JPS6349677B2 - - Google Patents

Info

Publication number
JPS6349677B2
JPS6349677B2 JP55108826A JP10882680A JPS6349677B2 JP S6349677 B2 JPS6349677 B2 JP S6349677B2 JP 55108826 A JP55108826 A JP 55108826A JP 10882680 A JP10882680 A JP 10882680A JP S6349677 B2 JPS6349677 B2 JP S6349677B2
Authority
JP
Japan
Prior art keywords
shaft
drive
fork
wheel
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55108826A
Other languages
Japanese (ja)
Other versions
JPS5737019A (en
Inventor
Tomotaro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN KIKAI KENKYUSHO KK
Original Assignee
NORIN KIKAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN KIKAI KENKYUSHO KK filed Critical NORIN KIKAI KENKYUSHO KK
Priority to JP10882680A priority Critical patent/JPS5737019A/en
Publication of JPS5737019A publication Critical patent/JPS5737019A/en
Publication of JPS6349677B2 publication Critical patent/JPS6349677B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、駆動力、特に登坂能力の大きく、
操舵および操向の安定した、安価にして強度の大
な、全輪駆動型三輪自動車、特に山林等にて木材
等を運搬するに適した急坂運搬用全輪駆動型三輪
自動車に関するものである。
[Detailed Description of the Invention] This invention has a large driving force, especially a hill-climbing ability.
The present invention relates to an inexpensive and strong all-wheel drive three-wheel vehicle with stable steering and steering, particularly an all-wheel drive three-wheel vehicle for transporting steep slopes suitable for transporting timber and the like in mountains and forests.

駆動力、特に登坂能力の大きい、全輪駆動型四
輪自動車は、この出願前周知であるが、最小半径
を小さくすることが困難であり、一般的に林道や
林内等においては左右に激しく道路等が曲折し、
あるいは隣接する樹木等の障害物のあるなかで、
例えば長大な木材等を積載して急カーブしたり、
Uターンしたりすることは不可能であつた。
All-wheel-drive four-wheel vehicles, which have a large driving force, especially the ability to climb hills, were well known before this application, but it is difficult to reduce the minimum radius, and generally on forest roads and inside forests, the road moves violently from side to side. etc. are bent,
Or when there are obstacles such as adjacent trees,
For example, when loading a large piece of wood and making a sharp curve,
It was impossible to make a U-turn.

一方、三輪自動車においては、最小半径を小さ
くすることは比較的容易であるが、後輪に加えて
前輪も駆動することは困難であつた。つまり、直
進時には前輪も後輪と同じ速度で回転すればよい
が、旋回時には前輪および左右の後輪がいずれも
異なる速度で回転させることが必要であり、直進
時および旋回時のいずれの時でも全輪に所望の回
転力を与えつつ、操舵を安定することが困難であ
つた。また、路面の凹凸等により前輪に加わる衝
撃によつて前輪が上下動するため、原動機から伝
えられる前輪用の駆動伝動軸と、上下動する前輪
との距離が変化しても強力な駆動力を伝動しつ
つ、操向を安定することが困難であつた。特に、
林道や林内等の凹凸やスリツプのしやすい路面
で、かつ急カーブの多い悪路上で、長大な木材等
を積載するという悪条件下で、操舵および操向の
安定した、安価で強度大な、全輪駆動型三輪車、
特に山林等で木材等を運搬する急坂運搬用全輪駆
動型三輪自動車を実用化することは、極めて困難
であつた。
On the other hand, in a three-wheeled vehicle, although it is relatively easy to reduce the minimum radius, it is difficult to drive the front wheels in addition to the rear wheels. In other words, when going straight, the front wheels only need to rotate at the same speed as the rear wheels, but when turning, the front wheels and the left and right rear wheels need to rotate at different speeds. It was difficult to stabilize steering while applying desired rotational force to all wheels. In addition, since the front wheels move up and down due to the impact applied to them due to uneven road surfaces, strong driving force is maintained even if the distance between the front wheel drive shaft transmitted from the prime mover and the front wheels that move up and down changes. It was difficult to stabilize steering while transmitting power. especially,
It is an inexpensive and strong vehicle that provides stable steering and handling under adverse conditions such as loading large pieces of wood, etc. on uneven surfaces such as forest roads and inside forests, on rough roads with many sharp curves, and on rough roads that are prone to slips. all wheel drive tricycle,
It has been extremely difficult to put into practical use all-wheel-drive three-wheeled vehicles for transporting timber and the like, especially on steep slopes in mountains and forests.

ところで、全輪駆動型三輪自動車、特に全輪駆
動型三輪トラクタとして、機体に設置する左右一
対の駆動車軸と機体塔載の原動機とを連動連結す
る変速断続自在伝動装置の中に差動歯車機構を内
蔵し、該差動歯車機構の左右差動軸に歯車を設
け、該歯車を操向輪ステアリング機構の作動が一
定範囲内のときは前記左右差動軸に共に連動さ
れ、かつ前記機構の作動が前記範囲を超えると旋
回高速側の差動軸とのみ連動する如くなして、こ
の歯車から操向輪の周速と等しくなるよう伝動せ
しめたものも知られている(特公昭46―4974号公
報)。
By the way, as an all-wheel drive three-wheel vehicle, especially an all-wheel drive three-wheel tractor, a differential gear mechanism is installed in a variable-speed intermittent transmission that interlocks and connects a pair of left and right drive axles installed in the vehicle body and a prime mover mounted on the vehicle body. A gear is provided on the left and right differential shafts of the differential gear mechanism, and when the operation of the steering wheel steering mechanism is within a certain range, the gear is interlocked with the left and right differential shaft, and the gear is connected to the left and right differential shafts of the mechanism. It is also known that when the operation exceeds the above range, only the differential shaft on the high-speed turning side is interlocked, so that the gear transmits power equal to the circumferential speed of the steering wheel (Japanese Patent Publication No. 46-4974). Publication No.).

