JPS6349556B2 - - Google Patents

Info

Publication number
JPS6349556B2
JPS6349556B2 JP56181026A JP18102681A JPS6349556B2 JP S6349556 B2 JPS6349556 B2 JP S6349556B2 JP 56181026 A JP56181026 A JP 56181026A JP 18102681 A JP18102681 A JP 18102681A JP S6349556 B2 JPS6349556 B2 JP S6349556B2
Authority
JP
Japan
Prior art keywords
sludge
stage
concentration
solid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56181026A
Other languages
Japanese (ja)
Other versions
JPS5884100A (en
Inventor
Koichi Kiryama
Kaneaki Endo
Yoshitaka Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56181026A priority Critical patent/JPS5884100A/en
Publication of JPS5884100A publication Critical patent/JPS5884100A/en
Publication of JPS6349556B2 publication Critical patent/JPS6349556B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は、下水汚泥の嫌気性消化法の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for anaerobic digestion of sewage sludge.

ここ2〜3年来省エネルギー、石油節約のブー
ムにのつて下水処理においても処理場で発生する
汚泥を嫌気性消化発生するガスを何らかのエネル
ギ源として回収するということが随所で行なわれ
るようになつてきた。そして、従来からの嫌気性
消化法に飽きたらず、できるだけ多くのガスを回
収するべく様々な工夫がなされるようになつた。
Over the past two to three years, with the boom in energy and oil conservation, the sewage treatment industry has begun to anaerobically digest the sludge generated at treatment plants and recover the gas produced as an energy source. . As a result, people were not satisfied with the conventional anaerobic digestion method, and various efforts were made to recover as much gas as possible.

しかしながら、嫌気性消化法を単にエネルギ回
収の面だけで評価するのでなく、一つの汚泥処理
法として見た場合、そこには自と消化汚泥の固液
分離性というものが考慮に入つてこなければなら
ない。かねてより書物などには、下水汚泥を嫌気
性消化すると固液分離性が改善されると記されて
いるようであるが、実際はそうではなく少なくと
も嫌気性消化をする前の汚泥(以下、混合生汚泥
と記す)に比べて固液分離性が良くなるというこ
とはない。このことは外国書物にもはつきり数字
で表わされている。
However, when evaluating anaerobic digestion not only in terms of energy recovery, but also as a sludge treatment method, the solid-liquid separability of the digested sludge and the sludge must be taken into consideration. Must be. It has been written in books and other sources for some time that anaerobic digestion of sewage sludge improves solid-liquid separation, but in reality this is not the case; The solid-liquid separation property is not better than that of sludge (described as sludge). This is often expressed in numbers in foreign books.

現実には消化汚泥の固液分離を少しでも改良す
る目的で消化汚泥を、その数倍量以上の清水また
は処理水で洗浄し、沈降濃縮して得られる消化汚
泥を固液分離の対象としているが、ここでも沈降
濃縮が悪く、分離液に浮遊物質がかなり含まれた
状態で最初沈澱池に戻つてしまう。そして、この
最初沈澱池に戻つた浮遊物質が再び嫌気性消化槽
に戻つてくるという、いわゆる汚泥の場内循環と
いう最も好ましくない状況をかもし出している。
また、消化汚泥を洗浄しないまでも現行の二槽方
式の消化システムでは第二消化槽は主に第一消化
槽を出た汚泥を沈降濃縮することを目的としてお
り、ここでも沈降濃縮性が大変悪く、更に多量の
汚泥の場内循環をもたらしている。一度消化槽か
ら出きた浮遊物質(以下、汚泥と記す)は再び消
化槽に戻つてきても、もうエネルギ源としてのガ
スを発生する能力はなく、それにも拘らず消化槽
に投入されるために加温されねばならず、徒らに
エネルギーを消費するばかりである。
In reality, in order to improve the solid-liquid separation of digested sludge, the digested sludge is washed with several times the amount of fresh water or treated water, and the digested sludge obtained by sedimentation and concentration is targeted for solid-liquid separation. However, sedimentation and concentration are poor here as well, and the separated liquid initially returns to the settling tank with a considerable amount of suspended solids in it. The suspended solids that initially returned to the settling tank then return to the anaerobic digestion tank, creating the most unfavorable situation known as sludge circulation within the site.
In addition, even if the digested sludge is not washed, in the current two-tank digestion system, the purpose of the second digestion tank is mainly to settle and concentrate the sludge that has exited the first digestion tank. Unfortunately, it also causes a large amount of sludge to be circulated within the site. Even if the suspended solids (hereinafter referred to as sludge) that have come out of the digester once return to the digester, they no longer have the ability to generate gas as an energy source, and are still thrown into the digester. It has to be heated to a certain temperature, which is a waste of energy.

