JPS6348875A - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPS6348875A
JPS6348875A JP19314886A JP19314886A JPS6348875A JP S6348875 A JPS6348875 A JP S6348875A JP 19314886 A JP19314886 A JP 19314886A JP 19314886 A JP19314886 A JP 19314886A JP S6348875 A JPS6348875 A JP S6348875A
Authority
JP
Japan
Prior art keywords
cast iron
thermal expansion
optical substrate
laser oscillator
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19314886A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nawa
名和 章好
Akihiro Otani
昭博 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19314886A priority Critical patent/JPS6348875A/en
Publication of JPS6348875A publication Critical patent/JPS6348875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress the deterioration of oscillating characteristics accompanging the change in ambient temperature to a large extent and to improve reliability, by forming a pair of optical substrate, which support both reflecting mirrors, with Ni cast iron having a small thermal expansion coefficient. CONSTITUTION:In the Table, the thermal expansion coefficients of materials (a), which constitute a pair of optical substrate 6, are compared. Among the materials, the thermal expansion coefficient of Ni cast iron (b) has the smallest value. Above all, the thermal expansion coefficient of high Ni cast iron, which includes 30 wt % or more Ni, is about 1/3-1/4 those of gray cast iron (c) and steels for general structures. Therefore, each optical substrate is formed with the high Ni cast iron having the small thermal expansion coefficient. In a laser oscillator constituted in this way, the thermal expansion of the optical substrate 6 is very small even if ambient temperature of the optical substrate is changed by the output of laser beam. A resonator can be maintained stably. Thus, the deterioration in oscillating characteristics accompanying the change in ambient temperature is largely suppressed, and the highly reliable laser oscillator is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、一対の電極の対向方向と、その間を流れる
レーザガスの流れ方向と、全反射鏡および部分反射鏡の
対向方向とがそれぞれ直交する三軸直交型のレーザ発振
器、特に全反射鏡および部分反射鏡をそれぞれ支持する
光学基板の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is characterized in that the opposing directions of a pair of electrodes, the flow direction of laser gas flowing between them, and the opposing directions of a total reflection mirror and a partial reflection mirror are respectively perpendicular to each other. The present invention relates to an improvement of an optical substrate that supports a triaxial orthogonal laser oscillator, particularly a total reflection mirror and a partial reflection mirror.

〔従来の技術〕[Conventional technology]

第2図および第3図は、三軸直交型の従来のレーザ発振
器を示すもので、図中、(1)は密閉容器を構成する筐
体、(2)はこの筐体(1)内に対向して配置された一
対の電極で、その間で放電(3)が発生する。(4)は
筐体(1)内でレーザガスを循環させて上記両電極(2
)間にレーザガスを流すブロワ、(5)は筐体(1)の
端部に貫通配置された3本の支持軸、(8)は各支持軸
(5)の両端部にそれぞれ支持されて対向する一対の光
学基板、(7)は各光学基板(8)にそれぞれ取付けら
れたミラーホルダ、(8)は一方のミラーホルダ(7)
に取付けられた部分反射鏡、(9)は他方のミラーホル
ダ(7)に取付けられた全反射鏡、(10)は各光学基
板(6)のミラーホルダ(7)部分と筐体(1)の側壁
との間をそれぞれ接続するベローズである。
Figures 2 and 3 show a conventional three-axis orthogonal laser oscillator. A discharge (3) occurs between a pair of electrodes placed opposite each other. (4) The laser gas is circulated within the housing (1) and both the electrodes (2) are
), a blower that flows laser gas between them, (5) three support shafts penetrating the end of the housing (1), and (8) facing each other supported by both ends of each support shaft (5). a pair of optical substrates, (7) is a mirror holder attached to each optical substrate (8), and (8) is one mirror holder (7).
(9) is a total reflection mirror attached to the other mirror holder (7), (10) is the mirror holder (7) portion of each optical board (6) and the housing (1) These bellows are connected to the side walls of each.

従来のレーザ発振器は上記のように構成され、ブロワ(
4)の起動により筐体(1)内をレーザガスが循環し、
一対の電極(2)の間をその対向方向と直交する方向に
流れる。そして一方の反射鏡(8)又は(9)の近くで
起きた波は、両電極(2)の間を通って両度射鏡(8)
、(9)で入反射を繰返す間に増幅され、部分反射鏡(
8)からレーザ光として出力される。
A conventional laser oscillator is configured as described above, with a blower (
4) starts, the laser gas circulates inside the housing (1),
It flows between the pair of electrodes (2) in a direction perpendicular to the opposing direction. The waves generated near one of the reflecting mirrors (8) or (9) pass between the two electrodes (2) and return to the two reflecting mirrors (8).
, (9), it is amplified while repeating the incoming reflection, and the partial reflecting mirror (
8) is output as a laser beam.