しかしながら、変速断続自在伝動装置が操向ス
テアリング機構の作動に応じて一定範囲を超えた
時に旋回高速側の差動軸と連動するということ
は、前輪と後方外輪とが同一径路を通過する特定
の角度で操向ステアリングが安定することとな
る。通常、この角度は後方車輪間距離および前方
車輪と後方車輪の各車軸間隔とにより特定される
車両特有の値となるという欠点がある。そして、
通常の車両の場合、前方の車輪と後方外輪が同一
径路とるという場合とは比較的急なカーブをとる
ということとなるが、前記変速断続自在伝動装置
が切換る操向ステアリング機構の作動範囲を大き
くとつた場合には、その範囲に至るまでは変速自
在伝動装置が左右差動軸に連動しているため旋回
時に過大な操向力を必要とし、一定範囲を超えて
旋回高速側の差動軸と連動した瞬間、操向ステア
リングは急激に安定状態に切換わり、オーバース
テアリングの原因となる。一方、この角度を小さ
くとつた場合には、更にオーバーステアリングの
原因となりやすい欠点がある。これらの欠点を解
決する手段としては、変速断続自在伝動装置が操
向ステアリング機構の作動に応じて無段に変速す
ることが好ましいが、機構的にも複雑となり、高
価なものとなり、特に林道や林内等の悪路で使用
する場合には、故障等の不測の事態をさけがたい
欠点がある。更に、通常差動機構の左右差動軸は
ハウジングで被包された部分が多い状態として製
造されているため、該軸に伝動歯車を固着し、操
向ステアリング機構との関連機構を設けるために
は、加工のために費用を要し、特に山林等の悪路
にも適した急坂運搬用三輪自動車では、大型の伝
動歯車を後軸の近くに設けることは、路面との接
触を引き起こすことにもなりかねず、前方車輪へ
の駆動力を大きくすることが困難である。また、
山林等においては、路面がスリツプしやすいほ
か、凹凸道路や波状道路を操向する場合、一方の
車輪がはね上つた瞬間高速回転し、次に接地する
と急激に回転が落ちるというように、後方の片側
車輪のみの回転が急激な変化をする事態が非常に
多いが、この問題は何等解決されていない。例え
ば、変速断続自在伝動装置が旋回高速側の差動軸
と連動している際に、後方内側の車輪がはね上つ
て高速回転すると操向ステアリングにはいずれか
の方向に予測しない急激な力が加わることとな
り、特に山林等においては危険である。
However, the fact that the variable speed intermittent transmission operates in conjunction with the differential shaft on the high-speed turning side when the operation of the steering mechanism exceeds a certain range means that the front wheels and the rear outer wheels pass through the same path. Steering becomes stable depending on the angle. Usually, this angle has the disadvantage that it is a vehicle-specific value specified by the distance between the rear wheels and the axle spacing between the front wheels and the rear wheels. and,
In the case of a normal vehicle, when the front wheels and rear outer wheels take the same path, it means taking a relatively sharp curve, but the operating range of the steering mechanism that is switched by the variable speed intermittent transmission is limited. If it becomes too large, the variable speed transmission is linked to the left and right differential shafts until that range is reached, so excessive steering force is required when turning, and beyond a certain range the differential on the high speed side of the turn is The moment the steering is linked to the shaft, the steering suddenly switches to a stable state, causing oversteering. On the other hand, if this angle is made small, there is a drawback that oversteering is more likely to occur. As a means to solve these drawbacks, it is preferable to use an intermittent variable speed transmission that continuously changes speed according to the operation of the steering mechanism, but this is mechanically complex and expensive, and is especially suitable for driving on forest roads. When used on rough roads such as in forests, there is a drawback that unexpected situations such as breakdowns cannot be avoided. Furthermore, since the left and right differential shaft of a differential mechanism is usually manufactured with many parts covered by a housing, it is necessary to fix a transmission gear to the shaft and provide a mechanism related to the steering mechanism. However, in three-wheeled vehicles for transporting steep slopes, which are especially suitable for rough roads such as mountains and forests, installing a large transmission gear near the rear axle may cause contact with the road surface. Therefore, it is difficult to increase the driving force to the front wheels. Also,
In mountains and forests, the road surface is prone to slipping, and when steering on uneven or wavy roads, one wheel spins at high speed the moment it lifts up, and then suddenly slows down when it hits the ground. There are many situations in which the rotation of only one wheel of the vehicle suddenly changes, but this problem has not been solved in any way. For example, when the intermittent variable transmission is linked to the differential shaft on the high speed side of the turn, if the rear inside wheel springs up and rotates at high speed, the steering system will receive an unexpected sudden force in either direction. This is especially dangerous in mountains and forests.

そして、この発明は、これらの欠点を解決し、
駆動力、特に登坂能力の大きく、操舵および操向
の安定した安価にして強度大な全輪駆動型三輪自
動車、特に山林等にて木材等を運搬するに適した
急坂運搬用全輪駆動型三輪自動車を得ようとする
ものである。
This invention solves these drawbacks and
An inexpensive and strong all-wheel drive three-wheel vehicle with high driving force, especially hill-climbing ability, stable steering and steering, and an all-wheel drive three-wheel vehicle for transporting steep slopes, especially suitable for transporting lumber, etc. in mountains and forests. They are trying to get a car.

更に、この発明は路面の凹凸により前方車輪が
激しく上下動しても、急激な前方車輪の衝撃を吸
収するとともに、前方車輪に強力な駆動力を伝動
する安価にして強度大なフロントフオークと緩衝
装置とにより、操舵および操向の安定した全輪駆
動型三輪自動車、特に急坂運搬用全輪駆動型三輪
自動車を得ようとするものである。
Furthermore, this invention provides an inexpensive and strong front fork and shock absorber that absorbs the sudden impact of the front wheels even when they move up and down violently due to uneven road surfaces, and transmits strong driving force to the front wheels. The present invention aims to provide an all-wheel drive three-wheel vehicle with stable steering and steering, particularly an all-wheel drive three-wheel vehicle for transportation on steep slopes.

以下に、この発明の好ましい実施例について図
面を参照しつつ、詳細に説明する。
Preferred embodiments of the invention will be described in detail below with reference to the drawings.

第1図に示す三輪自動車1は、原動機(図示せ
ず)からの動力をミツシヨン2に伝えるがこのミ
ツシヨン2は第1ミツシヨン2aおよび第2ミツ
シヨン2bからなり、第1ミツシヨン2aからの
動力を第2ミツシヨン2bに伝えるとともに駆動
力を増大せしめる。第1ミツシヨン2a,第2ミ
ツシヨン2bのチエンジレバー3を運転席4の近
傍に取付ける。そして、この減速され、駆動力の
増大せしめられた動力は、推進軸5に伝えられ、
ノースピンデフ6を介して左右の後方車輪7,
7′へと回転を伝えるとともに、推進軸5の回転
を駆動伝動機構8を介して前方車輪9に伝える全
輪駆動型三輪自動車、特に山林等で木材等を運搬
するに適した急坂運搬用全輪駆動型三輪自動車で
ある。なお、特に図示してはいないが、例えば木
材等の長大なものを積載する場合には、別途トレ
ーラーを牽引し得ることは明らかである。
A three-wheeled vehicle 1 shown in FIG. 1 transmits power from a prime mover (not shown) to a transmission 2. This transmission 2 consists of a first transmission 2a and a second transmission 2b. 2 transmission to transmission 2b and increases the driving force. The change levers 3 of the first transmission 2a and the second transmission 2b are installed near the driver's seat 4. Then, this reduced speed and increased driving force is transmitted to the propulsion shaft 5,
The left and right rear wheels 7 via the no spin differential 6,
This is an all-wheel drive three-wheel vehicle that transmits rotation to the front wheel 7' and the rotation of the propulsion shaft 5 to the front wheels 9 via a drive transmission mechanism 8. It is a wheel drive three-wheeled vehicle. Although not particularly shown in the drawings, it is clear that a separate trailer can be towed, for example, when loading long items such as wood.

また、この減速され、駆動力を増大せしめられ
た動力を十分に発揮するため、左右の後方車輪
7,7′には各々二個づつ作業タイヤ7a,7b,
7′a,7′bを取り付けて、タイヤ面と路面との
接触を良くした。特に、山道等は両端が高いため
左右の後方車輪7,7′に各々二個づつ取付けた
作業タイヤ7a,7b,7′a,7′bのうち外方
の作業タイヤ7a,7′aの外径を、内方の作業
タイヤ7b,7′bの外径より小径とすると一層
タイヤ面と路面との接触が良くなる。
In addition, in order to fully utilize this reduced speed and increased driving force, the left and right rear wheels 7, 7' are equipped with two working tires 7a, 7b,
7'a and 7'b were installed to improve the contact between the tire surface and the road surface. In particular, since both ends of mountain roads are high, the outer working tires 7a, 7'a of the two working tires 7a, 7b, 7'a, 7'b installed on the left and right rear wheels 7, 7' are If the outer diameter is made smaller than the outer diameter of the inner working tires 7b, 7'b, the contact between the tire surface and the road surface will be even better.

次に、この発明の特徴の一つである推進軸5の
回転を左右の後方車輪7,7′に伝えるノースピ
ンデフ6について説明する。
Next, the no-spin differential 6 that transmits the rotation of the propulsion shaft 5 to the left and right rear wheels 7, 7', which is one of the features of the present invention, will be explained.

