JPS6349116B2 - - Google Patents

Info

Publication number
JPS6349116B2
JPS6349116B2 JP54117162A JP11716279A JPS6349116B2 JP S6349116 B2 JPS6349116 B2 JP S6349116B2 JP 54117162 A JP54117162 A JP 54117162A JP 11716279 A JP11716279 A JP 11716279A JP S6349116 B2 JPS6349116 B2 JP S6349116B2
Authority
JP
Japan
Prior art keywords
current
voltage
control
value
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54117162A
Other languages
Japanese (ja)
Other versions
JPS5642775A (en
Inventor
Seietsu Yoshida
Yukihide Niimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11716279A priority Critical patent/JPS5642775A/en
Publication of JPS5642775A publication Critical patent/JPS5642775A/en
Publication of JPS6349116B2 publication Critical patent/JPS6349116B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は制御入力電圧に応じて比例的に作動す
る電磁弁に供給する電流を電磁弁のスプリングセ
ツト荷重に担当する電流によつて制御開始する電
磁弁駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solenoid valve drive device that starts controlling a current supplied to a solenoid valve that operates proportionally in accordance with a control input voltage using a current that is responsible for the spring set load of the solenoid valve.

供給電流に応じてシヤフトのリフトすなわち弁
開度が変化するいわゆる比例制御式の電磁弁は、
一般には例えば第1図の概略図の如くスプリング
4による力とコイル1に流れる電流によつて発生
する磁力とのバランスを保ちつつ連続的にシヤフ
ト2と一体の弁体3のリフトが変化し流入口6と
流出口5との開度を制御する構成になつていて、
電流とリフトの関係は第2図のようになつてい
る。
The so-called proportional control type solenoid valve, in which the shaft lift, or valve opening, changes depending on the supplied current,
Generally, as shown in the schematic diagram of FIG. 1, for example, the lift of the valve body 3 integrated with the shaft 2 is continuously changed while maintaining a balance between the force of the spring 4 and the magnetic force generated by the current flowing through the coil 1. It is configured to control the opening degree of the inlet 6 and the outlet 5,
The relationship between current and lift is shown in Figure 2.

ところが前記の特性の電磁弁では、弁体3に流
入口6と流出口5との間の流体の差圧がかかつた
り、あるいは振動等の外乱の影響によつて弁体3
が動い(変位し)てしまう。例えば電流の印加が
ない状態では弁体3はスプリング力により閉弁す
る構造にしておいても、もれが出てくることにな
る。これを解決するため電磁弁のスプリングセツ
ト荷重を増加させ、コイル電流とリフト量の関係
を第3図のようにすれば閉弁時のもれは少なくな
る。しかるに電流を0から増加させてもセツト荷
重に相当する電流値までは弁体3は開かずこの間
の時間は制御不能あるいは時間遅れとなつてしま
う。
However, in the solenoid valve having the above-mentioned characteristics, the valve body 3 may be affected by a differential pressure of the fluid between the inlet 6 and the outlet 5, or by disturbances such as vibration.
moves (displaces). For example, even if the valve body 3 is structured to close by a spring force when no current is applied, leakage will occur. To solve this problem, if the spring set load of the solenoid valve is increased and the relationship between the coil current and the lift amount is made as shown in FIG. 3, the leakage when the valve is closed will be reduced. However, even if the current is increased from 0, the valve body 3 will not open until the current value corresponds to the set load, and the time during this time will become uncontrollable or a time delay.

本発明は上記問題に鑑み、電磁弁のスプリング
セツト荷重を所定の値にするとともに、電磁弁駆
動回路は制御電流を0に保つておき、開弁信号と
ともに瞬時的に制御電流を所定値(IB)まで増加
させつまり所定の電流値より制御開始し以降は連
続的な電流制御を行うよう構成することにより閉
弁時にはセツト荷重で決まる値の振動までは、弁
体が閉状態を保つことができ、弁開度を比例的に
変化させるときには任意のパターンで変化させる
ことが可能で、しかも弁体が開くまでの応答遅れ
もほとんどない電磁弁駆動装置を提供することを
目的とするものである。
In view of the above problems, the present invention sets the spring set load of the solenoid valve to a predetermined value, keeps the control current at 0 in the solenoid valve drive circuit, and instantaneously changes the control current to the predetermined value (I By increasing the current to B ), by configuring the control to start from a predetermined current value and perform continuous current control thereafter, the valve body can remain closed until the vibration reaches a value determined by the set load when the valve is closed. The object of the present invention is to provide an electromagnetic valve drive device that can change the valve opening in an arbitrary pattern when proportionally changing the valve opening, and that has almost no response delay until the valve body opens. .

