JPS634926B2 - - Google Patents

Info

Publication number
JPS634926B2
JPS634926B2 JP14120982A JP14120982A JPS634926B2 JP S634926 B2 JPS634926 B2 JP S634926B2 JP 14120982 A JP14120982 A JP 14120982A JP 14120982 A JP14120982 A JP 14120982A JP S634926 B2 JPS634926 B2 JP S634926B2
Authority
JP
Japan
Prior art keywords
conductor
wound
core
magnetic path
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14120982A
Other languages
Japanese (ja)
Other versions
JPS5931015A (en
Inventor
Toshihiro Sato
Takashi Ogawa
Kinji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP14120982A priority Critical patent/JPS5931015A/en
Publication of JPS5931015A publication Critical patent/JPS5931015A/en
Publication of JPS634926B2 publication Critical patent/JPS634926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は巻鉄心の焼鈍方法に関し、磁場をかけ
ながら焼鈍する方法に適用して有用なものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of annealing a wound iron core, and is useful when applied to a method of annealing a wound core while applying a magnetic field.

従来より、素材を巻回して形成された巻鉄心
は、巻回・加工時の歪みを取るため焼鈍される。
この場合、巻鉄心の素材として珪素鋼板を採用す
れば、通常の焼鈍で済む。しかし、最近出現した
素材である非晶質電気鋼板(以下アモルフアスと
略称する)で巻鉄心を形成した場合には、磁場を
かけながら焼鈍する必要がある。この磁場の大き
さ、即ち、磁界の強さはH=10エルステツド
[Oe]必要である。
Conventionally, a wound core formed by winding a material is annealed to remove distortion during winding and processing.
In this case, if a silicon steel plate is used as the material of the wound core, normal annealing is sufficient. However, when a wound core is formed from amorphous electrical steel sheet (hereinafter abbreviated as amorphous), which is a material that has recently appeared, it is necessary to perform annealing while applying a magnetic field. The magnitude of this magnetic field, ie, the strength of the magnetic field, is required to be H=10 oersteds [O e ].

第1図は磁場をかけながら焼鈍を行う従来方法
の一例を示す。同図に示すように本例では、焼鈍
炉1内に、磁路長が互いに異なるアモルフアスか
らなる巻鉄心A,B,Cをセツトし、これら巻鉄
心A,B,Cに磁場をかけながら焼鈍を行う。磁
場をかけるには、巻鉄心A,B,Cに夫々励磁コ
イルa,b,cを備え、この励磁コイルa,b,
cに個別に直流電源を接続して直流電流I1,I2
I3を流すことにより実現している。なお、巻鉄心
A,B,Cの磁路長la,lb,lcは、la<lb<lcなる
関係にある。
FIG. 1 shows an example of a conventional method of annealing while applying a magnetic field. As shown in the figure, in this example, wound cores A, B, and C made of amorphous amorphous having different magnetic path lengths are set in an annealing furnace 1, and these wound cores A, B, and C are annealed while being applied with a magnetic field. I do. To apply a magnetic field, the wound cores A, B, and C are provided with excitation coils a, b, and c, respectively, and these excitation coils a, b,
A DC power supply is connected individually to c, and the DC currents I 1 , I 2 ,
This is achieved by flowing I 3 . Note that the magnetic path lengths la , l b , and l c of the wound cores A, B, and C have a relationship of la < l b < l c .

このようは本例では磁路長の異なる複数台(第
1図では3台のみ示している)の巻鉄心を一度に
焼鈍することができる。
In this way, in this example, a plurality of wound iron cores (only three are shown in FIG. 1) having different magnetic path lengths can be annealed at the same time.

ところでこの従来技術では次のような欠点(i),
(ii)があつた。
However, this conventional technology has the following drawbacks (i):
(ii) was hot.

(i) 各巻鉄心A,B,Cに同一強度の磁場をかけ
るには直流電流I1,I2,I3の大きさや励磁コイ
ルa,b,cの巻数を調整しなければならず煩
雑であつた。このことを更に詳述すると、一般
に磁場、即ち磁界Hは次式(1)で与えられる。
(i) To apply a magnetic field of the same strength to each winding core A, B, and C, it is necessary to adjust the magnitude of the DC currents I 1 , I 2 , and I 3 and the number of turns of the excitation coils a, b, and c, which is complicated. It was hot. To explain this in more detail, the magnetic field, ie, the magnetic field H, is generally given by the following equation (1).