第2図において、61はデフゲージ、62は外
向きフランジ62aの端面に歯62bが形成され
た筒体から成る左右一対のドリブンクラツチ、6
3はこれらドリブンクラツチ62の歯62bと第
2d図の如くバツクラツシユCを有して噛合する
歯63a,63bを両端面に有する環状部63c
とこの環状部63cの外周面に径方向に突出する
複数の軸63dとを備えかつこれら軸63dが上
記デフゲージ61に第2a図の如く嵌着固定され
たスパイダ、64はこのスパイダ63の環状部6
3c内にスナツプリング67を介して装着された
環状のセンターカムで、その両端面には上記各ド
リブンクラツチ62の歯62bのフランジ内周側
部とそれぞれ回転方向のバツクラツシユなく噛合
う歯64a,64bが形成されるとともに、これ
ら歯64a,64bの両面にそれぞれ面取りが施
されている。したがつて、上記センターカム64
はスパイダ63に対し軸方向移動は規制される
が、回転方向へはドリブンクラツチ62と共にバ
ツクラツシユc分相対回動できるようになつてい
る。
In FIG. 2, 61 is a differential gauge, 62 is a pair of left and right driven clutches each consisting of a cylindrical body having teeth 62b formed on the end face of an outward flange 62a;
3 is an annular portion 63c having teeth 63a and 63b on both end surfaces which mesh with the teeth 62b of the driven clutch 62 with a backlash C as shown in FIG. 2d.
and a plurality of shafts 63d projecting radially from the outer circumferential surface of the annular portion 63c, and these shafts 63d are fitted and fixed to the differential gauge 61 as shown in FIG. 2a; 64 is the annular portion of this spider 63; 6
3c is an annular center cam attached via a snap spring 67, and teeth 64a and 64b are provided on both end surfaces of the center cam, which mesh with the inner peripheral side of the flange of the teeth 62b of each of the driven clutches 62, respectively, without clashing in the rotational direction. Both sides of these teeth 64a and 64b are chamfered. Therefore, the center cam 64
is restricted from moving in the axial direction with respect to the spider 63, but is allowed to rotate relative to the backlash c in the rotational direction together with the driven clutch 62.

然して、68は上記各ドリブンクラツチ62の
内周面に形成された内歯62cとそれぞれ噛合う
外歯68aを有する筒体から成る左右一対のサイ
ドギヤで、これらの外周面には上記デフゲージ6
1に設けられた左右の孔61a,61b縁部にそ
れぞれ係止するフランジ68bが形成されるとと
もに、これら各フランジ68b部にカシメ等によ
りそれぞれ嵌着固定した一対のリテーナ66と上
記各ドリブンクラツチ62のフランジ62a背面
との間にはそれぞれスプリング65が張設され、
各ドリブンクラツチ62を常時スパイダ側へ付勢
している。又、上記一対のサイドギヤ68はこれ
らの筒部内に左右から一対のアクセルシヤフト6
9が挿入され、これら各アクセルシヤフト69,
69と各サイドギヤ68,68とはキーによつて
一体化されている(第2a図)。
Reference numeral 68 denotes a pair of left and right side gears each having a cylindrical body having external teeth 68a that mesh with internal teeth 62c formed on the inner peripheral surface of each of the driven clutches 62, and the differential gauge 6 is mounted on the outer peripheral surface of these side gears.
A pair of retainers 66 and each of the driven clutches 62 are formed on the edges of the left and right holes 61a and 61b provided in the left and right holes 61a and 61b, respectively. A spring 65 is stretched between the rear surface of the flange 62a and the rear surface of the flange 62a.
Each driven clutch 62 is always biased toward the spider. Further, the pair of side gears 68 have a pair of axel shafts 6 from the left and right inside these cylindrical parts.
9 is inserted, and each of these axel shafts 69,
69 and each side gear 68, 68 are integrated by a key (FIG. 2a).

したがつて、推進軸5から図示しないリングギ
ヤを介してデフゲージ61に駆動力が伝達される
と、該デフゲージ61と一体化されたスパイダ6
3が回転し、直進時においては、このスパイダ6
3から左右のドリブンクラツチ62,62、左右
のサイドギヤ68,68、左右のアクセルシヤフ
ト69,69へと駆動力が伝達され、左右の後方
車輪7,7′を回転する。一方、旋回時において
は、左右の後方車輪7,7′の回転差により差動
作用を開始すると、旋回高速側のドリブンクラツ
チ62の歯62bはスパイダ63の一方の歯63
aとの係合状態からバツクラツシユcのある方へ
と離れていく。この時、内側のドリブンクラツチ
62はスパイダ63から駆動力を受けこれと強固
に係合し、該内側のドリブンクラツチとセンター
カム64とはスパイダ63との係合位置に固定さ
れた状態にあるため、上記旋回高速側のドリブン
クラツチ62は、そのバツクラツシユc方向への
移動に伴ないその歯62bの内側部が第2e図の
如く、センターカム64の歯64aの面取り斜面
上をスライドして該センターカム64により矢印
方向へ押し上げられる。同時に、旋回高速側のド
リブンクラツチ62は第2d図に示すようにスパ
イダ63との噛合いも解かれて、スパイダ63の
歯63aとも干渉することなく回転することがで
き、差動作用を行なう。スプリング65は、リテ
ーナ66に支えられ、押し上げられた旋回高速側
のドリブンクラツチ62を再び噛合せる作用をす
る。
Therefore, when driving force is transmitted from the propulsion shaft 5 to the differential gauge 61 via the ring gear (not shown), the spider 6 integrated with the differential gauge 61
3 rotates and when going straight, this spider 6
3, the driving force is transmitted to the left and right driven clutches 62, 62, the left and right side gears 68, 68, and the left and right axel shafts 69, 69, thereby rotating the left and right rear wheels 7, 7'. On the other hand, when turning, when the differential operation is started due to the rotation difference between the left and right rear wheels 7, 7', the tooth 62b of the driven clutch 62 on the high-speed turning side is connected to one tooth 63 of the spider 63.
It moves away from the state of engagement with a to the direction where there is a backlash c. At this time, the inner driven clutch 62 receives the driving force from the spider 63 and is firmly engaged with it, and the inner driven clutch and the center cam 64 are fixed at the engagement position with the spider 63. As the driven clutch 62 on the high-speed turning side moves in the direction of the back clutch c, the inner side of its teeth 62b slides on the chamfered slope of the teeth 64a of the center cam 64, as shown in FIG. The cam 64 pushes it up in the direction of the arrow. At the same time, the driven clutch 62 on the high-speed turning side is disengaged from the spider 63, as shown in FIG. 2d, and can rotate without interfering with the teeth 63a of the spider 63, thereby performing differential operation. The spring 65 is supported by a retainer 66 and functions to re-engage the driven clutch 62 on the high-speed turning side that has been pushed up.

なお、エンジンブレーキ作用時には力の授受の
関係が逆になり、ドリブンクラツチ62がスパイ
ダ63を駆動するため、ドリブンクラツチ62の
歯とスパイダ63の歯との間のバツクラツシユc
は前述の反対側に移る。そして、直進時において
は、左右両側のドリブンクラツチ62はスパイダ
63と噛合う。一方、エンジンブレーキにより旋
回作動時においては内側のドリブンクラツチ62
の歯がバツクラツシユc方向へと移動し該歯とス
パイダ63の歯との噛合いが解かれて、外側のド
リブンクラツチ62だけがスパイダ63と噛合
う。このように、ノースピンデフ6は基本的にワ
ンウエイクラツチとして機能する。
Note that when the engine brake is applied, the relationship of force transfer is reversed and the driven clutch 62 drives the spider 63, so the backlash c between the teeth of the driven clutch 62 and the spider 63 is reduced.
moves to the opposite side. When the vehicle is traveling straight, the left and right driven clutches 62 mesh with the spiders 63. On the other hand, when turning due to engine braking, the inner driven clutch 62
The teeth of the spider 63 move in the direction of the back clutch c, and the teeth of the spider 63 are disengaged from each other, so that only the outer driven clutch 62 meshes with the spider 63. In this way, the no-spin differential 6 basically functions as a one-way clutch.