以下本発明を第4図以下に示す実施例につき説
明する。第4図は本発明の一実施例を示すもので
1は電源+Bに接続された電磁弁のコイル、10
は入力端aからのスイツチング信号により、電磁
弁の開弁量(すなわちコイル1の電流)を制御す
る電圧波形を作る制御電圧回路である。上記スイ
ツチング信号としてはこの実施例ではエンジン排
気浄化システムにおける公知の空燃比帰還制御シ
ステムの空燃比センサのリツチ、リーンの判別信
号である。この制御電圧回路10において11は
演算増幅器で、電源+VとアースEに接続された
抵抗12,13により基準電圧が決り、抵抗14
とコンデンサ15によつて傾斜の決る積分器を構
成する。16,17はそれぞれトランジスタでそ
れぞれ抵抗18,19および抵抗21,22で決
る前記積分器の上下限電圧リミツタを成す。2
0,23は共にコンデンサでノイズ吸収用の働き
をする。24は電圧比較器で抵抗25,26で決
る電圧と抵抗27を介して入力される積分器の出
力とを比較する。28はダイオード、29は抵抗
で比較器24の出力を電圧リミツタに帰還するた
めのものである。30はトランジスタ、31は抵
抗で入力端aからのスイツチング信号により
ON/OFFする。40は電磁弁駆動回路で、60
は三角波発振回路である。41は駆動用のトラン
ジスタでコイル1に供給する電流をON/OFFす
る。42はコイルに流れる電流を検出する電流検
出抵抗、43は演算増幅器で抵抗42の両端電圧
を抵抗45,46により決る値で増幅する増幅器
を成す。44は入力抵抗、47は演算増幅器で抵
抗49、コンデンサ50と共に積分器を成す。4
8は入力抵抗である。61は電圧比較器、62,
63〜66は抵抗、67はコンデンサである。5
1は積分器出力と三角波発振回路60出力とを比
較してON/OFF信号を出力する電圧比較器、5
2,53は比較器51の入力抵抗、54はトラン
ジスタ41のベース入力抵抗である。55,56
はそれぞれトランジスタ41のコレクタ・エミツ
タ間に接続された抵抗およびツエナーダイオード
でコイル1の電流オフ時の正のピーク電圧を除去
するためのものである。
The present invention will be described below with reference to embodiments shown in FIG. 4 and below. FIG. 4 shows an embodiment of the present invention, in which 1 is a coil of a solenoid valve connected to a power supply +B, 10
is a control voltage circuit that generates a voltage waveform that controls the opening amount of the solenoid valve (ie, the current of the coil 1) in response to a switching signal from the input terminal a. In this embodiment, the switching signal is a rich/lean discrimination signal of an air-fuel ratio sensor of a known air-fuel ratio feedback control system in an engine exhaust purification system. In this control voltage circuit 10, 11 is an operational amplifier, the reference voltage is determined by resistors 12 and 13 connected to the power supply +V and earth E, and the resistor 14
and capacitor 15 constitute an integrator whose slope is determined. Reference numerals 16 and 17 are transistors, respectively, which constitute upper and lower voltage limiters of the integrator determined by resistors 18 and 19 and resistors 21 and 22, respectively. 2
Both capacitors 0 and 23 serve to absorb noise. 24 is a voltage comparator that compares the voltage determined by resistors 25 and 26 with the output of the integrator input via resistor 27. 28 is a diode, and 29 is a resistor for feeding back the output of the comparator 24 to the voltage limiter. 30 is a transistor, 31 is a resistor, and is activated by the switching signal from input terminal a.
Turn on/off. 40 is a solenoid valve drive circuit, 60
is a triangular wave oscillation circuit. 41 is a driving transistor that turns on/off the current supplied to the coil 1. 42 is a current detection resistor that detects the current flowing through the coil; 43 is an operational amplifier that amplifies the voltage across the resistor 42 by a value determined by resistors 45 and 46; 44 is an input resistor, and 47 is an operational amplifier, which together with a resistor 49 and a capacitor 50 forms an integrator. 4
8 is an input resistance. 61 is a voltage comparator, 62,
63 to 66 are resistors, and 67 is a capacitor. 5
1 is a voltage comparator that compares the integrator output and the triangular wave oscillation circuit 60 output and outputs an ON/OFF signal; 5
2 and 53 are input resistances of the comparator 51, and 54 is a base input resistance of the transistor 41. 55, 56
are a resistor and a Zener diode connected between the collector and emitter of the transistor 41, respectively, for removing the positive peak voltage when the current in the coil 1 is turned off.