これらの汚泥の場内循環が、現実の嫌気性消化
におけるエネルギ回収を図る上で最大の問題点と
なつており、これの起因するところは、消化汚泥
の固液分離性の悪さである。更に固液分離の悪さ
は脱水過程にも大きく影響し、ここで要する薬品
の量を増大せしめ、一台の脱水機の単位時間あた
りの固形物処理量が少ないために、脱水機の必要
台数が増したり、稼動時間が長くなつたりして、
消費する電力量をも増加せしめるのである。
The in-house circulation of these sludges is the biggest problem in achieving energy recovery in actual anaerobic digestion, and this is caused by the poor solid-liquid separation properties of digested sludge. Furthermore, poor solid-liquid separation greatly affects the dehydration process, increasing the amount of chemicals required in this process, and reducing the number of dehydrators required because the amount of solids processed per unit time by one dehydrator is small. or the operating time becomes longer,
This also increases the amount of power consumed.

このように固液分離性の良し悪しは、脱水過程
で消費する薬品量や電力量に大きな影響をおよぼ
し、嫌気性消化汚泥の固液分離性が混合生汚泥の
それに比べて悪くなるようであれば嫌気性消化法
の評価はエネルギ回収という長所と固液分離過程
で逆に多くのエネルギを消費するという短所とを
総合て行なう必要がある。しかし、これまで嫌気
性消化法に関して成されてきた工夫は、エネルギ
回収という点にだけ向けられ、固液分離性を改善
しようということは一切考えられず、長所を更に
長所たらしめることにのみ奔走してきたことは否
定できない。
In this way, the quality of solid-liquid separation has a large effect on the amount of chemicals and electricity consumed in the dehydration process, and even if the solid-liquid separation of anaerobic digested sludge is worse than that of mixed raw sludge, For example, when evaluating anaerobic digestion methods, it is necessary to comprehensively consider the advantage of energy recovery and the disadvantage of consuming a lot of energy in the solid-liquid separation process. However, the efforts that have been made to date for anaerobic digestion have been focused solely on energy recovery, without any consideration given to improving solid-liquid separation, and only on making the strengths even better. I can't deny what I've done.

これに対し、本発明は固液分離過程での短所を
改善し、そのことによつて嫌気性消化法に対する
総合的な評価を一段と高いものとすることができ
る有効な方法を提供することを目的とするもので
ある。
In contrast, the present invention aims to provide an effective method that can improve the shortcomings in the solid-liquid separation process and thereby further improve the overall evaluation of anaerobic digestion. That is.

すなわち、本発明は嫌気性消化処理工程を酸生
成相(第一段階)とガス化相(第二段階)からな
る二相消化方式とし、前記酸生成を成す第一段階
を経た汚泥を濃縮(沈降、浮上分離あるいは遠心
分離)して得られる分離液に、これを第二段階か
ら流出せる消化汚泥と混合するとき、そのPHが
4.8〜7.0になるように塩化第二鉄を添加して消化
汚泥と混合し、前記濃縮工程にて得られる濃縮汚
泥は前記ガス化相に移送して処理することを特徴
とする方法であつて、これにより消化汚泥の処理
場内循環を消滅させるとともに、脱水過程で要す
る薬品量を減少せしめるようにした下水汚泥の処
理方法である。
That is, the present invention employs a two-phase digestion method for the anaerobic digestion treatment process consisting of an acid production phase (first stage) and a gasification phase (second stage), and the sludge that has passed through the first stage of acid production is concentrated ( When the separated liquid obtained by sedimentation, flotation, or centrifugation is mixed with the digested sludge that can be discharged from the second stage, the pH of the separated liquid is
The method is characterized in that ferric chloride is added and mixed with digested sludge to give a concentration of 4.8 to 7.0, and the concentrated sludge obtained in the concentration step is transferred to the gasification phase for treatment. This is a sewage sludge treatment method that eliminates the circulation of digested sludge within a treatment plant and reduces the amount of chemicals required in the dewatering process.

本発明の一実施態様を図面に従つて説明する
と、混合生汚泥1は第一嫌気性消化槽2で酸生成
処理されたのち沈降濃縮槽3で処理される。濃縮
汚泥4は第二嫌気性消化槽5でガス化処理され、
得られる消化汚泥7が分離水6と共に混合槽8に
流入して塩化第二鉄9を添加混合されたのち、浮
上濃縮槽10により分離水12と濃縮汚泥11に
分離され、濃縮汚泥11はベルトプレス型脱水機
などによる機械脱水工程13で処理される。図
中、14は発生ガスである。なお、混合槽8で処
理した汚泥は直接機械脱水工程13へ移送しても
よい。
One embodiment of the present invention will be described with reference to the drawings. Mixed raw sludge 1 is subjected to acid generation treatment in a first anaerobic digestion tank 2 and then treated in a sedimentation thickening tank 3. The thickened sludge 4 is gasified in a second anaerobic digestion tank 5,
Digested sludge 7 obtained flows into a mixing tank 8 together with separated water 6, where ferric chloride 9 is added and mixed, and then separated into separated water 12 and thickened sludge 11 by a flotation thickening tank 10, and the thickened sludge 11 is transferred to a belt. It is processed in a mechanical dehydration step 13 using a press type dehydrator or the like. In the figure, 14 is generated gas. Note that the sludge treated in the mixing tank 8 may be directly transferred to the mechanical dewatering step 13.