H=10/4π×N/l×I ……(1) 但しN:励磁コイルの巻数 I:直流電流 l:巻鉄心の磁路長 上記(1)式より、巻鉄心の違いにかかわらず同
一強度の磁界Hをかけるためには、磁路長lが
長くなるにつれ巻数Nを増やすか直流電流Iの
値を大きくするような調整をしなければならな
いことが理解される。
H=10/4π×N/l×I...(1) However, N: Number of turns of exciting coil I: DC current l: Magnetic path length of wound core From equation (1) above, it is the same regardless of the difference in the wound core. It is understood that in order to apply a strong magnetic field H, it is necessary to make adjustments such as increasing the number of turns N or increasing the value of the DC current I as the magnetic path length l becomes longer.

(ii) 各巻鉄心A,B,Cごとに励磁コイルa,
b,cを取り付けなければならず、取付作業が
面倒であつた。
(ii) Excitation coil a for each core A, B, and C;
b and c had to be attached, and the installation work was troublesome.

第2図は従来方法の他の例を示す。同図に示す
ように本例では巻鉄心A,B,Cの窓に一本の導
体2を貫通させ、この導体2に直流電流I0を流す
ことにより磁場をかけている。そしてこのように
磁場をかけながら焼鈍を行うのである。したがつ
て本例においては装置構成が簡単になるととも
に、磁路長の異なる複数台の巻鉄心を一度に焼鈍
することができる。
FIG. 2 shows another example of the conventional method. As shown in the figure, in this example, one conductor 2 is passed through the windows of the wound cores A, B, and C, and a magnetic field is applied by passing a direct current I 0 through the conductor 2. In this way, annealing is performed while applying a magnetic field. Therefore, in this example, the apparatus configuration is simplified, and a plurality of wound cores having different magnetic path lengths can be annealed at the same time.

ところがこの従来技術では、巻鉄心A,B,C
の磁路長la,lb,lcが異なるため、巻鉄心A,B,
Cにかかる磁界の強さが異なり、巻鉄心A,B,
Cの特性に相違が出てしまう。
However, in this prior art, wound cores A, B, and C
Since the magnetic path lengths l a , l b , l c are different, the wound cores A, B,
The strength of the magnetic field applied to C is different, and the wound cores A, B,
There will be a difference in the characteristics of C.

本発明は、上記従来技術に鑑み、磁路長の異な
る複数台の巻鉄心に同一強度の磁場をかけながら
焼鈍が行なえ、しかも装置構成は簡単ですむ焼鈍
方法を提供することを目的とする。
In view of the above-mentioned prior art, it is an object of the present invention to provide an annealing method that can perform annealing while applying a magnetic field of the same intensity to a plurality of wound cores having different magnetic path lengths, and which requires a simple device configuration.

以下本発明の実施例を説明する。なお、従来技
術と同一部分には同一番号を付し重複する説明は
省略する。
Examples of the present invention will be described below. Note that parts that are the same as those in the prior art are given the same numbers and redundant explanations will be omitted.

第3図は本発明を説明するための回路図であ
り、この図を基に本発明を概略的に説明してお
く。なお、より具体的な適用例は後述する。
FIG. 3 is a circuit diagram for explaining the present invention, and the present invention will be briefly explained based on this diagram. Note that more specific application examples will be described later.

第3図に示すように、本発明方法においては、
焼鈍炉1内にある導体3は複数台(図においては
3台のみ示す)の巻鉄心Aを貫通しており、同様
に導体4は巻鉄心Bを、また導体5は巻鉄心Cを
貫通している。これら導体3,4,5は並列回路
を構成しており、各導体3,4,5には、直流電
流I0が分流してなる直流電流I01,I02,I03が夫々
流れ、巻鉄心A,B,Cに磁場がかかる。このと
き導体3,4,5の直径をD3,D4,D5とすると D3 2:D4 2:D5 2=la:lb:lc ……(2) (但し 導体はいずれも丸棒とする) となるようにしている。このようにしたのは、巻
鉄心A,B,Cに同一強度の磁界がかかるよう、
次に述べる知見に基づき決定したものである。即
ち、電流Iと磁界Hとの関係は、前記(1)式より次
の(3)式で表わされる。
As shown in FIG. 3, in the method of the present invention,
The conductor 3 in the annealing furnace 1 passes through a plurality of wound cores A (only three are shown in the figure), and similarly, the conductor 4 passes through the wound core B, and the conductor 5 passes through the wound core C. ing. These conductors 3, 4, and 5 constitute a parallel circuit, and DC currents I 01 , I 02 , and I 03 which are branched from DC current I 0 flow through each conductor 3, 4, and 5, respectively. A magnetic field is applied to iron cores A, B, and C. At this time, if the diameters of conductors 3, 4, and 5 are D 3 , D 4 , and D 5, D 3 2 : D 4 2 : D 5 2 = l a : l b : l c ...(2) (However, the conductors are Both are round bars). This was done so that magnetic fields of the same strength are applied to wound cores A, B, and C.
This decision was made based on the findings described below. That is, the relationship between the current I and the magnetic field H is expressed by the following equation (3) from the above equation (1).

