JPS6349252A - Production of noble metal-deposited catalyst - Google Patents

Production of noble metal-deposited catalyst

Info

Publication number
JPS6349252A
JPS6349252A JP61190869A JP19086986A JPS6349252A JP S6349252 A JPS6349252 A JP S6349252A JP 61190869 A JP61190869 A JP 61190869A JP 19086986 A JP19086986 A JP 19086986A JP S6349252 A JPS6349252 A JP S6349252A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
carrier
particles
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61190869A
Other languages
Japanese (ja)
Other versions
JPH0463732B2 (en
Inventor
Hiroji Tatemachi
立町 寛児
Nobuhiro Yamauchi
山内 信洋
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61190869A priority Critical patent/JPS6349252A/en
Publication of JPS6349252A publication Critical patent/JPS6349252A/en
Publication of JPH0463732B2 publication Critical patent/JPH0463732B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain the title catalyst capable of being highly activated by preclassifying a carrier to control the diameter of secondarily flocculated particles within a specified range, and depositing a noble metal on the carrier. CONSTITUTION:Carbon powder is dispersed in a soln., the obtained dispersion is classified into respective products having the same particle diameter by natural settling using a settling tube or centrifugal separation, and the powder having uniform particle diameter can be obtained. The secondarily flocculated particles having 0.15-6mum particle diameter is selected from the classified products, and used to prepare a platinum-deposited catalyst and a platinum and iron-deposited catalyst in the same way as the conventional method. Platinum is uniformly dispersed on the carrier in the form of fine particles, the obtained platinum-deposited catalyst has high activity, and sintering of platinum caused by the operating conditions of a battery can be minimized.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は二次凝集粒子径に貴金属を担持してなる貴金
属担持触媒、特に燃料電池のガス拡散電極に用いられる
電極触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a noble metal-supported catalyst in which a noble metal is supported on secondary agglomerated particles, and particularly to a method for producing an electrode catalyst used in a gas diffusion electrode of a fuel cell.

〔従来技術とその問題点〕[Prior art and its problems]

一般に、アルカリ型燃料電池及びりん酸型燃料電池にお
いては、反応を円滑に進行させるために触媒が必要であ
る。この触媒としては、白金やノくラジウムをはじめと
する貴金属及びその合金、ニッケル及びその酸化物、タ
ングステンカーバイド。
Generally, in alkaline fuel cells and phosphoric acid fuel cells, a catalyst is required for the reaction to proceed smoothly. Examples of this catalyst include noble metals such as platinum and radium and their alloys, nickel and its oxides, and tungsten carbide.

プルシアンブルーなどの環状有機金属化合物など多数見
い出されている。これらのうち酵型燃料電池用には主と
して、白金又は白金合金をカーボンブラ、りの様な導電
性担体材料の上に担持して用いられている。金属を担体
上に担持すると、担持させない場合よりも金属粒子をよ
り微粒子状態にすることが可能であり、微粒子化するこ
とによって金属粒子の単位重量当りの表面撹が増大して
反応サイトを増加させることができるので、触媒として
金属の有効利用が図れる。金属を担体上に担持する場合
、全ての担体に均一に金属を担持することが望ましい。
Many cyclic organometallic compounds such as Prussian blue have been discovered. Among these, platinum or a platinum alloy is mainly used for fermentation type fuel cells by supporting it on a conductive carrier material such as carbon bran or glue. When a metal is supported on a carrier, it is possible to make the metal particles into a finer particle state than when the metal is not supported, and by making the metal particles finer, the surface agitation per unit weight of the metal particles increases and the number of reaction sites increases. Therefore, the metal can be used effectively as a catalyst. When a metal is supported on a carrier, it is desirable that the metal be uniformly supported on all the carriers.

一般に、担体粒子に金属が均一に担持されない場合、す
なわち金属の分散が悪いと、担持金属の粒子径が大きく
なり易い。さらに金属の分散が悪い触媒を合金化するた
めに熱処理をほどこした場合、金属の焼結(シンク1)
ング)が起こりやすい。
Generally, when metal is not uniformly supported on carrier particles, that is, when metal is poorly dispersed, the particle size of the supported metal tends to increase. Furthermore, when heat treatment is applied to alloy a catalyst with poor metal dispersion, metal sintering (sink 1)
ng) is likely to occur.