しかして、一般に下水汚泥の嫌気性消化はその
反応機構において、酸生成と生成された揮発性有
機酸のガス化という二段階によつて構成されてお
り、二相消化方式はそれぞれの機能別に工程を分
離して構成したものにすぎず、ガス化相(第二段
階)より得られる消化汚泥は二相消化方式をとら
ない普通の嫌気性消化方式より得られる消化汚泥
とその性状において何ら相違を持つものでない。
したがつてガス化相(第二段階)から流出せる消
化汚泥はアルカリ度が高く、これに酸を加えてPH
を下けると炭酸ガスが発生し、これにより消化汚
泥は通常の加圧浮上濃縮のように加圧水を用いる
ことなく浮上濃縮に分離水を生じる。先述のよう
に、現実には消化汚泥の固液分離を少しでも改良
する目的で消化汚泥を、その数倍量以上の清水ま
たは処理水で洗浄し、沈降濃縮して得られる消化
汚泥を固液分離の対象としているが、ここでの沈
降分離が悪く分離液に浮遊物質がかなり含まれた
状態で最初沈殿池に戻り、いわゆる汚泥の場内循
環という状況を作り出している。
Generally speaking, the reaction mechanism of anaerobic digestion of sewage sludge consists of two stages: acid generation and gasification of the generated volatile organic acids, and the two-phase digestion method has separate processes for each function. The digested sludge obtained from the gasification phase (second stage) is no different in properties from the digested sludge obtained from a normal anaerobic digestion method that does not use a two-phase digestion method. It's not something you have.
Therefore, the digested sludge discharged from the gasification phase (second stage) has a high alkalinity, and acid is added to it to adjust the pH.
When the sludge is lowered, carbon dioxide gas is generated, and as a result, the digested sludge produces separated water during flotation concentration without using pressurized water as in normal pressure flotation concentration. As mentioned above, in reality, in order to improve the solid-liquid separation of digested sludge, the digested sludge is washed with several times the volume of fresh water or treated water, and the digested sludge obtained by sedimentation and concentration is converted into solid-liquid. However, due to poor sedimentation separation, the separated liquid returns to the settling tank with a considerable amount of suspended solids, creating a situation called sludge circulation within the site.

これに対し、本発明では酸生成を成す段階を経
た汚泥を沈降あるいは浮上分離して得られる分離
液に塩化第二鉄を添加した液で消化汚泥を洗浄し
ており、この液は、酸性であるため炭酸ガスが発
生する。これにより消化汚泥は浮上濃縮して分離
水を生ずることから、浮上濃縮によりあるいは脱
気したのち沈降濃縮を行なうことにより効果的に
汚泥の濃縮操作ができる。塩化第二鉄を添加する
のは単に消化汚泥の濃縮性を向上させるだけでな
く、洗浄水の酸性度を増大させる効果を狙つたも
のであり、洗浄後の分離水に含まれる浮遊物質濃
度は100mg/を越えることなく汚泥回収率も99%
以上となるため、汚泥の場内循環という好ましく
ない状況を作り出すことはない。また、洗浄水の
量も消化汚泥の数倍量以上を必要とするようなこ
ともない。
In contrast, in the present invention, digested sludge is washed with a solution obtained by sedimentation or flotation separation of sludge that has gone through the stage of acid production, with ferric chloride added to it. Because of this, carbon dioxide gas is generated. As a result, the digested sludge is floated and concentrated to produce separated water, so sludge can be effectively concentrated by flotation and concentration or by sedimentation and concentration after deaeration. The purpose of adding ferric chloride is not only to improve the concentration of digested sludge, but also to increase the acidity of the washed water, and the suspended solids concentration in the separated water after washing is Sludge recovery rate is 99% without exceeding 100mg/
Because of the above, an unfavorable situation such as internal circulation of sludge does not occur. Moreover, the amount of washing water does not require more than several times the amount of digested sludge.