そして、平坦地の走行時や積層物が軽量の場合
には、クラツチ10を離した状態で走行すること
も可能であり特に問題はないが、積載物が重量で
ある場合や急坂における登坂時、降坂時の場合で
の直進時と旋回時の問題を解決すべく、直進時に
おいて、後方車輪7,7′の周速よりも、前方車
輪9の周速が、10%以内、特に2〜5%の範囲で
若干遅くなるように推進軸5から回転を伝えるよ
うに構成した。なお、ノースピンデフは実施例と
して述べたものに限らず、通常旋回時には推進軸
5の回転を後方内側車輪に伝達させ、またエンジ
ンブレーキによる旋回作動時には上記推進軸から
の制動力を後方外側車輪に伝えるようなものであ
れば、どのような型のものでもよく、また、クラ
ツチ10を設ける位置は、推進軸5から前方車輪
9の間のどこであつてもよいことは実施例からも
明らかである。
When traveling on flat land or when the load is light, it is possible to run with the clutch 10 released and there is no particular problem, but when the load is heavy or when climbing a steep slope, In order to solve the problem when going straight and turning when going downhill, the circumferential speed of the front wheels 9 should be within 10% of the circumferential speed of the rear wheels 7, 7' when going straight, especially 2~ It is configured to transmit rotation from the propulsion shaft 5 so as to be slightly slower within a range of 5%. Note that the no-spin differential is not limited to the one described in the embodiment; during normal turning, the rotation of the propulsion shaft 5 is transmitted to the rear inner wheels, and when turning is performed by engine braking, the braking force from the propulsion shaft is transmitted to the rear outer wheels. It is clear from the embodiments that the clutch 10 may be of any type, and that the clutch 10 may be provided anywhere between the propulsion shaft 5 and the front wheel 9.

更に、推進軸5の回転を前方車輪9に伝える駆
動伝動機構8について説明する。
Furthermore, the drive transmission mechanism 8 that transmits the rotation of the propulsion shaft 5 to the front wheels 9 will be explained.

推進軸5上に嵌着した歯車51の回転をチエー
ン等81により、車体11に軸受を介して軸支し
た駆動伝動軸82に伝える。なお、駆動伝動軸8
2は、複数の駆動伝動軸82a,82bを自在継
手83a,83bを介して連結することが好まし
い。一方、フロントフオーク12には、第3図に
示すように、減速機84を固定し、減速機84の
出力軸84bにはクラツチ10を介して歯車85
に回転を伝え、また前方車輪9の車軸91にも歯
車92を設け、両歯車85,92をチエーン等8
6により連結する。つまり、前方車輪9の駆動源
ともなる減速機84をフロントフオーク12に固
定して、前方車輪9の車軸91と一定距離を保つ
ような構成とする。
The rotation of the gear 51 fitted on the propulsion shaft 5 is transmitted by a chain or the like 81 to a drive transmission shaft 82 supported on the vehicle body 11 via a bearing. In addition, the drive transmission shaft 8
2 preferably connects a plurality of drive transmission shafts 82a, 82b via universal joints 83a, 83b. On the other hand, a reducer 84 is fixed to the front fork 12, as shown in FIG.
A gear 92 is also provided on the axle 91 of the front wheel 9, and both gears 85 and 92 are connected to a chain or the like.
Connected by 6. That is, the reducer 84, which also serves as a drive source for the front wheels 9, is fixed to the front fork 12 and is configured to maintain a constant distance from the axle 91 of the front wheels 9.

この場合、路面の凹凸等の要因により減速機8
4の入力軸84aと、車体11に軸支した駆動伝
動軸82との上下方向の距離は変動し、更に、操
舵によりフロントフオーク12に固定した減速機
84の入力軸はキングピン13a,13bを中心
として揺動する。このため、減速機84の入力軸
84aと、車体11に軸支した駆動伝動軸82と
を、両端に自在継手87a,87bを有する駆動
伝動軸88により連結する。
In this case, due to factors such as unevenness of the road surface, the reducer 8
The distance in the vertical direction between the input shaft 84a of No. 4 and the drive transmission shaft 82 pivotally supported on the vehicle body 11 changes, and furthermore, the input shaft of the reducer 84 fixed to the front fork 12 by steering is centered around the king pins 13a and 13b. It oscillates as. For this reason, the input shaft 84a of the reducer 84 and the drive transmission shaft 82 supported on the vehicle body 11 are connected by a drive transmission shaft 88 having universal joints 87a, 87b at both ends.

次に、この両端に自在継手87a,87bを有
する駆動伝動軸88について、第4図を参照しつ
つ説明する。
Next, the drive transmission shaft 88 having universal joints 87a and 87b at both ends will be explained with reference to FIG.

三輪自動車、特に山林等で木材等を運搬するに
適した三輪自動車は、最小回転半径を出来る限り
小さくすることが好ましく、従つて、フロントフ
オーク12の回転を出来る限り大きくすることが
好ましい。そして、駆動軸側の一定の回転、一定
のトルクを自在継手87a,87bの作動角度が
大きくなつても、被駆動軸側に一定の回転、一定
のトルクを自在継手87a,87bの作動角度が
大きくなつても、被駆動軸側に一定の回転力、一
定のトルクを伝えるため、減速機84の入力軸8
4a側の自在継手87bはベル型ボールジヨイン
トとなし、一方、車体11に軸支した駆動伝動軸
82側の自在継手は十字型ユニバーサルジヨイン
トとした。更に、両軸82,84aの距離は、前
記のようにに、路面の凹凸や操舵等により変化す
るので、例えば、車体11に軸支した駆動伝動軸
82を、六角形の軸端と、同形の中溝を有する軸
端とを嵌合し、スライド可能な構成とした。な
お、スライド可能な軸は両端に自在継手87a,
87bを有する駆動伝動軸88でも、減速機84
の入力軸84aでもよく、それらの二軸以上であ
つてもよい。また、ベル型ボールジヨイントの内
輪に歯型の溝を設け、一方シヤフトに前記歯型の
溝と嵌合する歯を設けることにより、自在継手8
7a,87b間の距離を変化させる構成であつて
もよい。
It is preferable for a three-wheeled vehicle, especially a three-wheeled vehicle suitable for transporting wood, etc. in mountains and forests, to have a minimum turning radius as small as possible, and therefore, it is preferable to make the rotation of the front fork 12 as large as possible. Then, even if the operating angle of the universal joints 87a, 87b becomes large while the operating angle of the universal joints 87a, 87b increases, the operating angle of the universal joints 87a, 87b causes a constant rotation and a constant torque on the driven shaft side. Even if the input shaft 8 of the reducer 84 becomes larger, in order to transmit a constant rotational force and constant torque to the driven shaft side,
The universal joint 87b on the 4a side is a bell-shaped ball joint, while the universal joint on the drive transmission shaft 82 side supported on the vehicle body 11 is a cross-shaped universal joint. Furthermore, as described above, the distance between the two shafts 82 and 84a changes depending on the unevenness of the road surface, steering, etc. Therefore, for example, if the drive transmission shaft 82 supported on the vehicle body 11 is connected to a hexagonal shaft end, The shaft end with the inner groove is fitted to create a slidable structure. In addition, the slidable shaft has universal joints 87a at both ends.
Even in the drive transmission shaft 88 having 87b, the speed reducer 84
The input shaft 84a may be the input shaft 84a, or two or more of these input shafts may be used. Furthermore, by providing a tooth-shaped groove on the inner ring of the bell-shaped ball joint and providing teeth that fit into the tooth-shaped groove on the shaft, the universal joint 8
The configuration may be such that the distance between 7a and 87b is changed.

