reduced pressure argon atmosphere, and the metal material was coated to a thickness of 300 μm, and the compound material was first coated with 20% Cr, 0.05% C, and the remainder Ni.
50 μm of the alloy was applied on top of the 80 μm of alloy. The steel material is an alloy consisting of 80% Ni, 18% Cr, 0.8% Si, 0.5% C, and the balance is Fe.The steel material is an alloy consisting of 80% Ni, 18% Si, 0.8% Si, 0.5% C, and the balance is Fe. to f are comparative examples. The results are shown in Table 2. Example 2 The carburizability of each sample material used in Example 1 was tested using the solid carburizing method. That is, a steel container is filled with carburizing agent (main ingredient: charcoal) together with the test material, sealed, and then heated at 600 to 1000℃ (in 100℃ steps) in an electric furnace for 24 hours.
After heating for a period of time, the external appearance of the specimen and changes in the structure of the cut surface were examined. As a result, the test materials No. 3 and 4 showed some oxidation loss and coarsening of the crystals at temperatures above 900°C.
Further, in Nos. a to c and the control, there was no change other than carburization. From the above examples, it can be seen that in Ni alloys, the higher the Ni content, the better the carburizing properties, but carbon precipitation (coking)
It can be seen that while there are problems in this respect, the present invention is good in all respects.

【表】 る合金
[Table] Alloys

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭化水素を炭化水素単独もしくは水蒸気,酸
素含有ガス等の補助原料および/または水素、一
酸化炭素、二酸化炭素等の反応生成物と共に温度
500℃以上で処理するに際し、ニツケルを含有す
る鋼で製作された装置の該炭化水素成分と接触す
る面を、 (1) ニツケルを含まない鋼または鉄基合金 (2) クロムまたはニツケルを含まないクロム基合
金 (3) チタンまたはニツケルを含まないチタン基合
金 (4) 銅またはニツケルを含まない銅基合金 (5) 酸化クロム、アルミナまたは二酸化珪素 (6) 窒化珪素または窒化硼素 (7) 炭化珪素 からなる群より選択した材料により被覆して行う
ことを特徴とする該炭化水素の処理法。
[Scope of Claims] 1. Hydrocarbons alone or together with auxiliary raw materials such as steam and oxygen-containing gas and/or reaction products such as hydrogen, carbon monoxide, and carbon dioxide at high temperatures.
When processing at temperatures above 500°C, the surfaces of equipment made of nickel-containing steel that come into contact with the hydrocarbon component must be (1) nickel-free steel or iron-based alloys (2) chromium- or nickel-free steel. Chromium-based alloys (3) Titanium-based alloys without titanium or nickel (4) Copper-based alloys without copper or nickel (5) Chromium oxide, alumina or silicon dioxide (6) Silicon nitride or boron nitride (7) Silicon carbide A method for treating hydrocarbons, characterized in that the treatment is carried out by coating with a material selected from the group consisting of:
JP18127080A 1980-12-23 1980-12-23 High-temperature treatment of substance containing hydrocarbon Granted JPS57105485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18127080A JPS57105485A (en) 1980-12-23 1980-12-23 High-temperature treatment of substance containing hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18127080A JPS57105485A (en) 1980-12-23 1980-12-23 High-temperature treatment of substance containing hydrocarbon

Publications (2)

Publication Number Publication Date
JPS57105485A JPS57105485A (en) 1982-06-30
JPS6349717B2 true JPS6349717B2 (en) 1988-10-05

Family

ID=16097753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18127080A Granted JPS57105485A (en) 1980-12-23 1980-12-23 High-temperature treatment of substance containing hydrocarbon

Country Status (1)

Country Link
JP (1) JPS57105485A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559428B2 (en) * 2010-05-28 2014-07-23 グレイトポイント・エナジー・インコーポレイテッド Conversion of liquid heavy hydrocarbon feedstock to gaseous products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725386A (en) * 1980-07-23 1982-02-10 Jgc Corp Carbon deposition-preventing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725386A (en) * 1980-07-23 1982-02-10 Jgc Corp Carbon deposition-preventing apparatus

Also Published As

Publication number Publication date
JPS57105485A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
CA1140162A (en) High-temperature treatment of hydrocarbon-containing materials
US3827967A (en) Thermal cracking of hydrocarbons
CA1043190A (en) Protective films
JP3679413B2 (en) Cracking method
CA2348145C (en) Protective system for high temperature metal alloys
US6268067B1 (en) Surfaced alloyed high temperature alloys
US7488392B2 (en) Surface on a stainless steel matrix
KR101115994B1 (en) Composite surface on a steel substrate
JP5112597B2 (en) Stainless steel matrix surface
JP4632629B2 (en) How to treat stainless steel matrix
CA2420229C (en) Stainless steel and stainless steel surface
JP2002285299A (en) Use of austenitic stainless steel in application requiring coking resistance
JP3906367B2 (en) Coke-resistant steel
Sayyedan et al. Anti-coking and anti-carburizing behavior of amorphous AlPO4 coating
JPS6349717B2 (en)
US6524402B1 (en) Passivation method for metallic articles of nickel and iron-based superalloy
JPS6317117B2 (en)
KR840000446B1 (en) Process for hight-temperature treatment of hydrocarbon-containing materials
CN112708446A (en) Method for reducing coking of cracking device and application thereof
JP4206491B2 (en) Chromatized heat-resistant steel, its production method and its use in anti-caulking applications
Holmen et al. Coke formation on nickel-chromium-iron alloys
GB2114599A (en) Apparatus for treating hydrocarbons or carbon monoxide-containing fluid at high temperatures substantially without carbon deposition
JPS63478B2 (en)
SA95160356A (en) Cracking processes