この焼結が起ると金属の粒子径が増大し、有効表面積が
減少するために!池の出力は低下する。また、金属の分
散が悪いと電池の運転条件下においても、金属の焼結が
起こりやすいので、触媒の寿命が短(なるという欠点が
ある。
When this sintering occurs, the particle size of the metal increases and the effective surface area decreases! The output of the pond decreases. In addition, if the metal is poorly dispersed, sintering of the metal tends to occur even under battery operating conditions, resulting in a shortened catalyst life.

金属を担体上に担持させる方法としては、気相還元法、
液相還元法、熱分解法、水熱合成法、イオン交換法など
多数試みられているが、いずれの方法においても全ての
担体粒子に均一に金属を担持させることは困難であった
。この原因として、−担体の表面状態1例えばグラファ
イト化度1表面官能基cカルボキシル基、フェノール基
など)の数などが担体粒子毎に異なるために、金属粒子
の付き易さが異るのではないかと考えられているが、詳
細な事は明らかにされていない。また、担体として導電
性のカーボンブラックを用いた場合、担体の二次凝集粒
子の小さな物は金属を担持しにくいという傾向が見られ
、るが、その原因は明らかにされていない。
Methods for supporting metals on carriers include gas phase reduction,
Many attempts have been made, including liquid phase reduction, thermal decomposition, hydrothermal synthesis, and ion exchange, but it has been difficult to uniformly support metal on all carrier particles in any of these methods. The reason for this is that the ease with which metal particles adhere to each carrier particle differs because the surface condition of the carrier (e.g., degree of graphitization, number of surface functional groups, carboxyl groups, phenol groups, etc.) differs from carrier particle to carrier particle. It is believed that this is the case, but the details have not been disclosed. Furthermore, when conductive carbon black is used as a carrier, there is a tendency that small secondary agglomerated particles of the carrier are difficult to support metal, but the reason for this has not been clarified.

〔発明の目的〕[Purpose of the invention]

本発明の目的は触媒の高活性化を図ると共に、触媒金属
粒子の焼結(シフタ11ング)を防止し、燃料電池の性
能低下を防止しうる貴金属担持触媒の製造方法を提供す
ることにある。
An object of the present invention is to provide a method for producing a catalyst supported on a noble metal, which can highly activate the catalyst, prevent sintering of catalyst metal particles (shifting), and prevent deterioration in fuel cell performance. .

〔発明の要点〕[Key points of the invention]

本発明は、担体をあらかじめ分級することによって担体
の二次凝集粒子径を一定範囲内になるように選別し、こ
の選別された二次凝集粒子に貴金属を担持することによ
って担体に触媒成分である金属が均一に担持された貴金
属担持触媒を製造しようとするものである。
In the present invention, the diameter of the secondary agglomerated particles of the carrier is sorted to be within a certain range by pre-classifying the carrier, and by supporting the noble metal on the selected secondary agglomerated particles, the catalyst component is added to the carrier. The purpose is to produce a noble metal-supported catalyst in which metal is uniformly supported.

〔発明の実施例〕[Embodiments of the invention]

従来、貴金属触媒を製造する際に担体としてカーボンブ
ラックを用いる場合、幅広い二次凝集粒子径を持つ担体
をそのまま用いていた。この担体を用いて得られる触媒
を透過型電子顕徽鏡で観察すると、担体粒子により担持
されている貴金属粒子の数にバラツキが大きく、中には
まったく貴金属を担持していない担体粒子が見られた。
Conventionally, when carbon black is used as a carrier when manufacturing a noble metal catalyst, a carrier having a wide range of secondary agglomerated particle sizes has been used as is. When the catalyst obtained using this carrier is observed with a transmission electron microscope, there is a large variation in the number of noble metal particles supported by the carrier particles, and some carrier particles are observed that do not support any noble metal at all. Ta.

そこで本発明者らは、貴金属粒子の担体への付き易さと
担体の二次凝集粒子径の間に相関関係があるものと考え
、分級により担体の二次凝集粒子径の近いものを集めこ
れを利用することにより、担体に触媒成分である金属が
均一に担持された貴金属担持触媒を製造することを試み
た。
Therefore, the present inventors believe that there is a correlation between the ease of adhesion of noble metal particles to the carrier and the diameter of the secondary agglomerated particles of the carrier. By utilizing this method, we attempted to produce a noble metal-supported catalyst in which the metal as a catalyst component was uniformly supported on the carrier.