次に、第3図を参照しつつ、フロントフオーク
12と緩衝装置14とについて説明する。フロン
トフオーク12にフオークささえ部材15を固着
し、フオークささえ部材15にキングピン13
a,13bを介してアツパーホークステー16a
およびロアーホークステー16bを支持し、アツ
パーホークステー16aに緩衝装置取付部材17
を揺動自在に取付け、緩衝装置取付部材17を車
体11に固着し、ロアーホークステー16bを車
体11に揺動自在に取付けるとともに、緩衝装置
取付部材17とロアーホークステー16bとの間
に緩衝装置14を設ける。フロントフオーク12
には減速機84が固定されているが、フロントフ
オーク12の操舵とともに減速機84の入力軸8
4aもキングピン13a,13bを中心として揺
動する。この場合、二つの自在継手87a,87
bを介して駆動が伝動されるが、通常自在継手の
有効な作動角は中心軸から40゜程度が限界とされ
ている。しかしながら、三輪自動車、特に山林等
で木材等を運搬するに適した三輪自動車の最小半
径はできる限り小さく、つまりフロントフオーク
12の回転角をできる限り大きくすることが必要
であるから、減速機84の入力軸84aと車体1
1に軸支した駆動伝動軸82とを連結する自在継
手87a,87bのうち減速機48側の自在継手
87bをキングピン13a,13bより前方に設
け、駆動伝動軸88がフロントフオーク12間に
おいて大きく揺動しないように、つまりハンドル
操作時に該駆動伝動軸88がフロントフオーク1
2と干渉しないように設定した(第5図参照)。
Next, the front fork 12 and the shock absorber 14 will be explained with reference to FIG. A fork support member 15 is fixed to the front fork 12, and a king pin 13 is attached to the fork support member 15.
Upper Hawk stay 16a via a and 13b
and a shock absorber mounting member 17 that supports the lower fork stay 16b and is attached to the upper fork stay 16a.
is swingably mounted, the shock absorber mounting member 17 is fixed to the vehicle body 11, the lower Hawk stay 16b is swingably mounted to the vehicle body 11, and the shock absorber is mounted between the shock absorber mounting member 17 and the lower Hawk stay 16b. 14 will be provided. front fork 12
A reducer 84 is fixed to the
4a also swings around the king pins 13a, 13b. In this case, two universal joints 87a, 87
Drive is transmitted through the universal joint, but the effective operating angle of the universal joint is generally limited to about 40 degrees from the central axis. However, the minimum radius of a three-wheeled vehicle, especially a three-wheeled vehicle suitable for transporting wood, etc. in mountains and forests, is as small as possible, that is, it is necessary to make the rotation angle of the front fork 12 as large as possible. Input shaft 84a and vehicle body 1
Of the universal joints 87a and 87b that connect the drive transmission shaft 82 that is pivotally supported in In other words, the drive transmission shaft 88 is connected to the front fork 1 so that it does not move when the steering wheel is operated.
The settings were made so as not to interfere with 2 (see Figure 5).

この発明は、以上のような構成としたので次に
述べるような作用効果を奏する。
Since the present invention has the above-described configuration, it achieves the following effects.

原動機からミツシヨンを介して駆動される推進
軸の駆動力を左右の後方車輪に伝達するととも
に、該推進軸と連動する駆動伝動機構を介して前
方車輪に伝達させ、上記推進軸から各後方車輪へ
の伝達系には、通常旋回時に該推進軸の回転を後
方内側車輪に伝達するとともに、エンジンブレー
キによる旋回作動時には上記推進軸からの制動力
を後方外側車輪に伝達するノーススピンデフを介
装したので、駆動力、特に登坂能力を大きくする
ことができるうえ、最小回転半径を小さくするこ
とができ、左右に激しく曲折する道路等、特に山
林等で木材などを積載して急カーブしたり、Uタ
ーンしたりすることが可能となる。更に、悪路で
スリツプしたり、凹凸道路や波状道路を走行して
いて一方の車輪がはね上つた瞬間高速回転し、次
に接置して急激に回転が落ちるというように、後
方の片輪のみが急激な回転変化を生じることがな
いというノースピンデフのワンウエイクラツチと
しての機能に加えて、原動機からの回転は、後方
車輪のうちの駆動側またはエンジンブレーキ作用
をしている制動側と、前方車輪とが常に一定関係
を保つて伝えられているため、操舵が極めて安定
し、オーバーステアリングをなくすこともでき
る。
The driving force of the propulsion shaft driven from the prime mover via the transmission is transmitted to the left and right rear wheels, and is also transmitted to the front wheels via a drive transmission mechanism that interlocks with the propulsion shaft, and from the propulsion shaft to each rear wheel. The transmission system is equipped with a north spin differential that transmits the rotation of the propulsion shaft to the rear inside wheels during normal turns, and also transmits the braking force from the propulsion shaft to the rear outside wheels when turning by engine braking. Therefore, the driving force, especially the ability to climb hills, can be increased, and the minimum turning radius can be reduced. It becomes possible to turn. Furthermore, if you slip on a rough road, or when you are driving on a bumpy or wavy road, one of the wheels may flip up and spin at high speed, then come back to rest and suddenly slow down. In addition to the function of a no-spin differential as a one-way clutch, in which only the wheels do not undergo sudden changes in rotation, the rotation from the prime mover is transmitted between the driving side of the rear wheels or the braking side that is acting as an engine brake, and the front wheels. Since the information is transmitted in a constant relationship with the wheels, steering is extremely stable and oversteering can be eliminated.

また、ミツシヨンを第1ミツシヨンおよび第2
ミツシヨンの二個設け、第1ミツシヨンの回転を
第2ミツシヨンに伝え、第2ミツシヨンの回転を
推進軸に伝えるように構成したので、減速され、
駆動力を増大せしめられた動力が推進軸に伝えら
れ、市販のミツシヨンを使用するのみであるか
ら、安価にして駆動力、特に登坂能力を高めるこ
とができる。
In addition, the first and second
There are two transmissions, and the rotation of the first transmission is transmitted to the second transmission, and the rotation of the second transmission is transmitted to the propulsion shaft, so the speed is reduced.
Since the increased driving force is transmitted to the propulsion shaft and only a commercially available transmission is used, the driving force, especially the hill climbing ability, can be increased at low cost.

また、左右の後方車輪には各々二個づつの作業
タイヤを備えたため、タイヤ面と路面との接触を
良くすることができ、駆動力の増大せしめられた
動力を十分に発揮することができる。特に、山林
等の両端の高い路面上を走行する場合には、外方
の作業タイヤの外径を内方の作業タイヤの外径よ
りも小径とすると、一層タイヤ面と路面との接触
を良くする。
Furthermore, since the left and right rear wheels are each equipped with two working tires, it is possible to improve the contact between the tire surfaces and the road surface, and the increased driving force can be fully exerted. In particular, when driving on a road surface with high edges at both ends, such as in a mountain forest, it is recommended to make the outer diameter of the outer working tire smaller than the outer diameter of the inner working tire to further improve the contact between the tire surface and the road surface. do.