上記洗浄水は、本発明では酸生成を成す第一段
階を経た汚泥を沈降あるいは浮上分離して得られ
る分離液を意味するが、その量は消化汚泥量とほ
ぼ同じくらいであればよく消化汚泥量より少なく
てもよい。もとより洗浄水量が消化汚泥量に比べ
て多いほぼ洗浄効果上がそれだけ沈降分離面積を
必要とするので、このことも考慮するとやはり洗
浄水量をできるだけ少なくして洗浄効果を上げる
ことが望ましい。そして、消化汚泥量の数倍量以
上の洗浄水で洗浄後沈降濃縮するのと同じくらい
の放置時間によりそれよりもずつと濃度の高い洗
浄した濃縮消化汚泥を得ることができる。
In the present invention, the above-mentioned washing water refers to a separated liquid obtained by sedimentation or flotation separation of sludge that has gone through the first stage of acid production. It may be less than the amount. Naturally, since the amount of washing water is larger than the amount of digested sludge, the more sedimentation and separation area is required for the cleaning effect, taking this into consideration, it is desirable to increase the cleaning effect by reducing the amount of washing water as much as possible. Then, washed concentrated digested sludge with a much higher concentration can be obtained by allowing the sludge to stand for about the same amount of time as washing with washing water several times the amount of digested sludge and then sedimentation and concentration.

すなわち本発明では、従来法に比して非常に少
ない量の洗浄水にわずかの塩化第二鉄を添加する
だけで十分な洗浄効果を上げ、従来法と同程度の
沈降濃縮あるいは浮上濃縮時間でずつと高い濃度
の洗浄した消化汚泥を得ることができ、分離水に
含まれる浮遊物質濃度も従来法に比べて大変低
く、したがつて汚泥の場内循環という悪循環を断
つことができるのである。そして、この洗浄後の
濃縮方法は例えば浮上濃縮とした場合、浮上に要
する時間は加圧浮上濃縮に比べて長いものの、加
圧水が一切不必要、したがつて加圧水を作成する
ための電力を全く必要としない。また、脱気した
のち沈降濃縮するとしても脱気が非常に容易で、
沈降濃縮性も従来に比べてかなり改善される。
In other words, in the present invention, a sufficient cleaning effect can be achieved by adding a small amount of ferric chloride to a very small amount of cleaning water compared to the conventional method, and the method can achieve the same level of sedimentation concentration or flotation concentration time as the conventional method. Washed digested sludge with a higher concentration can be obtained, and the concentration of suspended solids in the separated water is also much lower than in conventional methods, making it possible to break the vicious cycle of internal circulation of sludge. If the concentration method after washing is flotation concentration, for example, the time required for flotation is longer than that of pressure flotation concentration, but no pressurized water is required, and therefore no electricity is required to create pressurized water. I don't. In addition, even if you perform sedimentation and concentration after deaeration, deaeration is very easy.
Sedimentation and concentration properties are also significantly improved compared to conventional methods.

本発明においては、酸生成期を経た汚泥を沈降
あるいは浮上分離して得られるか分離液すなわち
前記洗浄水はPH4.8〜5.5であり、この洗浄水にこ
れと等量程度の消化汚泥を混合した後のPHが4.8
〜7.0、望ましくは5.5〜6.5になるように塩化第二
鉄を添加することが重要であつてその添加量は混
合後の固形物1Kgあたり40〜70gの範囲となる。
In the present invention, the separated liquid obtained by sedimentation or flotation separation of sludge that has undergone an acid generation period, that is, the washing water, has a pH of 4.8 to 5.5, and about the same amount of digested sludge is mixed with this washing water. PH after is 4.8
It is important to add ferric chloride so that the ratio is 7.0 to 7.0, preferably 5.5 to 6.5, and the amount of ferric chloride added is in the range of 40 to 70 g per 1 kg of solids after mixing.

第一消化槽を汚泥を洗浄することなく第二消化
槽で沈降濃縮する場合は従来の方法で洗浄する場
合よりもはるかに多量の汚泥の場内循環をもたら
しているうえ長い沈降濃縮時間を要し、得られる
濃縮消化汚泥濃度も低いことから本発明ははるか
に有利な方法といえるものである。このように本
発明は消化汚泥を洗浄して濃縮するという点にお
いて従来の方法に比べてすぐれた優位性を持つも
のである。
If the sludge is sedimented and concentrated in the second digestion tank without washing the sludge in the first digestion tank, a much larger amount of sludge will be circulated within the site than when cleaning with the conventional method, and it will take a longer time for sedimentation and concentration. However, the concentration of the concentrated digested sludge obtained is also low, so the present invention can be said to be a much more advantageous method. As described above, the present invention has superior advantages over conventional methods in terms of washing and concentrating digested sludge.