I=K1×l×H ……(3) (但しK1=4π/N×10) この(3)式より、磁界Hを一定の強度とするため
には、直流電流Iと磁路長lとが比例しなければ
ならないことが判る。一方直流抵抗は導体の断面
積に反比例するので、直流電流Iは断面積に比例
する。このため次式(4)が求められる。
I = K 1 × l × H ... (3) (However, K 1 = 4π/N × 10) From this formula (3), in order to maintain the magnetic field H at a constant strength, the DC current I and the magnetic path length must be It turns out that l must be proportional. On the other hand, since the DC resistance is inversely proportional to the cross-sectional area of the conductor, the DC current I is proportional to the cross-sectional area. Therefore, the following equation (4) is obtained.

I=K2×D2 ……(4) (但しK2:定数,D:導体の直径) 上記(3),(4)式より H=K3×D2/l ……(5) (但しK3=K2/K1) となる。この(5)式から、磁界Hを一定の強度とす
るためには、磁路長lの変化に対応して直径の二
乗D2を変化させればよいことがわかる。換言す
れば、前記(2)式の関係が満たされれば巻鉄心A,
B,Cには同一強度の磁界Hがかかるのである。
I=K 2 ×D 2 ……(4) (where K 2 : constant, D: diameter of conductor) From formulas (3) and (4) above, H=K 3 ×D 2 /l ……(5) ( However, K 3 = K 2 /K 1 ). From this equation (5), it can be seen that in order to maintain the magnetic field H at a constant strength, the square of the diameter D 2 should be changed in accordance with the change in the magnetic path length l. In other words, if the relationship of equation (2) above is satisfied, the wound core A,
A magnetic field H of the same strength is applied to B and C.

第4図は本発明を適用した具体例を示す構成図
であり、この図を基に本発明をより具体的に説明
する。同図において、1は焼鈍炉、1aはその
扉、6は焼鈍炉1の床に配置した対熱レンガ、7
は対熱レンガ6の上に設置した下部銅板、3,
4,5は下部銅板7に電気的に接続されて起立し
た導体で、導体3,4,5の直径D3,D4,D5
D3<D4<D5なる関係にある。8は上部銅板であ
りボルト9により導体3,4,5に固定されてい
る。10は口出し導体であり下部銅板7に接続さ
れるとともに焼鈍炉1を貫通している。11はケ
ーブルであり口出し導体10に接続されるととも
に直流電源(図示省略)に接続されている。12
は口出し導体であり上部銅板8に接続されるとと
もに扉1aを貫通している。13はケーブルであ
り口出し導体12に着脱可能に接続されるととも
に前記直流電源に接続されている。そのため導体
3,4,5には夫夫直流電流I01,I02,I03が流れ
る。A,B,Cは巻鉄心でありブロツク14を介
して巻鉄心の種類ごとに積み上げられている。つ
まり積み上げられた複数個の巻鉄心Aには導体3
が貫通しており、同様に巻鉄心Bには導体4が、
また巻鉄心Cには導体5が貫通している。ちなみ
に巻鉄心Aは10KVA,Bは30KVA,Cは
50KVAの容量を持つている。なお15は焼鈍炉
1の炉壁に取り付けたヒータである。
FIG. 4 is a block diagram showing a specific example to which the present invention is applied, and the present invention will be explained in more detail based on this figure. In the figure, 1 is an annealing furnace, 1a is its door, 6 is a heat-resistant brick placed on the floor of the annealing furnace 1, and 7 is an annealing furnace.
is the lower copper plate installed on the heat-reducing brick 6, 3,
4 and 5 are conductors that are electrically connected to the lower copper plate 7 and stand up, and the diameters of the conductors 3, 4, and 5 are D 3 , D 4 , and D 5 .
The relationship is D 3 < D 4 < D 5 . Reference numeral 8 denotes an upper copper plate, which is fixed to the conductors 3, 4, and 5 with bolts 9. Reference numeral 10 denotes a lead conductor, which is connected to the lower copper plate 7 and passes through the annealing furnace 1. A cable 11 is connected to the lead conductor 10 and to a DC power source (not shown). 12
is an outlet conductor, which is connected to the upper copper plate 8 and passes through the door 1a. A cable 13 is detachably connected to the lead conductor 12 and is also connected to the DC power source. Therefore, direct currents I 01 , I 02 , and I 03 flow through the conductors 3, 4, and 5. A, B, and C are wound cores, which are piled up via blocks 14 for each type of wound core. In other words, there are conductors 3 in the stacked multiple wound cores A.
is passed through, and similarly, the conductor 4 is connected to the wound core B.
Further, a conductor 5 passes through the wound core C. By the way, wound core A is 10KVA, B is 30KVA, and C is
It has a capacity of 50KVA. Note that 15 is a heater attached to the wall of the annealing furnace 1.