また、直進時において、後方車輪の周速より前
方車輪の周速が若干遅くなるよう推進軸より回転
を伝えるよう構成したので、操舵および走行が安
定した。つまり、直進時においてはタイヤに若干
の摩擦が生じるものの、山林等においては、小
石、砂、泥等のため、この程度の周速差は障害と
はならず、ハンドルは直進方向で一番安定した状
態となるため、常に直進方向への力がハンドルに
作用する。一方、旋回時には、平坦地の走行や坂
道の登坂状態では、ノースピンデフを介して後方
車輪が駆動されているため、旋回内側つまり低速
回転の駆動側の後方車輪よりも前方車輪の周速が
遅いため、操舵に力を要するが、前方車輪には比
較的荷重がかからないため、タイヤと路面との摩
擦が少なく、両者の力は相殺されて操舵に有する
力は比較的小さく、直進方向へと安定しようとす
るハンドルの復元力によりオーバーハンドルの心
配がない。また、急坂の降坂状態では、エンジン
ブレーキが作用するため、旋回外側つまり高速回
転の制動側の後方車輪より前方車輪の周速が遅い
ため、前方車輪に荷重がかかつても、操舵自体に
力を必要としないので、操舵が安定する。特に山
林等では路肩が危険であり操舵の安定は十分に配
慮すべき事項である。
Furthermore, when the vehicle is traveling straight, rotation is transmitted from the propulsion shaft so that the circumferential speed of the front wheels is slightly slower than the circumferential speed of the rear wheels, resulting in stable steering and running. In other words, although there is some friction on the tires when driving straight, in mountains and forests, there are pebbles, sand, mud, etc., so this difference in circumferential speed does not pose an obstacle, and the steering wheel is most stable when driving straight. As a result, a force in the straight direction is always applied to the steering wheel. On the other hand, when turning, when driving on flat ground or climbing a slope, the rear wheels are driven via the no-spin differential, so the peripheral speed of the front wheels is slower than the rear wheels on the inside of the turn, that is, on the drive side that rotates at low speed. Although force is required for steering, there is relatively little load on the front wheels, so there is little friction between the tires and the road surface, and the forces of both cancel each other out, so the force required for steering is relatively small, and the vehicle is stable in the straight direction. Due to the restoring force of the handle, there is no need to worry about over-handling. In addition, when descending a steep slope, engine braking is applied, and the circumferential speed of the front wheels is slower than the rear wheels on the outside of the turn, that is, on the braking side of high-speed rotation. Steering is stable because there is no need for Particularly in mountains and forests, the shoulders of the road are dangerous, and steering stability is an issue that requires careful consideration.

また、推進軸の回転が係脱自在のクラツチを介
して前方車輪に伝えられるよう構成したので、平
坦地での走行時等において全輪を駆動する必要が
ない場合に原動機からの駆動を伝えないで後方車
輪のみで走行することができることはもとより、
原動機と前方車輪とが連結した状態では前方車輪
が停止したままではハンドルを操舵することがで
きないが、原動機と前方車輪との連結をはずすこ
とにより前方車輪の停止時でもハンドルを操舵す
ることができ、いわゆるすえ切りハンドルが可能
なため、急角度の方向転換が容易となる。
In addition, since the rotation of the propulsion shaft is configured to be transmitted to the front wheels via a detachable clutch, the drive from the prime mover is not transmitted when there is no need to drive all wheels, such as when driving on flat ground. In addition to being able to drive with only the rear wheels,
When the prime mover and front wheels are connected, the steering wheel cannot be steered while the front wheels are stationary, but by disconnecting the prime mover and front wheels, the steering wheel can be steered even when the front wheels are stationary. , so-called stationary steering is possible, making it easier to change directions at sharp angles.

また、推進軸の回転を前方車輪に伝える駆動伝
動機構が、推進軸からの回転を伝えられる車体に
軸支した駆動伝動軸、フロントフオークに固定し
た減速機を有し、減速機の出力軸の回転を前方車
輪に伝えると共に、減速機の入力軸と車体に軸支
した駆動伝動軸とを、両端に自在継手を有する駆
動伝動軸により連結した構成としたため、路面の
凹凸により前方車輪が激しく上下動し、また、操
舵のためハンドルを旋回しても、前方車輪または
フロントフオークと原動機または車体との間で相
対的移動が生じても、減速された駆動力、特に登
坂能力の増大された動力が前方車輪にも、市販の
部品の利用により安価に伝えることができる。特
に、その際減速機の入力軸、車体に軸支した駆動
伝動軸、両軸を連結する両端に自在継手を有する
駆動伝動軸の少なくとも一軸、または軸と軸との
連結する自在継手の少なくとも一方を軸方向にス
ライド可能な構成としたので、操舵が安定すると
ともに、駆動力の伝動が一層良好となる。
In addition, the drive transmission mechanism that transmits the rotation of the propulsion shaft to the front wheels has a drive transmission shaft pivotally supported on the vehicle body that transmits the rotation from the propulsion shaft, and a reducer fixed to the front fork. In addition to transmitting rotation to the front wheels, the input shaft of the reducer and the drive transmission shaft supported on the vehicle body are connected by a drive transmission shaft with universal joints at both ends, so the front wheels can move up and down violently due to uneven road surfaces. Even when the steering wheel is turned for steering, there is a relative movement between the front wheels or front fork and the prime mover or vehicle body, the reduced driving power, especially the increased power for climbing ability. can also be transmitted to the front wheels at low cost by using commercially available parts. In particular, in this case, at least one of the input shaft of the reducer, a drive transmission shaft supported on the vehicle body, a drive transmission shaft having a universal joint at both ends connecting both shafts, or at least one of a universal joint connecting the shafts. Since it is configured to be slidable in the axial direction, the steering becomes stable and the transmission of driving force becomes even better.

また、フロントフオークにフオークささえ部材
を固着し、フオークささえ部材にキングピンを介
してアツパーホークステーおよびロアーホークス
テーに緩衝装置取付部材を揺動自在に取付け、緩
衝装置取付部材を車体に固着し、ロアーホークス
テーを車体に揺動自在に取付けるとともに、緩衝
装置取付部材とロアーホークステーとの間に緩衝
装置を設けた構成としたので、フオークオフセツ
トを所望の大きさとし、オーバーステアリングを
防ぐとともに、衝突荷重、横方向荷重に対して剛
性大きく、強度大であり、更にパイプを逆U字の
みの軽量構造とすることができるため、アンダー
ステアであつても操舵力が少なくてすむ。またア
ツパーホークステーとロアーホークステーをキン
グピンを介してフオークささえ部材に取付けたた
め、揺動に伴うトレール変化を極めて小さくする
ことができ、緩衝装置取付部材とロアーホークス
テー間に緩衝装置を取付けるためのストロークも
大きくとれるというフロントフオークと緩衝装置
との固有の作用効果に加えて、フロントフオーク
へ固定した減速機から前方車輪に安価に駆動力を
伝えることができる。
Further, a fork supporting member is fixed to the front fork, a shock absorber mounting member is swingably attached to the upper fork stay and the lower fork stay via a king pin to the fork supporting member, and the shock absorber attaching member is fixed to the vehicle body. The structure is such that the lower fork stay is swingably attached to the vehicle body and a shock absorber is provided between the shock absorber mounting member and the lower fork stay, so the fork offset can be set to the desired size and oversteering is prevented. It has high rigidity and strength against collision loads and lateral loads, and the pipe can have a lightweight structure with only an inverted U shape, so even understeer requires less steering force. In addition, since the upper fork stay and lower fork stay are attached to the fork support member via the king pin, trail changes due to rocking can be extremely minimized. In addition to the unique effect of the front fork and shock absorber, which allows for a larger stroke, driving force can be transmitted to the front wheels from the reducer fixed to the front fork at low cost.

また、減速機の入力軸と駆動伝動軸とを連結す
る自在継手の位置をキングピンの前方としたた
め、第5図に示す如く、ハンドルの操舵に伴な
う、この自在継手に依存する駆動伝動軸の揺動角
度範囲を小さくすることができ、通常、自在継手
が駆動軸側の一定回転、一定トルクを被駆動軸に
一定トルク、一定回転を伝えることのできる作動
角度が最大でも40゜程度であるのに対し、ハンド
ルは60゜以上でも操舵可能である。
In addition, since the position of the universal joint that connects the input shaft of the reducer and the drive transmission shaft is in front of the king pin, the drive transmission shaft that depends on this universal joint as the steering wheel is steered, as shown in Fig. 5. Normally, the maximum working angle at which a universal joint can transmit constant rotation and constant torque from the drive shaft to the driven shaft is around 40 degrees. On the other hand, the steering wheel can be steered by more than 60 degrees.