カーボン粉末を機械攪拌又は超音波攪拌により溶液中に
分散させると、溶媒中では第1図に示すような広い粒度
分布を有している。この分散溶液を沈澱管による自然沈
降法または遠心分離を用いて同一粒径ごとに分離するこ
とにより粒径のそろったカーボン粉末を取得できる。粒
子の沈降速度はその粒径により異なり、自然沈降法又は
遠心分離法による粒径と沈降速度の概算値を第1表に示
す。尚、溶媒は純水として計算した。
When carbon powder is dispersed in a solution by mechanical stirring or ultrasonic stirring, it has a wide particle size distribution in the solvent as shown in FIG. Carbon powder with uniform particle sizes can be obtained by separating this dispersion solution into particles of the same size using a natural sedimentation method using a sedimentation tube or centrifugation. The sedimentation rate of particles varies depending on the particle size, and Table 1 shows approximate values of particle size and sedimentation rate obtained by natural sedimentation method or centrifugation method. Note that calculations were made assuming that pure water was used as the solvent.

第  1  表 遠心分離法による粒径と沈降速度の関係は一定の回転数
の場合、回転時間を変化させることにより求める粒径の
カーボン粉末を分離できる。また回転時間を一定にした
場合、回転数を変化させることで同様の分離を行なうこ
とができる。自然沈降法による分離方法は第1表でも明
らかなように、沈降時間に長時間を要するため5〜10
μm以上の比較的大きい粒径を有するカーボン粒子の分
離に適している。遠心分離法は回転数を高めることで分
離時間を短縮できるのでQ、l、cut+程度の微小粒
子の分離も可能である。したがって、これらのうちいず
れかの分離方法を用いて粒径を一定範囲内に選別した二
次凝集粒子を得ることができる。以下実施例に基づき本
発明の詳細な説明する。
Table 1 Relationship between particle size and sedimentation speed by centrifugation When the rotation speed is constant, carbon powder of the desired particle size can be separated by changing the rotation time. Further, when the rotation time is kept constant, similar separation can be performed by changing the rotation speed. As is clear from Table 1, the natural sedimentation method requires a long sedimentation time, so
It is suitable for separating carbon particles having a relatively large particle size of μm or more. Since the centrifugal separation method can shorten the separation time by increasing the rotational speed, it is also possible to separate particles as small as Q, l, and cut+. Therefore, using any one of these separation methods, it is possible to obtain secondary agglomerated particles whose particle size is sorted within a certain range. The present invention will be described in detail below based on Examples.

(実施例) アセチレンブラック2002を超音波分散正こより、溶
媒90Aに分散させた後、遠心分離法により粒子径を0
.3〜4μmの範囲に分級したものを得た。次にこの分
級したアセチレンブラ、り902を用いて、従来法例と
同様に白金担持触媒および白金−鉄担持触媒を調製した
。得られた白金担持触媒を透過型電子顕微鏡で観察する
と、一つの担体−次に付いている白金粒子の個数が8〜
15個と、従来法に比して均一に白金粒子が分散担持さ
れた白金担持触媒となっていた。また、従来法で見られ
た白金粒子が凝集した集落は見られなかった。この触媒
を合金化処理した白金−鉄合金担持触媒は、もとの白金
触媒の分散性が高いために、焼結(シンタリング)が起
りにくいと考えられるが、透過型電子顕微鏡で観察した
結果、焼結(シフタ11ング)があまり進んでいないこ
とが確められた。すなわち、担持された口金粒子の結晶
子径は15〜30オングストロームであり、その分布は
従来法に比べて狭く、これからも白金粒子が均一に担持
されていることがわかる。また、白金−鉄合金担持触媒
の結晶子径は四〜初オングストロームであり、従来法に
比べて合金化熱処理による結晶成長が抑えられているこ
とがわかった。
(Example) After dispersing acetylene black 2002 in 90 A of solvent using ultrasonic dispersion, the particle size was reduced to 0 by centrifugation.
.. A product classified into a range of 3 to 4 μm was obtained. Next, a platinum-supported catalyst and a platinum-iron-supported catalyst were prepared using the classified acetylene brazing agent 902 in the same manner as in the conventional method. When the obtained platinum-supported catalyst was observed with a transmission electron microscope, the number of platinum particles attached to one support was 8 to 8.
The number of platinum particles was 15, resulting in a platinum-supported catalyst in which platinum particles were more uniformly dispersed and supported than in the conventional method. Furthermore, no clusters of agglomerated platinum particles, which were observed in the conventional method, were observed. The platinum-iron alloy supported catalyst obtained by alloying this catalyst is thought to be less prone to sintering due to the high dispersibility of the original platinum catalyst; however, as observed using a transmission electron microscope, It was confirmed that sintering (shifter 11 ring) had not progressed very much. That is, the crystallite diameter of the supported die particles is 15 to 30 angstroms, and the distribution thereof is narrower than in the conventional method, which shows that the platinum particles are evenly supported. It was also found that the crystallite diameter of the platinum-iron alloy supported catalyst was 4 to 10 angstroms, and crystal growth due to alloying heat treatment was suppressed compared to conventional methods.