ところで、筐体(1)内を循環するレーザガスは、一対
の電極(2)の入側では低温で出側では高温となるため
、筐体(1)が不均一に熱膨張して歪が生じ、またレー
ザガス交換時には、筐体(1)内を真空引きした後にガ
スを封入するため、この際に筐体(1)が変形してしま
い、筐体(1)に直接反射鏡(8)、(9)を設ける場
合には、両度射鏡(8)。
By the way, the laser gas circulating in the housing (1) is low temperature at the entrance side of the pair of electrodes (2) and high temperature at the exit side, so the housing (1) thermally expands unevenly and distortion occurs. Furthermore, when exchanging the laser gas, the gas is filled in after the inside of the housing (1) is evacuated, so the housing (1) is deformed at this time, and the reflecting mirror (8) is directly attached to the housing (1). (9), if provided, bidirectional mirror (8).

(9)のアライメントがずれ、発振特性が著しく低下し
てしまう。
(9) is misaligned, and the oscillation characteristics are significantly degraded.

そこで従来は、光学基板(8)にミラーホルダ(7)を
設け、各反射鏡(8)、(9)を支持軸(5)により筐
体(1)からフローティングし、かつ支持軸(5)をア
ンバー等の低膨張合金鋼で形成し、(ΔX)を極力少な
くする方法を採っている。
Therefore, conventionally, a mirror holder (7) is provided on the optical board (8), and each of the reflecting mirrors (8) and (9) is floated from the housing (1) by a support shaft (5). A method is adopted in which (ΔX) is made as low as possible by forming it from a low expansion alloy steel such as invar.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のレーザ発振器では、ミラーホルダ(
7)が取付けられた光学基板(6)を、ねずみ鋳鉄ある
いは一般構造用鋼材で形成しているため、温度が上昇し
た際に、第3図に(ΔL1)。
In the conventional laser oscillator like the one above, the mirror holder (
Since the optical substrate (6) to which 7) is attached is made of gray cast iron or general structural steel, when the temperature rises (ΔL1) as shown in FIG.

(ΔL2)で示すように光学基板(6)が熱膨張し、こ
れにより筐体(1)と支持軸(5)のピッチも同様にず
れ、相対向する光学基板(6)と筐体(1)との接合部
においてこじりが生じ、 (ΔX)を吸収できないばか
りか、 (L+ )、(L2 )のピッチも同様にずれ
るため、両度射鏡(8) 、(9)のアライメントがず
れて発振特性が著しく低下するという問題があった。
As shown by (ΔL2), the optical board (6) thermally expands, and as a result, the pitch between the housing (1) and the support shaft (5) also shifts, and the opposing optical board (6) and housing (1) ) and not only cannot absorb (ΔX), but also the pitches of (L+) and (L2) shift as well, causing the alignment of both mirrors (8) and (9) to shift. There was a problem in that the oscillation characteristics deteriorated significantly.

この発明は、かかる問題点を解決するためになされたも
ので、周囲温度が変化しても両度射鏡のアライメントの
ずれをなくして発振特性の低下を抑制できるレーザ発振
器を得ることを目的とする。
This invention was made to solve this problem, and the object is to obtain a laser oscillator that can eliminate misalignment of both mirrors and suppress deterioration of oscillation characteristics even when the ambient temperature changes. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ発振器は、両度射鏡をそれぞれ支
持する一対の各光学基板を、熱膨張係数の小さなNi鋳
鉄で形成するようにしたものである。
In the laser oscillator according to the present invention, each of the pair of optical substrates that respectively support the mirrors is made of Ni cast iron having a small coefficient of thermal expansion.