次に上記構成の作動を説明する。今、入力端a
から第5図1のようなスイツチング信号が入力さ
れると、入力信号が+Vのときは積分器の出力端
bは徐々に下降し抵抗21と22で決る電圧以下
になるとトランジスタ17が導通し出力bはある
電圧Vmin(第5図2)で停止する。このときト
ランジスタ30はONで比較器24の非反転入力
端cはVminより低く(OV)、比較器24の出
力は低レベル(OV)となりダイオード28は
OFFとなり積分器の下限電圧Vminは抵抗21と
抵抗22によつて決つている。次に入力端aのス
イツチング信号が+Vから0になるとトランジス
タ30はOFFとなり、比較器24の非反転入力
端cは所定の値VB(>V min)となる。この時
点では積分器の出力端bの電圧VbはVb<VBであ
り比較器24の出力は高レベル(たとえば+V)
となりダイオード28はONとなるため、電圧
Vbは抵抗21、および抵抗29と抵抗22で決
る電圧迄上昇しようとするがVb≧VBとなつた時
点で比較器24の出力は低レベルとなり、電圧
Vbの上昇は止る。しかるに入力端aのスイツチ
ング信号がOVであるため、積分器は動作を行つ
ていて積分器の出力端bは徐々に上昇していく。
さらに上昇を続けて抵抗18と抵抗19とで決る
電圧以上になるとトランジスタ16が導通し出力
bは上限電圧V maxで停止する。(以上第5図
2参照)以上が制御電圧回路10の動作説明で、
入力端aからのスイツチング信号により、積分器
出力端bからは所定の傾斜で上昇または下降する
電圧波形Vbが得られる。次にこの制御電圧Vbの
電圧に依存して弁開度すなわちコイル電流を変化
させる電磁弁駆動回路40について動作説明す
る。比較器51の出力端dが第6図2の如く高レ
ベルのときはトランジスタ41が導通しコイル1
に電流が流れ、電流検出抵抗42の端子電圧eは
第6図3の実線の如くになる。また増幅器43の
出力端fは第6図3の一点鎖線の如く前記電圧e
の一定倍の増幅率で得られる。積分器47は制御
電圧Vbが第6図3の破線の如く変化したとき、
この電圧を基準として端子fの電圧との偏差に応
じた傾斜で積分しその出力端gには第6図1の如
き波形が得られる。比較器51はこの積分出力と
三角波発振回路60の出力端hからの第6図1に
示す三角波出力とを比較する。このような動作を
連続して行ない、コイル1に流れる電流の通電時
間を帰還制御し、電流平均値が制御電圧Vbに対
応するようにしている。
Next, the operation of the above configuration will be explained. Now input terminal a
When a switching signal as shown in FIG. b stops at a certain voltage Vmin (Fig. 5, 2). At this time, the transistor 30 is ON, the non-inverting input terminal c of the comparator 24 is lower than Vmin (OV), the output of the comparator 24 is at a low level (OV), and the diode 28 is
The lower limit voltage Vmin of the integrator is determined by the resistors 21 and 22. Next, when the switching signal at the input terminal a changes from +V to 0, the transistor 30 is turned off, and the non-inverting input terminal c of the comparator 24 becomes a predetermined value V B (>V min). At this point, the voltage Vb at the output terminal b of the integrator is Vb<V B , and the output of the comparator 24 is at a high level (for example, +V).
Therefore, diode 28 is turned on, so the voltage
Vb tries to rise to the voltage determined by resistor 21, resistor 29, and resistor 22, but at the point when Vb≧V B , the output of comparator 24 becomes low level, and the voltage
Vb stops increasing. However, since the switching signal at the input terminal a is OV, the integrator is operating and the output terminal b of the integrator gradually rises.
When the voltage continues to rise and exceeds the voltage determined by the resistors 18 and 19, the transistor 16 becomes conductive and the output b stops at the upper limit voltage Vmax. (See FIG. 5, FIG. 2) The above is an explanation of the operation of the control voltage circuit 10.
A voltage waveform Vb which rises or falls at a predetermined slope is obtained from the integrator output b by a switching signal from the input terminal a. Next, the operation of the electromagnetic valve drive circuit 40 that changes the valve opening, that is, the coil current depending on the control voltage Vb, will be described. When the output terminal d of the comparator 51 is at a high level as shown in FIG.
A current flows through the terminal, and the terminal voltage e of the current detection resistor 42 becomes as shown by the solid line in FIG. 6. Further, the output terminal f of the amplifier 43 is connected to the voltage e as shown by the dashed line in FIG.
It can be obtained with a constant amplification factor of . When the control voltage Vb changes as shown by the broken line in FIG. 6, the integrator 47
Using this voltage as a reference, integration is performed with a slope corresponding to the deviation from the voltage at terminal f, and a waveform as shown in FIG. 6 is obtained at the output terminal g. The comparator 51 compares this integrated output with the triangular wave output shown in FIG. 6 from the output terminal h of the triangular wave oscillation circuit 60. Such an operation is performed continuously to perform feedback control of the energization time of the current flowing through the coil 1, so that the average value of the current corresponds to the control voltage Vb.