(従来例) 酸化姶1.済のアセチレンブラ、り90tを脱イオン水
4.e中に超音波分散しスラリーとした。白金101を
含む塩化白金酸水溶液および炭酸ナトリウム水溶液を続
いて加え、全量を5沼とし1時間攪拌した。スラリーを
40〜70℃に昇温し30%過酸化水素水を適量加え攪
拌を続けながら白金イオンを還元するのに必要な量のギ
酸水溶液を滴下した。
(Conventional example) Oxidation 1. 4. Add 90 tons of finished acetylene brane to deionized water. The slurry was dispersed in ultrasonic water to form a slurry. A chloroplatinic acid aqueous solution containing platinum 101 and a sodium carbonate aqueous solution were subsequently added, and the total amount was made up to 5 ml and stirred for 1 hour. The temperature of the slurry was raised to 40 to 70°C, an appropriate amount of 30% hydrogen peroxide solution was added, and while stirring was continued, an amount of formic acid aqueous solution necessary to reduce platinum ions was added dropwise.

このスラ1!−を濾過、水洗し白金担持触媒が得られた
。得られた触媒を透過型電子顕微鏡で観察すると、一つ
の担体に付いている白金粒子の個数が0−20とバラツ
キが大きかった。また、白金粒子が凝集している集落も
見られた。さらにこれら白金粒子は約15〜60オング
ストロームの結晶子径を有していた。
This sura 1! - was filtered and washed with water to obtain a platinum supported catalyst. When the obtained catalyst was observed with a transmission electron microscope, the number of platinum particles attached to one carrier varied widely, ranging from 0 to 20. In addition, some communities where platinum particles were aggregated were also observed. Furthermore, these platinum particles had a crystallite size of approximately 15-60 angstroms.

次に、この担持白金触媒を4−eの脱イオン水に超音波
分散し鉄2.8tを含む硝酸第二鉄水溶液を加え1時間
攪拌した後、昇温し40〜70°Cで1時間攪拌した。
Next, this supported platinum catalyst was ultrasonically dispersed in deionized water (4-e), a ferric nitrate aqueous solution containing 2.8 tons of iron was added, and the mixture was stirred for 1 hour, then heated to 40-70°C for 1 hour. Stirred.

この段階で水溶液中の鉄イオンは全て白金上に吸着し、
液の色は黄色透明から無色透明に変わった。次に室温に
冷却し、希アンモニア水を滴下してl’H8とした。こ
れにより鉄イオンは水酸化第二鉄となり、白金粒子上に
付着した。濾過水洗後乾燥し、窒素気流中で850〜1
000℃、2時間熱処理し、白金−鉄担持触媒を得た。
At this stage, all the iron ions in the aqueous solution are adsorbed onto the platinum,
The color of the liquid changed from clear yellow to clear and colorless. Next, the mixture was cooled to room temperature, and dilute ammonia water was added dropwise to obtain l'H8. As a result, iron ions became ferric hydroxide and adhered to the platinum particles. After filtering and washing with water, dry in a nitrogen stream to 850-1
A platinum-iron supported catalyst was obtained by heat treatment at 000°C for 2 hours.