この構成においては、 導体3の直径D3は10mm、 導体4の直径D4は13mm、 導体5の直径D5は15mm、 であり、 巻鉄心Aの磁路長laは600mm、 巻鉄心Bの磁路長lbは1000mm、 巻鉄心Cの磁路長lcは1400mm、 であるため、巻鉄心Aにかかる磁界をHa,Bに
かかる磁界をHb,Cにかかる磁界をHcとすると、
前記(5)式より Ha=K3×102/600=0.167K3 Hb=K3×132/1000=0.169K3 Hc=K3×152/1400=0.169K3 となる。これより、巻鉄心A,B,Cには略同一
強度の磁界がかかることが判る。もちろん本実施
例においては、直流電源は一台でよく、また励磁
コイルも不要であるため、装置構成が簡単である
ことは言うまでもない。
In this configuration, the diameter D 3 of the conductor 3 is 10 mm, the diameter D 4 of the conductor 4 is 13 mm, the diameter D 5 of the conductor 5 is 15 mm, and the magnetic path length l a of the wound core A is 600 mm. The magnetic path length l b of is 1000 mm, and the magnetic path length l c of wound core C is 1400 mm. Therefore, the magnetic field applied to wound core A is H a , the magnetic field applied to B is H b , and the magnetic field applied to C is H c Then,
From the above formula (5), H a = K 3 × 10 2 / 600 = 0.167K 3 H b = K 3 × 13 2 / 1000 = 0.169K 3 H c = K 3 × 15 2 / 1400 = 0.169K 3 . From this, it can be seen that magnetic fields of approximately the same strength are applied to the wound cores A, B, and C. Of course, in this embodiment, only one DC power supply is required and no excitation coil is required, so it goes without saying that the device configuration is simple.

なお、第4図に示す実施例においては3種類の
巻鉄心A,B,Cを焼鈍する場合を示したが、焼
鈍する巻鉄心をAとBとにし、その分だけ巻鉄心
Aの数を増すには、導体5を取りはずしてここ
に、直径が導体3の直径と同じくD3となつてい
る他の導体を取り付け、この導体に巻鉄心Aを備
えればよい。
In addition, in the example shown in FIG. 4, the case where three types of wound cores A, B, and C are annealed is shown, but if the wound cores to be annealed are set to A and B, the number of wound cores A is increased accordingly. To increase the number of conductors, the conductor 5 may be removed and another conductor having a diameter D3 , which is the same as the diameter of the conductor 3, may be attached thereto, and the wound core A may be provided on this conductor.