以上述べたことを電磁弁の開度として見た場合
第7図の如くなる。すなわち、入力端aからスイ
ツチング信号が入力され(第7図1)、制御電圧
VBより積分を行う(第7図2)。制御電圧Vbに
対応して電磁弁のコイル1に流れるON/OFF電
流の平均電流は概略第7図3の如くなる。今、電
磁弁のリフト(開弁量)と電流の関係は第7図3
の如くであるから実際のリフト(開弁量)は第7
図4の如くなり、スプリングのセツト荷重による
遅れがなくなることがわかる。本説明はスプリン
グのセツト荷重と制御電流IBを一致させた例で行
なつているが、生産上のバラツキ等でセツト荷重
がバラツク場合はIBを若干少なくあるいは若干
多くする等応用上最適値に設定して対応すること
もできる。
When looking at the above-mentioned opening degree of the solenoid valve, it becomes as shown in FIG. That is, a switching signal is input from input terminal a (Fig. 7 1), and the control voltage
Integrate from V B (Figure 7 2). The average current of the ON/OFF current flowing through the coil 1 of the solenoid valve in response to the control voltage Vb is approximately as shown in FIG. 7. Now, the relationship between the solenoid valve lift (valve opening amount) and current is shown in Figure 7 3.
The actual lift (valve opening amount) is 7th.
As shown in FIG. 4, it can be seen that there is no delay due to the spring setting load. This explanation is based on an example in which the spring set load and control current I B are matched, but if the set load varies due to production variations, etc., the optimal value for the application may be set by slightly decreasing or slightly increasing IB. You can also respond by setting it.