得られた触媒を透過型1!!子顕微鏡で観察すると、合
金粒子は母体となった白金粒子よりもわずかに粒子径が
大きくなっており、特に白金粒子が集落を作っていたと
思われる部位において結晶成長が著しかった。
The obtained catalyst was made into a transmission type 1! ! When observed under a microscope, the particle size of the alloy particles was slightly larger than that of the base platinum particles, and crystal growth was particularly remarkable in areas where platinum particles were thought to have formed colonies.

このため、合金粒子の結晶子径は約30〜250オング
ストロームと大きくなっていた。
Therefore, the crystallite diameter of the alloy particles was as large as about 30 to 250 angstroms.

以上、従来例および実施例によって得られた担持白金鉄
合金触媒を用いて、四弗化エチレン微粉末45重量%を
均一に分散された状態で含む多孔質膜を作成し、四弗化
エチレン微粉末で撥水処理を施したカーボンペーパー上
に結着し電極とした。
As described above, a porous membrane containing 45% by weight of tetrafluoride ethylene fine powder in a uniformly dispersed state was prepared using the supported platinum iron alloy catalyst obtained in the conventional examples and examples. The powder was bound onto water-repellent carbon paper to form an electrode.

電極の白金密度はいずれも0.50 tn? )’ t
/−であり、また空孔率は80〜82%であった。これ
ら電極を酸化剤電極として小型単電池を組立て、常圧で
運転を行なった。なお燃料電極には従来法例で得られた
担持白金触媒に同重量のアセチレンブラックを混合し、
同様に電極化した。燃料電極の白金密度は、0.23 
trot P t/d  空孔ぶは81%であった。空
気及び80%水素、20%二酸化炭素の混合ガスでの小
型電池の特性は第2表のごとくであった。
The platinum density of the electrodes is 0.50 tn? )'t
/-, and the porosity was 80 to 82%. A small cell was assembled using these electrodes as oxidizer electrodes and operated at normal pressure. For the fuel electrode, the same weight of acetylene black was mixed with the supported platinum catalyst obtained by the conventional method.
Electrodes were made in the same way. The platinum density of the fuel electrode is 0.23
The trot P t/d void was 81%. The characteristics of the small battery using air and a mixed gas of 80% hydrogen and 20% carbon dioxide were as shown in Table 2.

32表 第2表から判るように、分級した担体を用いてml!L
、た触媒粒子が均一に担持された白金鉄合金担持触媒は
、従来法によるものに比べて、高活性と良好な安定性を
示した。
As can be seen from Table 2 of Table 32, using the classified carrier, ml! L
The platinum-iron alloy supported catalyst, in which catalyst particles were uniformly supported, showed higher activity and better stability than those produced by conventional methods.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようにこの発明によれば、担体
をあらかじめ分級して二次凝集粒子径を一定範凹になる
ように選別し、この選別された二次凝集粒子に貴金属を
担持することによって白金担持触媒とするので、白金が
担体上に均一に分散された微細粒子となり、これによっ
て得られる白全担持触媒は高活性でしかも電・池の運転
条件での白金の焼結(シフタ11ング)を低く抑えるこ
とができる。また、合金触媒を調製する場合の合金化に
供5熱処理で、白金の焼結(シンタリング)が起こりに
くいので担持白金合金触媒の特性を向上することができ
る。
As is clear from the above description, according to the present invention, the carrier is classified in advance so that the diameter of the secondary agglomerated particles falls within a certain range, and the noble metal is supported on the selected secondary agglomerated particles. Since the platinum-supported catalyst is made into a platinum-supported catalyst, the platinum becomes fine particles that are uniformly dispersed on the support, and the resulting platinum-supported catalyst is highly active. (2000) can be kept low. Furthermore, during the heat treatment during alloying when preparing an alloy catalyst, sintering of platinum is less likely to occur, so that the properties of the supported platinum alloy catalyst can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーボン粉末の粒度分布を示すグラフである。 1・・・機械攪拌で分散した場合の分布、2・・・超音
波攪拌で分散した場合の分布。 a4ト(オ次)
FIG. 1 is a graph showing the particle size distribution of carbon powder. 1...Distribution when dispersed by mechanical stirring, 2...Distribution when dispersed by ultrasonic stirring. a4 (o next)

Claims (1)