以上実施例とともに具体的に説明したように本
発明によれば、磁路長の異なる複数台の巻鉄心に
同一強度の磁場をかけながら一度に焼鈍が行な
え、しかも装置構成は簡単でよい。
As specifically explained above in conjunction with the embodiments, according to the present invention, a plurality of wound cores having different magnetic path lengths can be annealed at the same time while applying a magnetic field of the same strength, and the apparatus configuration can be simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の焼鈍方法を説明する
ための概略図、第3図は本発明を説明するための
回路図、第4図は本発明を適用した具体例を示す
構成図である。 図面中、2,3,4,5は導体、A,B,Cは
巻鉄心、I0,I1,I2,I3,I01,I02,I03は直流電流、
la,lb,lcは磁路長である。
Figures 1 and 2 are schematic diagrams for explaining the conventional annealing method, Figure 3 is a circuit diagram for explaining the present invention, and Figure 4 is a configuration diagram showing a specific example to which the present invention is applied. be. In the drawing, 2, 3, 4, 5 are conductors, A, B, C are wound cores, I 0 , I 1 , I 2 , I 3 , I 01 , I 02 , I 03 are DC currents,
l a , l b , and l c are magnetic path lengths.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質電気鋼板からなる巻鉄心の窓に導体を
貫通させ、この導体に直流電流を流して巻鉄心に
磁場をかけながら焼鈍を行う焼鈍方法において、
磁路長の異なる複数の巻鉄心のうち磁路長の長い
巻鉄心には断面積の広い導体を貫通させるととも
に磁路長の短い巻鉄心にはこの磁路長に対応して
断面積が狭くなつている導体を貫通させ、更に各
導体の両端を同一の直流電源に接続して複数の前
記導体にて並列回路を構成し、各導体に直流電流
を流すことにより磁路長の異なる各巻鉄心に同一
強度の磁場をかけながら焼鈍することを特徴とす
る巻鉄心の焼鈍方法。
1. In an annealing method in which a conductor is passed through the window of a wound core made of amorphous electrical steel sheet, a direct current is passed through the conductor, and annealing is performed while applying a magnetic field to the wound core.
Among multiple wound cores with different magnetic path lengths, a conductor with a wide cross section is passed through the wound core with a long magnetic path length, and a conductor with a wide cross section is passed through the wound core with a short magnetic path length, and the cross sectional area is narrow corresponding to this magnetic path length. By passing through the conductors connected to each other and connecting both ends of each conductor to the same DC power source to form a parallel circuit with a plurality of conductors, and by passing DC current through each conductor, each winding core with a different magnetic path length is created. A method for annealing a wound iron core, which is characterized by annealing while applying a magnetic field of the same strength to the core.
JP14120982A 1982-08-14 1982-08-14 Method of annealing wound core Granted JPS5931015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14120982A JPS5931015A (en) 1982-08-14 1982-08-14 Method of annealing wound core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14120982A JPS5931015A (en) 1982-08-14 1982-08-14 Method of annealing wound core

Publications (2)

Publication Number Publication Date
JPS5931015A JPS5931015A (en) 1984-02-18
JPS634926B2 true JPS634926B2 (en) 1988-02-01

Family

ID=15286673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14120982A Granted JPS5931015A (en) 1982-08-14 1982-08-14 Method of annealing wound core

Country Status (1)

Country Link
JP (1) JPS5931015A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100270148B1 (en) * 1996-03-12 2000-12-01 니시무로 타이죠 Magnetoresistive head and the manufacturing method
JP2008277216A (en) * 2007-05-07 2008-11-13 Tada Denki Kk Magnetic heating device

Also Published As

Publication number Publication date
JPS5931015A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
AU594414B2 (en) Induction heating and melting systems having improved induction coils
US4355221A (en) Method of field annealing an amorphous metal core by means of induction heating
JPS634926B2 (en)
JPH0787136B2 (en) Electrical circuits for inductance conductors, transformers and motors
US3175175A (en) Unitary transformer and saturable reactor
CA1158325A (en) Core for electromagnetic induction device
JPH0123932B2 (en)
US3855412A (en) Current equalization means and method for unequally loaded cables in an electric glass melting furnace
JPS59119810A (en) Interphase reactor device
US20240186040A1 (en) Continuous ulta-rapid annealing of nanocrystalline soft magnetic materials
JPS59103317A (en) Large current 3-phase electric circuit
JP3248283B2 (en) Transformer winding
JP2003187950A (en) Single-turn induction heating coil
JPS58186193A (en) Induction heater
JPS5954213A (en) Annealing method for laminated core
JPS61198611A (en) Manufacture of transformer with amorphous alloy thin band core
JPS59149014A (en) Winding for induction electric apparatus
JP3497352B2 (en) Direct current heating device for running material to be heated
JPH07183079A (en) Electromagnetic inducting heating roller device
DE2844618A1 (en) Low copper content meander core for current transformer - uses multiple windings running forward and backward in axial direction of primary winding and arranged in group-parallel configuration
JP2001234249A (en) Heat treating method for metallic strip and device therefor
JPS6222413A (en) Manufacture of core
JPH09219287A (en) Induction heating device
JPS58218845A (en) Armature coil for rotary electric machine
JPH06176924A (en) Superconducting magnet