また、自在継手のうち減速機の入力側をベル型
ボールジヨイントとしたので、大きくハンドルを
切つても、推進軸の回転を、前方車輪に一定に伝
えることができる。
Furthermore, since the input side of the speed reducer of the universal joint is a bell-shaped ball joint, even if the steering wheel is turned significantly, the rotation of the propulsion shaft can be constantly transmitted to the front wheels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は本発明の全輪駆動型三輪自動車の側
面図、第1b図はその平面図、第2a図はノース
ピンデフの側方断面図、第2b図はドリブンクラ
ツチの正面図、第2c図はその側面図、第2d,
e図はノースピンデフの作用図、第3a図は第1
a図の主要部側面図、第3b図はその正面図、第
4図は自在継手を有する駆動伝動軸の断面図、第
5図はハンドル操作による自在継手の作動図で、
実線が本発明によるものを示す。 1…三輪自動車、2…ミツシヨン、2a…第1
ミツシヨン、2b…第2ミツシヨン、5…推進
軸、6…ノースピンデフ、7…左後方車輪、7′
…右後方車輪、7a,7b…左作業タイヤ、7′
a,7′b…右作業タイヤ、8…駆動伝動機構、
82…駆動伝動軸、84…減速機、84a…減速
機の入力軸、84b…減速機の出力軸、87a,
87b…自在継手、88…駆動伝動軸、9…前方
車輪、10…クラツチ、11…車体、12…フロ
ントフオーク、13a,13b…キングピン、1
4…緩衝装置、15…フオークささえ部材、16
a,16b…ホークステー、17…緩衝装置取付
部材。
Fig. 1a is a side view of the all-wheel drive three-wheel vehicle of the present invention, Fig. 1b is a plan view thereof, Fig. 2a is a side sectional view of the no spin differential, Fig. 2b is a front view of the driven clutch, and Fig. 2c is Its side view, 2d,
Figure e is the action diagram of the no-spin differential, and Figure 3a is the first one.
Figure a is a side view of the main part, Figure 3b is a front view thereof, Figure 4 is a sectional view of the drive transmission shaft with a universal joint, Figure 5 is a diagram of the operation of the universal joint by operating the handle,
The solid line shows what is in accordance with the present invention. 1...Tricycle, 2...Mission, 2a...1st
Mission, 2b...Second transmission, 5...Propulsion shaft, 6...No spin differential, 7...Left rear wheel, 7'
...Right rear wheel, 7a, 7b...Left working tire, 7'
a, 7'b...Right working tire, 8...Drive transmission mechanism,
82... Drive transmission shaft, 84... Reducer, 84a... Input shaft of reducer, 84b... Output shaft of reducer, 87a,
87b...Universal joint, 88...Drive transmission shaft, 9...Front wheel, 10...Clutch, 11...Vehicle body, 12...Front fork, 13a, 13b...King pin, 1
4...Buffer device, 15...Fork support member, 16
a, 16b... Hawk stay, 17... Shock absorber mounting member.

Claims (1)