また上記実施例ではトランジスタ16を設けて
制御電圧の上限電圧を設定してあるが、これは入
力端aがO→+Vに変化したとき、即座にリフト
も変化するようにしたためである。すなわち、電
磁弁の電流―リフト特性は電流を増加させていく
とリフト量が機械的に抑止され第3図の如く飽和
してしまうが、この飽和し始める電流値または電
流値に対応する制御電圧値を所定値で停止させる
ことにより電磁弁を線型領域で使用することが可
能になり、応答遅れ(第7図4ではリフトの減少
時の遅れ)が少なくなるという利点がある。
Further, in the above embodiment, the transistor 16 is provided to set the upper limit voltage of the control voltage, and this is so that when the input terminal a changes from O to +V, the lift also changes immediately. In other words, in the current-lift characteristic of a solenoid valve, as the current increases, the lift amount is mechanically suppressed and becomes saturated as shown in Figure 3. By stopping the value at a predetermined value, the solenoid valve can be used in a linear region, which has the advantage of reducing response delay (delay when the lift decreases in FIG. 7).

次に本発明の第2の実施例を第8図に示す。上
記第1の実施例では制御電圧Vbは第5図2に示
されるように、電圧下降時にはVB(セツト荷重に
相当)は無視され、上昇時にのみ有効になる構成
であるが、第2の実施例は上昇、下降時共にVB
が有効になる様構成したものである。上記第1実
施例とは次の点が異なる。入力端aのスイツチン
グ信号によりON/OFFするトランジスタ36の
コレクタを抵抗25,26には接続せずに抵抗2
9とダイオード28の接続点に接続する。35は
トランジスタ36のベース抵抗。更に比較器24
の出力から抵抗34およびダイオード32を経由
して演算増幅器11の反転入力に接続し、同時に
ダイオード33を入力端aに接続する。57は演
算増幅器である。この第2実施例の動作を第9図
を併用して説明する。入力端aのスイツチング信
号が+Vのときは積分器の出力端bは徐々に下降
する。またトランジスタ36はONしているため
ダイオード28はOFFとなつている。この状態
で出力端bが下降し続け抵抗25と抵抗26で決
る電圧以下になると、比較器24が反転し、高レ
ベル(たとえば+V)になる。すると電流が抵抗
34、ダイオード32を通つて積分器に流れる。
今、抵抗34を抵抗14に比べ充分小さくしてお
くと積分器出力bは一瞬にして下降し抵抗21と
22で決る電圧に達するとトランジスタ17が導
通し一定値V minになる。次に入力端aのスイ
ツチング信号が+Vから零になると、積分器への
電流がダイオード33のONによりすべてa端へ
流れてしまう。同時にトランジスタ36がOFF
となるため比較器24の出力端jは高レベルで電
流が抵抗29、ダイオード28、抵抗22と流れ
抵抗21と抵抗22の接点の電圧が上昇し積分器
出力電圧Vbも上昇し、抵抗25,26で決る電
圧に達すると比較器24の出力が反転し、(+V
→O)、入力端a信号による積分を行ない上昇し
はじめる。以下の動作は前記第1実施例同様であ
る。
Next, a second embodiment of the present invention is shown in FIG. In the first embodiment, as shown in FIG. 5, the control voltage VB (corresponding to the set load) is ignored when the voltage drops and becomes effective only when the voltage rises. In the example, V B is applied both during ascending and descending.
It is configured so that it is effective. This embodiment differs from the first embodiment described above in the following points. The collector of the transistor 36, which is turned on and off by the switching signal at the input terminal a, is connected to the resistor 2 without connecting it to the resistors 25 and 26.
9 and the connection point of diode 28. 35 is the base resistance of the transistor 36. Furthermore, the comparator 24
is connected to the inverting input of the operational amplifier 11 via a resistor 34 and a diode 32, and at the same time, a diode 33 is connected to the input terminal a. 57 is an operational amplifier. The operation of this second embodiment will be explained with reference to FIG. 9. When the switching signal at the input terminal a is +V, the output terminal b of the integrator gradually falls. Further, since the transistor 36 is on, the diode 28 is off. In this state, when the output terminal b continues to fall and becomes below the voltage determined by the resistors 25 and 26, the comparator 24 is inverted and becomes a high level (for example, +V). Current then flows through the resistor 34 and diode 32 to the integrator.
Now, if the resistor 34 is made sufficiently smaller than the resistor 14, the integrator output b will drop instantaneously, and when it reaches the voltage determined by the resistors 21 and 22, the transistor 17 will become conductive and will reach a constant value Vmin. Next, when the switching signal at input terminal a becomes zero from +V, the current to the integrator all flows to terminal a due to the diode 33 being turned on. At the same time, transistor 36 is turned off
Therefore, the output terminal j of the comparator 24 is at a high level, and the current flows through the resistor 29, the diode 28, and the resistor 22. The voltage at the contact point of the resistor 21 and the resistor 22 increases, and the integrator output voltage Vb also increases. When the voltage determined by 26 is reached, the output of the comparator 24 is inverted and becomes (+V
→O), it performs integration using the input terminal a signal and begins to rise. The following operations are similar to the first embodiment.