【特許請求の範囲】 1)あらかじめ分級して粒径を一定範囲内に選別した二
次凝集粒子に貴金属を担持させたことを特徴とする貴金
属担持触媒の製造方法。 2)特許請求の範囲第1項記載の方法において、二次凝
集粒子の粒径が0.15〜6μm、さらに好ましくは0
.3〜4μmの範囲であることを特徴とする貴金属担持
触媒の製造方法。
[Scope of Claims] 1) A method for producing a noble metal supported catalyst, characterized in that a noble metal is supported on secondary agglomerated particles that have been classified in advance to have a particle size within a certain range. 2) In the method according to claim 1, the particle size of the secondary agglomerated particles is 0.15 to 6 μm, more preferably 0.
.. A method for producing a noble metal supported catalyst, characterized in that the catalyst has a particle size in the range of 3 to 4 μm.
JP61190869A 1986-08-14 1986-08-14 Production of noble metal-deposited catalyst Granted JPS6349252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61190869A JPS6349252A (en) 1986-08-14 1986-08-14 Production of noble metal-deposited catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190869A JPS6349252A (en) 1986-08-14 1986-08-14 Production of noble metal-deposited catalyst

Publications (2)

Publication Number Publication Date
JPS6349252A true JPS6349252A (en) 1988-03-02
JPH0463732B2 JPH0463732B2 (en) 1992-10-12

Family

ID=16265113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190869A Granted JPS6349252A (en) 1986-08-14 1986-08-14 Production of noble metal-deposited catalyst

Country Status (1)

Country Link
JP (1) JPS6349252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165362A (en) * 2010-02-05 2011-08-25 Honda Motor Co Ltd Membrane electrode structure for fuel cell, and method of manufacturing the same
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor
CN108539218A (en) * 2018-01-03 2018-09-14 南京工业大学 A kind of electrocatalysis material, preparation method and Proton Exchange Membrane Fuel Cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165362A (en) * 2010-02-05 2011-08-25 Honda Motor Co Ltd Membrane electrode structure for fuel cell, and method of manufacturing the same
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor
JP2015076277A (en) * 2013-10-09 2015-04-20 株式会社キャタラー Electrode catalyst for fuel batteries, and method for manufacturing the same
CN108539218A (en) * 2018-01-03 2018-09-14 南京工业大学 A kind of electrocatalysis material, preparation method and Proton Exchange Membrane Fuel Cells
CN108539218B (en) * 2018-01-03 2022-02-01 南京工业大学 Electrocatalytic material, preparation method and proton exchange membrane fuel cell

Also Published As

Publication number Publication date
JPH0463732B2 (en) 1992-10-12

Similar Documents

Publication Publication Date Title
JP4590937B2 (en) Electrode catalyst and method for producing the same
JP3896137B2 (en) Supported catalyst and method for producing the same
JPH01210035A (en) Platinum catalyst and its manufacture method
JPH01210037A (en) Method of forming alloy on carrier
JPH0857317A (en) Platinum alloy catalyst and its manufacturing process
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
KR101168033B1 (en) Catalyst for fuel cell oxygen electrodes
JP4715107B2 (en) Catalyst for fuel cell and method for producing platinum-iridium alloy particles
JP2012500720A (en) Continuous production method of catalyst
JPH01210036A (en) Method for manufacturing carrier supported metal catalyst of large surface area
JP2001278656A (en) Method for manufacturing sintered metal oxide
JPH05217586A (en) Fuel cell and manufacture thereof
JPS6349252A (en) Production of noble metal-deposited catalyst
WO2019177060A1 (en) Electrode catalyst for fuel cell, and fuel cell using same
CN107221683A (en) The preparation method of PtVFe/WC/C nanometers of oxygen reduction catalysts
JPH05161849A (en) Preparation of metal carrying catalyst with high surface area
JPH04141235A (en) Electrode catalyst for an anode pole
JP7110377B2 (en) CARBON MATERIAL FOR CATALYST CARRIER FOR PROTEIN POLYMER FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
JPH11505884A (en) Cobalt metal agglomerates, their production and use
CN114931946A (en) Pt/C composite catalyst and preparation method and application thereof
EP1509630A2 (en) Process for manufacturing an alloy material for use in the manufacture of synthetic diamonds
JPH06132034A (en) Alloy catalyst for phosphoric acid fuel cell and manufacture of catalyst therefor
JP2005174755A (en) Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JP2008234900A (en) Manufacturing method of catalyst electrode