次に固液分離操作の主要部分である脱水過程に
ついては、高分子凝集剤によつて脱水する場合は
本発明では従来の洗浄消化汚泥に比べてその必要
量がかなり少なく、50〜60%で十分なことが利点
としてあげられる。洗浄過程で添加した塩化第二
鉄が凝集助剤としての効力を保有しているために
高分子凝集剤の必要量がぐつと減少するのである
が、凝集助剤である塩化第二鉄の添加量を増せは
それだけ脱水過程での高分子凝集剤の必要量も減
少するということはなく、添加しすぎると脱水過
程で高分子凝集剤を多量に加えても凝集せず脱水
が大変困難なものとなる。
Next, regarding the dehydration process, which is the main part of solid-liquid separation operation, when dewatering is performed using a polymer flocculant, the amount required in the present invention is considerably smaller than that for conventional washed and digested sludge, and is only 50 to 60%. Adequacy can be cited as an advantage. Since the ferric chloride added during the cleaning process has the effect of acting as a coagulation aid, the amount of polymer flocculant required is gradually reduced. Increasing the amount will not necessarily reduce the amount of polymer flocculant required during the dehydration process; if too much is added, the polymer will not flocculate even if a large amount of polymer flocculant is added during the dehydration process, making dehydration very difficult. becomes.

この意味からも脱水過程で効果をもたらすよう
な塩化第二鉄の添加量には自と制約があり、その
量は酸生成相を経た汚泥を沈降あるいは浮上分離
して得られる分離液に添加した後、これをガス化
相から流出せる消化汚泥と混合したとき、そのPH
が4.8〜7.0、望ましくは5.5〜6.5となるような量
とするべきである。
From this point of view, there are limits to the amount of ferric chloride that can be added to bring about an effect in the dehydration process, and the amount must be added to the separated liquid obtained by sedimentation or flotation separation of sludge that has passed through the acid generation phase. Afterwards, when this is mixed with the digested sludge flowing out from the gasification phase, its PH
The amount should be such that the ratio is 4.8 to 7.0, preferably 5.5 to 6.5.

もとより高分子凝集剤の単価はかなり高価なも
ので、従来の洗浄消化汚泥に比べてその必要量が
50〜60%に減少するということは脱水過程で要す
る薬品の費用をそれだけ少なくすることができる
のである。本発明の場合、洗浄過程で塩化第二鉄
を添加しているのでその費用も考慮しなくてはな
らないが、この費用を含めても合計の薬品費用は
従来の洗浄消化汚泥に要する高分子凝集剤の値段
より安価である。
Of course, the unit price of polymer flocculant is quite expensive, and the amount required is much lower than that for conventional washed and digested sludge.
A reduction of 50 to 60% means that the cost of chemicals required for the dehydration process can be reduced accordingly. In the case of the present invention, since ferric chloride is added in the cleaning process, the cost must also be taken into account, but even if this cost is included, the total chemical cost is the same as the polymer flocculation required for conventional cleaning and digestion sludge. It is cheaper than the drug price.

以上述べたように本発明は、酸生成相を経た汚
泥を沈降分離、浮上分離等により濃縮して得られ
る分離液に、これをガス化相から流出せる消化汚
泥と混合するとき、そのPHが4.8〜7.0になるよう
に塩化第二鉄を添加して消化汚泥と混合したの
ち、該混合汚泥を固液分離するようにしたもので
あり、本発明により、従来の洗浄操作に比べてず
つと濃度の高い洗浄濃縮消化汚泥を得ることがで
き、また汚泥の回収率も99%以上に達するため、
汚泥の場内循環という悪循環を断つことができる
ばかりでなく、前記固液分離工程における高分子
凝集剤の必要量も半分近くに減少させることがで
き、塩化第二鉄も含めた全薬品の費用も従来法に
て要する高分子凝集剤のみの費用よりも安価なも
のとすることができるなど、多大の利益が得られ
るものである。
As described above, in the present invention, when the separated liquid obtained by concentrating sludge that has passed through the acid generation phase by sedimentation separation, flotation separation, etc. is mixed with the digested sludge that can flow out from the gasification phase, the pH of the sludge increases. After ferric chloride is added to give a concentration of 4.8 to 7.0 and mixed with digested sludge, the mixed sludge is separated into solid and liquid. It is possible to obtain highly concentrated washed and concentrated digested sludge, and the sludge recovery rate reaches over 99%.
Not only can the vicious cycle of internal sludge circulation be broken, but the amount of polymer flocculant required in the solid-liquid separation process can be reduced by nearly half, and the cost of all chemicals, including ferric chloride, can also be reduced. This method offers many benefits, such as being cheaper than the cost of just the polymer flocculant required in the conventional method.

以下に本発明に基く実施例を示す。 Examples based on the present invention are shown below.