〔作用〕[Effect]

この発明においては、各光学基板が、従来のねずみ鋳鉄
や一般構造用鋼材に比較して熱膨張係数が小さいNi鋳
鉄で形成しているので、周囲温度が変化しても両度射鏡
のアライメントのずれが少なくなり、発振特性の低下を
抑制できる。
In this invention, each optical substrate is made of Ni cast iron, which has a smaller coefficient of thermal expansion than conventional gray cast iron or general structural steel, so the alignment of both mirrors can be maintained even when the ambient temperature changes. As a result, the deviation of the oscillation characteristics is reduced, and deterioration of oscillation characteristics can be suppressed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すもので、−対の各光
学基板(6)を構成する各材質の熱膨張係数をそれぞれ
比較して表したものである。第1図からも明らかなよう
に、各材質中、Ni鋳鉄の熱膨張係数が最も小さく、そ
の中でもNiを30重量%以上含有する高NIPI鉄は
、ねずみ鋳鉄や一般構造用鋼材に比較して、熱膨張係数
が約届〜%である。この実施例では、熱膨張係数が小さ
な高N1Fl鉄により各光学基板(6)を形成している
FIG. 1 shows an embodiment of the present invention, and shows a comparison of the coefficients of thermal expansion of the materials constituting the pair of optical substrates (6). As is clear from Figure 1, Ni cast iron has the lowest coefficient of thermal expansion among all materials, and among these, high NIPI iron containing 30% by weight or more of Ni has a higher coefficient of thermal expansion than gray cast iron or general structural steel. , the thermal expansion coefficient is approx. In this embodiment, each optical substrate (6) is made of high N1Fl iron with a small coefficient of thermal expansion.

なお、各光学基板(6)の材質以外の点については、第
2図および第3図に示す従来のレーザ発振器と全く同一
構成である。
Note that, except for the material of each optical substrate (6), the structure is exactly the same as that of the conventional laser oscillator shown in FIGS. 2 and 3.

上記のように構成されたレーザ発振器においては、レー
ザ光の出力により各光学基板(6)の周囲温度が変化し
ても、第3図に示す光学基板(8)の熱膨張(ΔL+)
、(ΔL2)が大幅に少なくなり、共振器を安定して保
持することが可能となる。このため、周囲温度の変化に
伴なう発振特性の低下が大幅に抑制され、信頼性の高い
レーザ発振器が得られる。
In the laser oscillator configured as described above, even if the ambient temperature of each optical substrate (6) changes due to the output of laser light, the thermal expansion (ΔL+) of the optical substrate (8) shown in FIG.
, (ΔL2) are significantly reduced, making it possible to stably hold the resonator. Therefore, a decrease in oscillation characteristics due to changes in ambient temperature is significantly suppressed, and a highly reliable laser oscillator can be obtained.

なお、上記実施例では、一対の各光学基板(8)の材質
として、高Ni鋳鉄を用いる場合を示したが、Niの含
有量が30重量%未満のN1pF鉄であっても、ねずみ
鋳鉄や一般構造用鋼材に比べれば、熱膨張係数が小さい
ので、光学基板(6)の材質として充分使用できる。
In addition, in the above embodiment, a case was shown in which high Ni cast iron was used as the material for each of the pair of optical substrates (8), but even if N1pF iron with a Ni content of less than 30% by weight is used, gray cast iron or Since it has a smaller coefficient of thermal expansion than general structural steel, it can be used satisfactorily as a material for the optical substrate (6).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり1両反射鏡をそれぞれ支
持する一対の各光学基板を、熱膨張係数の小さなN1P
j鉄で形成するようにしているので、周囲温度が変化し
ても両度射鏡のアライメントのずれが少なくなり5周囲
部度の変化に伴なう発振特性の低下を大幅に抑制し、信
頼性を向上させることができる等の効果がある。
As explained above, this invention uses a pair of optical substrates each supporting one reflecting mirror as an N1P substrate having a small coefficient of thermal expansion.
Since it is made of iron, there is less misalignment of both mirrors even when the ambient temperature changes, and the deterioration of oscillation characteristics due to changes in the surrounding temperature is greatly suppressed, increasing reliability. It has effects such as being able to improve sexual performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す光学基板材質の熱膨
張係数比較衣、第2図は従来のレーザ発振器を示す正面
断面図、第3図は第2図の右側側面図である。 (1)・・・筐体、   (2)・・・電極、(3)・
・・放電、    (4)ブロワ、(5)・・・支持軸
、  (6)・・・光学基板、(8)・・・部分反射鏡
、(9)・・・全反射鏡、(10)・・・ベローズ。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a comparison of thermal expansion coefficients of optical substrate materials showing one embodiment of the present invention, FIG. 2 is a front sectional view showing a conventional laser oscillator, and FIG. 3 is a right side view of FIG. 2. (1)...Case, (2)...Electrode, (3)...
...discharge, (4) blower, (5) ... support shaft, (6) ... optical board, (8) ... partial reflection mirror, (9) ... total reflection mirror, (10) ...bellows. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)筐体内でレーザガスを循環させるブロワと、放電
を発生させる一対の電極と、筐体の外側に支持軸を介し
て対向配置された一対の光学基板と、各光学基板にそれ
ぞれ装着されて対向する全反射鏡および部分反射鏡と、
各光学基板の反射鏡装着部分と筐体の側壁との間をそれ
ぞれ接続するベローズとを備え、上記各光学基板の材質
を、Ni鋳鉄としたことを特徴とするレーザ発振器。
(1) A blower that circulates laser gas within the housing, a pair of electrodes that generate electric discharge, a pair of optical boards that are placed facing each other on the outside of the housing via a support shaft, and each optical board that is attached to the a fully reflecting mirror and a partially reflecting mirror that face each other;
1. A laser oscillator comprising bellows that respectively connect the reflecting mirror mounting portion of each optical substrate and a side wall of a housing, and each of the optical substrates is made of Ni cast iron.
(2)光学基板に使用するNi鋳鉄は、Niを30重量
%以上含有する高Ni鋳鉄であることを特徴とする特許
請求の範囲第1項記載のレーザ発振器。
(2) The laser oscillator according to claim 1, wherein the Ni cast iron used for the optical substrate is high Ni cast iron containing 30% by weight or more of Ni.
JP19314886A 1986-08-19 1986-08-19 Laser oscillator Pending JPS6348875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19314886A JPS6348875A (en) 1986-08-19 1986-08-19 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19314886A JPS6348875A (en) 1986-08-19 1986-08-19 Laser oscillator