【特許請求の範囲】 1 原動機からミツシヨン2を介して駆動される
推進軸5の駆動力を左右の後方車輪7,7′に伝
達するとともに、該推進軸5と連動する駆動伝動
機構8を介して前方車輪に伝達させ、上記推進軸
5から各後方車輪7,7′への伝達系には、通常
旋回時に該推進軸の回転を後方内側車輪に伝達す
るとともに、エンジンブレーキによる旋回作動時
には上記推進軸からの制動力を後方外側車輪に伝
達するノーススピンデフ6を介装したことを特徴
とする全輪駆動型三輪自動車。 2 ミツシヨン2が第1ミツシヨン2aおよび第
2ミツシヨン2bからなり、前記第1ミツシヨン
2aからの回転を前記第2ミツシヨン2bに伝
え、前記第2ミツシヨン2bの回転を推進軸5に
伝えることを特徴とする急坂運搬用の特許請求の
範囲第1項記載の全輪駆動型三輪自動車。 3 左右の後方車輪7,7′が、各々二個づつ作
業タイヤ7a,7b,7′a,7′bを備えること
を特徴とする急坂運搬用の特許請求の範囲第2項
記載の全輪駆動型三輪自動車。 4 左右の後方車輪7,7′に各々二個づつ備え
た作業タイヤ7a,7b,7′a,7′bの外方の
作業タイヤ7a,7′aの外径を、内方の作業タ
イヤ7b,7′bの外径より小径となすことを特
徴とする急坂運搬用の特許請求の範囲第3項記載
の全輪駆動型三輪自動車。 5 推進軸5の回転を、係脱自在のクラツチ10
を介して、前方車輪9に伝えることを特徴とする
特許請求の範囲第1〜4項記載のうちいずれかの
全輪駆動型三輪自動車。 6 推進軸5の回転を前方車輪9に伝える駆動伝
動機構8が、前記推進軸5からの回転を伝える車
体11に軸支した駆動伝動軸82およびフロント
フオーク12に固定した減速機84を有し、前記
減速機84の出力軸84bの回転を前記前方車輪
9に伝えるとともに、前記減速機84の入力軸8
4aと前記車体11に軸支した駆動伝動軸82と
を、両端に自在継手87a,87bを有する駆動
伝動軸88により連結される構成からなることを
特徴とする特許請求の範囲第1〜5項記載のうち
いずれかの全輪駆動型三輪自動車。 7 減速機84の入力軸84a、車体11に軸支
した駆動伝動軸82、前記両軸84a,82を連
結する両端に自在継手87a,87bを有する駆
動伝動軸88の三軸84a,82,88のうち少
なくとも一軸、または軸と軸とを連結する自在継
手87a,87bのうち少なくとも一方が、軸方
向にスライド可能な構成を有することを特徴とす
る特許請求の範囲第6項記載の全輪駆動型三輪自
動車。 8 両端に自在継手87a,87bを有する駆動
伝動軸88の少なくとも一方の自在継手がベル型
ボールジヨイントであることを特徴とする特許請
求の範囲第6項または第7項記載の全輪駆動型三
輪自動車。 9 フロントフオーク12にフオークささえ部材
15を固着し、前記フオークささえ部材15にキ
ングピン13a,13bを介してアツパーホーク
ステー16aおよびロアーホークステー16bを
支持し、前記アツパーホークステー16aに緩衝
装置取付部材17を揺動自在に取付け、前記緩衝
装置取付部材17を車体11に固着し、前記ロア
ーホークステー16bを車体11に揺動自在に取
付けるとともに、前記緩衝装置取付部材17と前
記ロアーホークステー16bとの間に緩衝装置1
4を設けることを特徴とする特許請求の範囲第1
〜8項記載のうちいずれかの全輪駆動型三輪自動
車。 10 フロントフオーク12にフオークささえ部
材15を固着し、前記フオークささえ部材15に
キングピン13a,13bを介してアツパーホー
クステー16aおよびロアーホークステー16b
を支持し、前記アツパーホークステー16aに緩
衝装置取付部材17を揺動自在に取付け、前記緩
衝装置取付部材17を車体に固着し、前記ロアー
ホークステー16bを車体11に揺動自在に取付
けるとともに、前記緩衝装置取付部材17と前記
ロアーホークステー16bとの間に緩衝装置14
を設けると共に、減速機84の入力軸84aと駆
動伝動軸88とを連結する自在継手87bが前記
キングピン13a,13bより前方に設けること
を特徴とする特許請求の範囲第6〜8項記載のう
ちいずれかの全輪駆動型三輪自動車。
[Claims] 1. The driving force of the propulsion shaft 5 driven from the prime mover via the transmission 2 is transmitted to the left and right rear wheels 7, 7', and the driving force is transmitted via the drive transmission mechanism 8 interlocked with the propulsion shaft 5. The transmission system from the propulsion shaft 5 to each of the rear wheels 7, 7' transmits the rotation of the propulsion shaft to the rear inner wheels during normal turning, and also transmits the rotation of the propulsion shaft to the rear inner wheels when turning by engine braking. An all-wheel drive three-wheel vehicle characterized by being equipped with a north spin differential 6 that transmits braking force from the propulsion shaft to the rear outer wheels. 2. The transmission 2 is composed of a first transmission 2a and a second transmission 2b, and the rotation from the first transmission 2a is transmitted to the second transmission 2b, and the rotation of the second transmission 2b is transmitted to the propulsion shaft 5. An all-wheel drive three-wheel vehicle according to claim 1, which is used for transportation on steep slopes. 3. All wheels according to claim 2 for transportation on steep slopes, characterized in that the left and right rear wheels 7, 7' are each equipped with two working tires 7a, 7b, 7'a, 7'b. Drive type three-wheeled vehicle. 4. Two working tires 7a, 7b, 7'a, 7'b are provided on the left and right rear wheels 7, 7'. The all-wheel-drive three-wheel vehicle according to claim 3, which is used for transportation on steep slopes, and has a diameter smaller than the outer diameter of the three-wheeled vehicle 7b and 7'b. 5 A clutch 10 that can freely engage and disengage the rotation of the propulsion shaft 5
An all-wheel drive three-wheeled vehicle according to any one of claims 1 to 4, characterized in that the information is transmitted to the front wheels 9 via. 6. The drive transmission mechanism 8 that transmits the rotation of the propulsion shaft 5 to the front wheels 9 has a drive transmission shaft 82 pivotally supported on the vehicle body 11 that transmits the rotation from the propulsion shaft 5, and a reduction gear 84 fixed to the front fork 12. , transmits the rotation of the output shaft 84b of the reduction gear 84 to the front wheels 9, and also transmits the rotation of the output shaft 84b of the reduction gear 84 to the input shaft 8 of the reduction gear 84.
4a and a drive transmission shaft 82 pivotally supported on the vehicle body 11 are connected by a drive transmission shaft 88 having universal joints 87a, 87b at both ends. Any three-wheeled vehicle with all-wheel drive as listed. 7. Three shafts 84a, 82, 88 of the input shaft 84a of the reducer 84, the drive transmission shaft 82 pivotally supported on the vehicle body 11, and the drive transmission shaft 88 having universal joints 87a, 87b at both ends connecting the shafts 84a, 82. The all-wheel drive according to claim 6, characterized in that at least one of the shafts or at least one of the universal joints 87a and 87b connecting the shafts has a structure capable of sliding in the axial direction. Type tricycle. 8. The all-wheel drive type according to claim 6 or 7, wherein at least one universal joint of the drive transmission shaft 88 having universal joints 87a and 87b at both ends is a bell-shaped ball joint. tricycle. 9 Fix the fork support member 15 to the front fork 12, support the upper fork stay 16a and the lower fork stay 16b on the fork support member 15 via the king pins 13a and 13b, and attach the shock absorber to the upper fork stay 16a. The member 17 is swingably mounted, the shock absorber mounting member 17 is fixed to the vehicle body 11, the lower Hawk stay 16b is swingably mounted to the vehicle body 11, and the shock absorber mounting member 17 and the lower Hawk stay 16b are Buffer device 1 between
Claim 1 characterized in that 4 is provided.
An all-wheel drive three-wheeled vehicle according to any one of items 1 to 8. 10 A fork support member 15 is fixed to the front fork 12, and an upper fork stay 16a and a lower fork stay 16b are attached to the fork support member 15 via king pins 13a and 13b.
, a shock absorber mounting member 17 is swingably attached to the upper fork stay 16a, the shock absorber attaching member 17 is fixed to the vehicle body, and the lower fork stay 16b is swingably attached to the vehicle body 11. , a shock absorber 14 is provided between the shock absorber mounting member 17 and the lower fork stay 16b.
and a universal joint 87b connecting the input shaft 84a of the reducer 84 and the drive transmission shaft 88 is provided in front of the king pins 13a, 13b. Any three-wheeled vehicle with all-wheel drive.
JP10882680A 1980-08-09 1980-08-09 All-wheel drive autotricycle Granted JPS5737019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10882680A JPS5737019A (en) 1980-08-09 1980-08-09 All-wheel drive autotricycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10882680A JPS5737019A (en) 1980-08-09 1980-08-09 All-wheel drive autotricycle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP22777187A Division JPS6378821A (en) 1987-09-11 1987-09-11 All-wheel drive type vehicle
JP62227770A Division JPS6378820A (en) 1987-09-11 1987-09-11 Power transmission device for vehicle

Publications (2)

Publication Number Publication Date
JPS5737019A JPS5737019A (en) 1982-03-01
JPS6349677B2 true JPS6349677B2 (en) 1988-10-05

Family

ID=14494509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10882680A Granted JPS5737019A (en) 1980-08-09 1980-08-09 All-wheel drive autotricycle

Country Status (1)

Country Link
JP (1) JPS5737019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573764U (en) * 1992-02-28 1993-10-08 富士写真フイルム株式会社 Magnetic tape cassette
JPH0749671Y2 (en) * 1989-11-16 1995-11-13 コニカ株式会社 Tape cassette

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857955B2 (en) * 2006-06-29 2012-01-18 井関農機株式会社 Tractor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4031786Y1 (en) * 1964-01-20 1965-11-08
JPS5419625U (en) * 1977-07-08 1979-02-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4031786Y1 (en) * 1964-01-20 1965-11-08
JPS5419625U (en) * 1977-07-08 1979-02-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749671Y2 (en) * 1989-11-16 1995-11-13 コニカ株式会社 Tape cassette
JPH0573764U (en) * 1992-02-28 1993-10-08 富士写真フイルム株式会社 Magnetic tape cassette

Also Published As

Publication number Publication date
JPS5737019A (en) 1982-03-01

Similar Documents

Publication Publication Date Title
US4651847A (en) Torque limiting device
AU2001269342B2 (en) Vehicle transmission systems
US7600599B1 (en) Multimodal vehicle traction system
US4132297A (en) Automatic four-wheel drive system
US4650029A (en) Off-the-road four-wheel drive vehicle
US4185723A (en) Automatic four-wheel drive transfer case
US4098379A (en) Automatic four-wheel drive transfer case
JPS6021263B2 (en) Vehicle transmission device
JPH0718480B2 (en) Differential
JPS63186043A (en) Power transmission device
JPH07109222B2 (en) Power transmission device
JPS6349677B2 (en)
JPS59167333A (en) All-wheel drive type four-wheeled vehicle
JPS601030A (en) Drive force transmission for four wheel drive car
JPS6378821A (en) All-wheel drive type vehicle
JPS643689B2 (en)
JPS58136563A (en) Three-wheeled vehicle for wasteland driving
JPS60237242A (en) Differential device for vehicle
Patil et al. Recent Advances in Differential Drive Systems for Automobile Propulsion
JPS61271126A (en) Four-wheel drive vehicle
US20070292068A1 (en) Free-wheel drive mechanism
JP4790361B2 (en) Differential limiter
US20030232682A1 (en) Automatic variable ratio differential
JPS60240527A (en) Four-wheel vehicle for running on wasteland
JPH08551U (en) Differential device