実施例 1 固形物濃度(以下、TSと略す)3.5%、揮発性
固形物濃度(以下、VSと略す)2.7%、強熱減量
(以下、VS/TSと略す)77.1%、PH5.7の混合生
汚泥を槽内温度を35±1℃に制御している嫌気性
消化槽(第一段階の酸生成相に該当)に3/日
の割合で投入し、槽内を撹拌しつつ3日間滞留さ
せるとTS3.0%、VS2.2%、VS/TS72.9%、PH
5.1の酸生成汚泥が得られた。これを4日間沈降
濃縮槽にて沈降濃縮すると沈降濃縮汚泥の占める
容量は54%となり、そのTSは5.3%、VS3.8%で
1.62/日であつた。沈降分離水はTS0.23%、
VS0.17%、1.38/日であつた。このTS5.3%の
濃縮汚泥をこの流量で、やはり槽内温度が35±1
℃に維持管理されている嫌気性消化槽(第二段階
のメタン生成相に該当)に投入し槽内を撹拌しつ
つ10日間滞留させるとガスが21.2発生し、
TS3.9%、VS2.5%、VS/TS63.0%、PH7.75の消
化汚泥が1.62/日で得られた。
Example 1 Solids concentration (hereinafter abbreviated as TS) 3.5%, volatile solids concentration (hereinafter abbreviated as VS) 2.7%, loss on ignition (hereinafter abbreviated as VS/TS) 77.1%, pH 5.7. The mixed raw sludge was put into an anaerobic digestion tank (corresponding to the acid production phase of the first stage) whose internal temperature was controlled at 35±1°C at a rate of 3 days per day, and the tank was stirred for 3 days. When retained, TS3.0%, VS2.2%, VS/TS72.9%, PH
Acid-generated sludge of 5.1 was obtained. When this is sedimented and concentrated in a sedimentation and thickening tank for 4 days, the volume occupied by the sedimented and thickened sludge becomes 54%, with a TS of 5.3% and a VS of 3.8%.
It was 1.62/day. Sedimentation separated water has TS0.23%,
VS was 0.17%, 1.38/day. When this thickened sludge with a TS of 5.3% is fed at this flow rate, the temperature inside the tank is 35±1.
When it is put into an anaerobic digestion tank (corresponding to the second stage methane production phase) maintained at a temperature of 21.2°C and allowed to stay there for 10 days while stirring, gas is generated at 21.2°C.
Digested sludge with TS 3.9%, VS 2.5%, VS/TS 63.0%, and PH 7.75 was obtained at 1.62/day.

これと先の沈降分離水(TS0.23%、VS0.17%)
1.38/日とを混合するにあたり混合後のTS1g
に対し塩化第二鉄を50mg(混合液あたり1105mg/
)添加した。その結果TS2.2%、VS1.4%、
VS/TS63.8%、PH6.4となつた。これを混合槽か
ら別の槽に移して2日間放置すると、浮上濃縮部
の容量が54.5%(すなわち1.64/日)、TS4.0%
となつた。また浮上濃縮による分離水のTSは83
mg/、1.37/日であつた。この浮上濃縮汚泥
をベルトプレス型加圧脱水機で脱水すると高分子
凝集剤をTSあたり0.56%必要とし、脱水ケーキ
の含水率は82.7%となつた。消費した薬品の費用
は1KgのTSあたり塩化第二鉄4.25円、高分子凝
集剤10.36円、計14.61円であり、また、浮上濃縮
による分離水に含まれるTSは0.12g/日であつ
た。
This and the previous sedimentation separated water (TS0.23%, VS0.17%)
1.38/day TS1g after mixing
50mg of ferric chloride (1105mg/mixture)
) was added. As a result, TS2.2%, VS1.4%,
VS/TS was 63.8% and PH was 6.4. When this was transferred from the mixing tank to another tank and left for 2 days, the capacity of the flotation concentration section was 54.5% (i.e. 1.64/day) and the TS was 4.0%.
It became. Also, the TS of separated water by flotation concentration is 83
mg/day, 1.37/day. When this floating concentrated sludge was dehydrated using a belt press type pressure dehydrator, 0.56% of polymer flocculant was required per TS, and the water content of the dehydrated cake was 82.7%. The cost of the consumed chemicals was 4.25 yen for ferric chloride and 10.36 yen for polymer flocculant per 1 kg of TS, for a total of 14.61 yen, and the TS contained in the water separated by flotation concentration was 0.12 g/day.