比例電磁弁を全閉位置から開弁させる際は、比
例電磁弁のスプリングのセツト荷重に略相当する
だけの制御電流IBにまでステツプ的に増加させて
制御を開始し、以降は連続的に電流を制御して電
磁弁を比例制御すると共にコイルに実際に流れる
電流をフイードバツクして制御電流を補正するよ
うにしているから、開弁時にはセツト荷重で決ま
る値で充分強固に弁体が閉じられ、弁開度を比例
的に変化させるときは電圧変動の影響を受けない
安定した正確な電流制御が可能で、しかも弁体が
開くまでの応答遅れの少ないという優れた効果が
ある。
When opening the proportional solenoid valve from the fully closed position, control is started by increasing the control current I B stepwise to approximately correspond to the set load of the spring of the proportional solenoid valve, and then continuously. The current is controlled to proportionally control the solenoid valve, and the current actually flowing through the coil is fed back to correct the control current, so when the valve opens, the valve body closes firmly enough with the value determined by the set load. When the valve opening degree is changed proportionally, stable and accurate current control is possible without being affected by voltage fluctuations, and there is an excellent effect that there is little response delay until the valve body opens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる電磁弁の模式断面図、
第2図は本発明の説明に用いるものでセツト荷重
のない電磁弁の特性図、第3図は本発明によるセ
ツト荷重のある電磁弁の特性図、第4図は本発明
の第1の実施例を示す電気回路図、第5図、第6
図並びに第7図はともに本発明の第1の実施例の
動作説明に供する波形図、第8図は本発明の第2
の実施例の電気回路図、第9図は本発明の第2の
実施例の動作説明に供する波形図である。 1……電磁弁のコイル、3……弁体、4……ス
プリング、10並びに40……電磁弁制御回路を
なす制御電圧回路並びに電磁弁駆動回路。
FIG. 1 is a schematic sectional view of a solenoid valve used in the present invention,
Fig. 2 is a characteristic diagram of a solenoid valve without a set load, which is used to explain the present invention, Fig. 3 is a characteristic diagram of a solenoid valve with a set load according to the present invention, and Fig. 4 is a characteristic diagram of a solenoid valve with a set load according to the present invention. Electrical circuit diagrams showing examples, Figures 5 and 6
7 and 7 are both waveform diagrams for explaining the operation of the first embodiment of the present invention, and FIG. 8 is a waveform diagram for explaining the operation of the first embodiment of the present invention.
FIG. 9 is a waveform diagram for explaining the operation of the second embodiment of the present invention. 1... Coil of a solenoid valve, 3... Valve body, 4... Spring, 10 and 40... A control voltage circuit and a solenoid valve drive circuit forming a solenoid valve control circuit.