Publications (1)

Publication Number Publication Date
JPS6348875A true JPS6348875A (en) 1988-03-01

Family

ID=16303082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19314886A Pending JPS6348875A (en) 1986-08-19 1986-08-19 Laser oscillator

Country Status (1)

Country Link
JP (1) JPS6348875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013847A1 (en) * 1992-12-15 1994-06-23 Kabushiki Kaisha Toshiba Method of manufacturing cast iron of high strength and low expansion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165378A (en) * 1980-05-26 1981-12-18 Ushio Inc Gas laser tube
JPS5984486A (en) * 1982-11-05 1984-05-16 Nec Corp Inner mirror type gas laser tube
JPS5998578A (en) * 1982-11-26 1984-06-06 Toshiba Corp Laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165378A (en) * 1980-05-26 1981-12-18 Ushio Inc Gas laser tube
JPS5984486A (en) * 1982-11-05 1984-05-16 Nec Corp Inner mirror type gas laser tube
JPS5998578A (en) * 1982-11-26 1984-06-06 Toshiba Corp Laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013847A1 (en) * 1992-12-15 1994-06-23 Kabushiki Kaisha Toshiba Method of manufacturing cast iron of high strength and low expansion
US6110305A (en) * 1992-12-15 2000-08-29 Kabushiki Kaisha Toshiba Method for production of high-strength low-expansion cast iron

Similar Documents

Publication Publication Date Title
US6435470B1 (en) Tunable vibration noise reducer with spherical element containing tracks
US4139793A (en) Integral resonant support arms for piezoelectric microresonators
JPS6348875A (en) Laser oscillator
JPH0595142A (en) Laser oscillator
Onoe et al. Miniature AT-cut strip resonators with tilted edges
US6920170B2 (en) Orthogonally excited-type laser oscillator
US5020911A (en) Ring laser gyro comprising rotary oscillation apparatus
JPS6350083A (en) Gas laser device
JPS5853215A (en) Tuning fork type crystal oscillator
JPS6024082A (en) Laser oscillator
JPS61199685A (en) Laser oscillator
JPS60227211A (en) Adjusting device for optical axis of laser resonator
JP2684910B2 (en) Laser oscillator
JPH05206544A (en) Laser oscillator
JP3594938B2 (en) Gas laser oscillator
JPS6218780A (en) Gas laser device
JPS59130491A (en) Carbon dioxide laser oscillating device
JPS60254683A (en) Laser oscillation device
JPS6366435B2 (en)
JPS5941914A (en) Gt cut quartz oscillator
JPH0369183A (en) Laser amplification device
RU2096880C1 (en) Gas laser
JPH0582867A (en) Laser oscillator
JPH05160618A (en) Dielectric resonator
GB2044518A (en) Low loss apertures for ring laser gyros