実施例 2 第一段階の酸生成相及び沈降濃縮のところまで
実施例1に同じ汚泥を用いて槽内温度が35±1℃
に維持管理されている嫌気性消化槽(第二段階の
メタン生成相に該当)に投入し、槽内を撹拌しつ
つ8日間滞留させるとガスが1日に20.0発生
し、TS4.0%、VS2.6%、VS/TS64.2%、PH7.72
の消化汚泥が1.62/日で得られた。
Example 2 The same sludge as in Example 1 was used until the first stage of acid production phase and sedimentation concentration, and the tank temperature was 35 ± 1°C.
When it is put into an anaerobic digestion tank (corresponding to the second stage methane generation phase) maintained and managed in the anaerobic digestion tank and left to stay for 8 days while stirring inside the tank, 20.0 gas is generated per day, TS 4.0%, VS2.6%, VS/TS64.2%, PH7.72
of digested sludge was obtained at a rate of 1.62/day.

これと先の沈降分離水(TS0.23%、VS0.17%)
1.38/日とを混合するにあたり混合後のTS1g
に対し塩化第二鉄を60mg(混合液あたり1356mg/
)添加した。その結果TS2.3%、VS1.5%、
VS/TS64.6%、PH5.8となつた。これを混合槽か
ら別の槽に移して2日間放置すると浮上濃縮部の
容量が57.0%、(すなわち1.71/日)、TS4.0%
となつた。また、これによる分離水のTSは38mg/
、1.29/日であつた。この浮上濃縮汚泥をベ
ルトプレス型加圧脱水機で脱水すると高分子凝集
剤をTSあたり0.5%必要とし、脱水ケーキの含水
率は83.1%となつた。消費した薬品の費用は1Kg
のTSあたり塩化第二鉄5.1円、高分子凝集剤9.25
円計14.35円であり、また浮上濃縮による分離水
に含まれるTSは0.05g/日であつた。
This and the previous sedimentation separated water (TS0.23%, VS0.17%)
1.38/day TS1g after mixing
60mg of ferric chloride (1356mg/mixture)
) was added. As a result, TS2.3%, VS1.5%,
VS/TS was 64.6% and PH was 5.8. When this was transferred from the mixing tank to another tank and left for 2 days, the capacity of the flotation concentration section was 57.0% (i.e. 1.71/day), TS 4.0%.
It became. Also, the TS of the separated water is 38mg/
, it was 1.29/day. When this floated concentrated sludge was dehydrated using a belt press pressure dehydrator, 0.5% of polymer flocculant was required per TS, and the moisture content of the dehydrated cake was 83.1%. The cost of consumed medicine is 1Kg.
per TS of ferric chloride 5.1 yen, polymer flocculant 9.25 yen
The total cost was 14.35 yen, and the TS contained in the water separated by flotation concentration was 0.05 g/day.

次に固液分離部のみを従来法によつて行なつた
比較例を示す。
Next, a comparative example will be shown in which only the solid-liquid separation section was performed using the conventional method.

比較例 第二段階のメタン生成相に該当する嫌気性消化
槽の出口まで実施例2と同じである汚泥を用い
た。すなわちTS4.0%の消化汚泥1.62/日に下
水処理水を5/日で混合し2日間沈降濃縮した
ところ、沈降濃縮部が25.5%、分離液部が74.5%
となつた。沈降濃縮汚泥はTS3.3%、1.69/日
分離液はTS0.18%、4.93/日であつた。この濃
縮汚泥を実施例1、2と同じ脱水機で脱水すると
高分子凝集剤をTSあたり0.82%必要とし、脱水
ケーキの含水率は83.3%となつた。消費した薬品
の費用は1KgのTSあたり15.17円、沈降分離水に
含まれるTSは8.93g/日であつた。
Comparative Example The same sludge as in Example 2 was used up to the outlet of the anaerobic digestion tank corresponding to the second methanogenic phase. In other words, when treated sewage water was mixed with 1.62/day of digested sludge with a TS of 4.0% and sedimentation was concentrated for 2 days, the sedimentation/concentration part was 25.5% and the separated liquid part was 74.5%.
It became. The sedimentation thickened sludge had a TS of 3.3%, 1.69/day, and the separated liquid had a TS of 0.18%, 4.93/day. When this thickened sludge was dehydrated using the same dehydrator as in Examples 1 and 2, 0.82% of polymer flocculant was required per TS, and the water content of the dehydrated cake was 83.3%. The cost of the consumed chemicals was 15.17 yen per 1 kg of TS, and the TS contained in the separated sediment water was 8.93 g/day.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示す系統説明図であ
る。 1…混合生汚泥、2…第一嫌気性消化槽、3…
沈降濃縮槽、4,11…濃縮汚泥、5…第二嫌気
性消化槽、6,12…分離水、7…消化汚泥、8
…混合槽、9…塩化第二鉄、10…浮上濃縮槽、
13…機械脱水工程。
The drawings are system explanatory diagrams showing embodiments of the present invention. 1... Mixed raw sludge, 2... First anaerobic digestion tank, 3...
Sedimentation concentration tank, 4, 11... Thickened sludge, 5... Second anaerobic digestion tank, 6, 12... Separated water, 7... Digested sludge, 8
...mixing tank, 9...ferric chloride, 10...floating concentration tank,
13...Mechanical dehydration process.