Claims (1)

【特許請求の範囲】 1 コイルに印加する制御電流の値に比例する電
磁力とこの電磁力と反対方向に作用するスプリン
グ力とを弁体に作用させ、この弁体の開度を前記
制御電流の値に応じて比例的に制御する比例電磁
弁制御方法において、 前記弁体を全閉位置から開弁させる際は、前記
制御電流の値を前記スプリングのセツト荷重に略
相当する所定値に設定し、 以降は、前記コイルに実際に流れる電流を検出
し、この検出値と前記制御電流の値との偏差を求
め、この偏差に応じた信号を所定周期の傾斜波形
信号と比較して前記制御電流に対応するオンオフ
信号を作成し、このオンオフ信号を前記コイルに
印加することを特徴とする比例電磁弁制御方法。
[Claims] 1. An electromagnetic force proportional to the value of the control current applied to the coil and a spring force acting in the opposite direction to this electromagnetic force are applied to the valve body, and the opening degree of the valve body is determined by the control current. In the proportional solenoid valve control method that controls the valve proportionally according to the value of the valve, when opening the valve body from the fully closed position, the value of the control current is set to a predetermined value approximately corresponding to the set load of the spring. Thereafter, the current actually flowing through the coil is detected, the deviation between this detected value and the value of the control current is determined, and a signal corresponding to this deviation is compared with a slope waveform signal of a predetermined period to control the control current. A proportional solenoid valve control method, comprising: creating an on/off signal corresponding to a current, and applying this on/off signal to the coil.
JP11716279A 1979-09-11 1979-09-11 Driver for solenoid valve Granted JPS5642775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11716279A JPS5642775A (en) 1979-09-11 1979-09-11 Driver for solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11716279A JPS5642775A (en) 1979-09-11 1979-09-11 Driver for solenoid valve

Publications (2)

Publication Number Publication Date
JPS5642775A JPS5642775A (en) 1981-04-21
JPS6349116B2 true JPS6349116B2 (en) 1988-10-03

Family

ID=14704980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11716279A Granted JPS5642775A (en) 1979-09-11 1979-09-11 Driver for solenoid valve

Country Status (1)

Country Link
JP (1) JPS5642775A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433594A (en) * 1981-04-24 1984-02-28 Borg-Warner Corporation Variable pulley transmission
JPS58184321A (en) * 1982-04-23 1983-10-27 Toyota Motor Corp Clutch with creeping device
JPH0779212B2 (en) * 1985-07-17 1995-08-23 エスエムシ−株式会社 Power amplifier for solenoid proportional control valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932096A (en) * 1972-07-27 1974-03-23
JPS49129923A (en) * 1973-04-20 1974-12-12
JPS5371759A (en) * 1976-12-08 1978-06-26 Shinko Electric Co Ltd Changing method of valve characteristic
JPS5638606A (en) * 1979-09-05 1981-04-13 Nippon Soken Inc Driving method of proportional electromagnetic valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932096A (en) * 1972-07-27 1974-03-23
JPS49129923A (en) * 1973-04-20 1974-12-12
JPS5371759A (en) * 1976-12-08 1978-06-26 Shinko Electric Co Ltd Changing method of valve characteristic
JPS5638606A (en) * 1979-09-05 1981-04-13 Nippon Soken Inc Driving method of proportional electromagnetic valve

Also Published As

Publication number Publication date
JPS5642775A (en) 1981-04-21

Similar Documents

Publication Publication Date Title
US4978865A (en) Circuit for regulating a pulsating current
KR910003489B1 (en) Driving circuit
USRE32035E (en) Electromechanical transducer controlling device
JPS6318761B2 (en)
JP3030076B2 (en) Current control circuit
JPS61144476A (en) Solenoid driving device
JPS6349116B2 (en)
US4492213A (en) Ignition system for internal combustion engines
US4590414A (en) Battery voltage regulation system
JPH036394B2 (en)
JP2606801B2 (en) Drive circuit
JPS6327598B2 (en)
JPS6155121B2 (en)
JPH0238210Y2 (en)
JPH0137589B2 (en)
JPS6037603Y2 (en) Solenoid valve drive circuit
CN220249098U (en) Constant-current control circuit of electromagnetic valve
US4499436A (en) Motion amplitude regulator with breaking pulse regulation
JPH0311141A (en) Fuel injection controller for engine
JPS626658Y2 (en)
JPS6130138B2 (en)
JPH1173233A (en) Method and device for control over load
JP2986577B2 (en) Electromagnetic control valve controller
JPH0192816A (en) Driving circuit
KR950010035Y1 (en) Current control circuit for an electromagnetic type actuator