Claims (1)

【特許請求の範囲】 1 下水汚泥を嫌気性消化処理したのち固液分離
する方法において、嫌気性消化工程を酸生成相
(第一段階)とガス化相(第二段階)からなる二
相消化方式とし、下水汚泥を第一段階の酸生成相
にて酸生成せしめ、該第一段階を経た汚泥を濃縮
工程にて濃縮汚泥と分離液に分離し、前記濃縮汚
泥を第二段階のガス化相にてガス化せしめ、前記
分離液と第二段階から流出せる消化汚泥とを混合
せしめそのPHが4.8〜7.0になるように塩化第二鉄
を添加したのち固液分離することを特徴とする下
水汚泥の処理方法。 2 前記塩化第二鉄の添加量を、添加後のPHが
5.5〜6.5となるように設定する特許請求の範囲第
1項記載の方法。 3 前記固液分離処理が、前段の浮上濃縮処理と
後段の高分子凝集剤を添加して行なう機械脱水処
理からなるものである特許請求の範囲第1項又は
第2項記載の方法。
[Scope of Claims] 1. In a method of subjecting sewage sludge to anaerobic digestion and then solid-liquid separation, the anaerobic digestion step is a two-phase digestion consisting of an acid production phase (first stage) and a gasification phase (second stage). In this method, sewage sludge is acid-generated in the acid generation phase of the first stage, the sludge that has passed through the first stage is separated into thickened sludge and separated liquid in the concentration process, and the thickened sludge is gasified in the second stage. The separated liquid is mixed with the digested sludge flowing out from the second stage, and ferric chloride is added so that the pH thereof becomes 4.8 to 7.0, and then solid-liquid separation is performed. How to treat sewage sludge. 2 The amount of ferric chloride added is adjusted so that the pH after addition is
The method according to claim 1, wherein the ratio is set to 5.5 to 6.5. 3. The method according to claim 1 or 2, wherein the solid-liquid separation treatment comprises a flotation concentration treatment in the first stage and a mechanical dehydration treatment performed by adding a polymer flocculant in the latter stage.
JP56181026A 1981-11-13 1981-11-13 Treatment of sewage sludge Granted JPS5884100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181026A JPS5884100A (en) 1981-11-13 1981-11-13 Treatment of sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181026A JPS5884100A (en) 1981-11-13 1981-11-13 Treatment of sewage sludge

Publications (2)

Publication Number Publication Date
JPS5884100A JPS5884100A (en) 1983-05-20
JPS6349556B2 true JPS6349556B2 (en) 1988-10-05

Family

ID=16093461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181026A Granted JPS5884100A (en) 1981-11-13 1981-11-13 Treatment of sewage sludge

Country Status (1)

Country Link
JP (1) JPS5884100A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542764B2 (en) * 2003-10-22 2010-09-15 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP5996508B2 (en) * 2013-10-21 2016-09-21 東京瓦斯株式会社 Waste water treatment apparatus and waste water treatment method

Also Published As

Publication number Publication date
JPS5884100A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
CA2487088C (en) Treatment process and installation for sludge from biological water treatment installations
JP6121589B2 (en) Anaerobic treatment method
JP4024045B2 (en) Sewage treatment method
JPS6349556B2 (en)
CN113165927B (en) Improved phosphorus recovery process and apparatus
JP2641009B2 (en) Anaerobic digestion of organic waste
JPS6325839B2 (en)
JPH0122840B2 (en)
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
DE3312381A1 (en) METHOD FOR THICKENING BIOLOGICAL SLUDGE, ESPECIALLY ACTIVATED SLUDGE
JPS58205594A (en) Anaerobic digestion method
JPS644840B2 (en)
JPS5898198A (en) Treatment of sewage sludge
JPH03275200A (en) Thickening and dehydrating method for organic sludge
JPH0117757B2 (en)
JPS5827700A (en) Treatment of sewage sludge
JPS57197100A (en) Treatment of sewage sludge
JPH04227899A (en) Treatment of night soil
JPS5870896A (en) Anaerobic digestion of sewage sludge
RU2121982C1 (en) Method of processing waste water sediments (versions)
CN115947509A (en) Sewage and sludge co-treatment process and system based on sludge component separation
JP4570608B2 (en) Organic wastewater treatment method and apparatus
SU1498721A1 (en) Method of treatment of sediments of waste water
JPH0218917B2 (en)