JPS6348845A - Thin film device and formation thereof - Google Patents

Thin film device and formation thereof

Info

Publication number
JPS6348845A
JPS6348845A JP61193445A JP19344586A JPS6348845A JP S6348845 A JPS6348845 A JP S6348845A JP 61193445 A JP61193445 A JP 61193445A JP 19344586 A JP19344586 A JP 19344586A JP S6348845 A JPS6348845 A JP S6348845A
Authority
JP
Japan
Prior art keywords
thin film
forming
plasma
film device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61193445A
Other languages
Japanese (ja)
Other versions
JPH0567053B2 (en
Inventor
Takashi Kato
隆 加藤
Takashi Ito
隆司 伊藤
Mamoru Maeda
守 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61193445A priority Critical patent/JPS6348845A/en
Priority to EP87111993A priority patent/EP0256557B1/en
Priority to DE8787111993T priority patent/DE3783405T2/en
Priority to KR1019870009034A priority patent/KR900006486B1/en
Publication of JPS6348845A publication Critical patent/JPS6348845A/en
Priority to US07/740,872 priority patent/US5148259A/en
Publication of JPH0567053B2 publication Critical patent/JPH0567053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent breakdown of Al wiring film and to obtain the Al wiring film having low resistivity, by a constitution, in which C is included in Al, as a metal wiring film, and forming the metal wiring film in plasma, which includes at least Al and C. CONSTITUTION:This device comprises an Si substrate 1, a diffused layer 2, an SiO2 oxide film 3 and an Al wiring film 4 including C. When the film is formed by a plasma CVD method, e.g., an Si wafer 11 is placed in a parallel- flat-plate type plasma chamber 10, in which a vacuum state is provided, trimethyl Al gas is dilluted with hydrogen gas and the gas is introduced in the chamber 10 through a shower state nozzle 14 of an upper electrode. At this time, the trimethyl Al is cooled to about 5 deg.C, which is lower than a melting point (15 deg.C), and used. For the metal wiring film 4, Al is formed at a temperature less than a thermal decomposition temperature (i. e., a temperature, where Al is not condensed). Thereafter, heat treatment is performed. The concentration in the Al film is controlled by changing RF power and the amount of dilluting H2. The concentration of carbon is more than solid solution limit and less than 20%. The carbon is present in a chemically bonded state as Al-C in the aluminum.

Description

【発明の詳細な説明】 (概要) 本発明は薄膜装置及びその形成方法において、エレク1
−ロマイグレーション等によってA2配線膜が断線して
しまう従来装置の問題点を解決するため、 A乏に炭素を含有せしめることにより、エレクトロマイ
グレーションが小さく、ヒロック(突起)の発生もなく
、A2配線膜の断線を防止するようにしたものであり、 又、磁界を加えたプラズマCVD法によってA2配線膜
を形成することにより、 A e −Cの結合状態がよく、比抵抗の低いへ2配線
膜を形成するようにしたものである。
Detailed Description of the Invention (Summary) The present invention provides a thin film device and a method for forming the same.
- In order to solve the problem of conventional devices in which the A2 wiring film breaks due to electromigration, etc., by containing a small amount of carbon, electromigration is small, hillocks (protrusions) do not occur, and the A2 wiring film is In addition, by forming the A2 wiring film by the plasma CVD method using a magnetic field, the A2 wiring film has a good A e -C bonding state and has a low specific resistance. It was designed so that it could be formed.

〔産業上の利用分野) 本発明は薄膜装置、特に、A2配線膜を用いた薄膜製は
及びその形成方法に関する。薄膜装置はエレクトロマイ
グレーションやヒロックを生じるとA2配線膜が断線す
ることがあるため、これらの現象を抑えてA2配線膜の
断線のない信頼性の高い薄膜装置が必要とされる。
[Industrial Application Field] The present invention relates to a thin film device, particularly a thin film device using an A2 wiring film, and a method for forming the same. In a thin film device, the A2 wiring film may be disconnected if electromigration or hillocks occur, so there is a need for a highly reliable thin film device that suppresses these phenomena and does not cause disconnection of the A2 wiring film.

〔従来の技術〕[Conventional technology]

ICは半導体基板上に素子を形成し、それを金属配線に
より結合することで形成される。この場合、集積度の高
いICを開発するに伴って素子及び配線共に微細化され
る傾向にあるが、現在は配線の構成が集積度を制限して
いる。
An IC is formed by forming elements on a semiconductor substrate and connecting them with metal wiring. In this case, with the development of highly integrated ICs, there is a tendency for elements and wiring to be miniaturized, but currently, the configuration of the wiring is limiting the degree of integration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

配線膜は微細化と共に多層化される傾向にあり、このた
め、段差部において断線、゛逍流密度増加に伴うエレク
トロマイグレーションによる不良、ヒロックの発生によ
って層間のショートを生じる等の問題点がある。これら
は全て、Au原子がマイグレーションし易いことに起因
しており、電流を流さず熱処理だけでもマイグレーショ
ンを生じて配線膜が断線する。
Wiring films tend to be multilayered as they become finer, and this causes problems such as disconnections at stepped portions, failures due to electromigration due to increased flow density, and short circuits between layers due to the formation of hillocks. All of these are caused by the fact that Au atoms are easy to migrate, and even heat treatment alone without current flow causes migration and disconnection of the wiring film.

そこでこれらの問題点をなくすために、Afl配線膜に
Cu、3i等を添加して合金化することが試みられてい
るが、エツチング時の残滓による加工性の問題や、添加
した3iが熱処理によりコンタクト部に同相エピタキシ
ャル成長するためにコンタクト抵抗が増加する問題点が
ある。更に、配線材料と3i基板又はバリアメタル層と
の反応。
In order to eliminate these problems, attempts have been made to add Cu, 3i, etc. to the Afl wiring film to form an alloy. However, there are problems with workability due to the residue during etching, and the added 3i is removed by heat treatment. There is a problem in that contact resistance increases due to in-phase epitaxial growth in the contact portion. Furthermore, the reaction between the wiring material and the 3i substrate or barrier metal layer.

侵入等により拡散層を突抜け、ジャンクションをショー
トする問題点もある。
There is also the problem that it may penetrate through the diffusion layer due to intrusion or the like and short-circuit the junction.

このように、ICの微細化に伴ってA2配線膜の信頼性
低下の問題は深刻になってきているのが現状である。
As described above, the current situation is that the problem of reduced reliability of the A2 wiring film is becoming more serious with the miniaturization of ICs.

〔問題点を解決するための手段〕[Means for solving problems]

金属配線膜としてA2中にCを含有した構成とし、又、
少なくともA2.Cを含むプラズマ中で、金属配I!2
膜を形成する。
The metal wiring film has a structure in which C is contained in A2, and
At least A2. In a plasma containing C, the metal arrangement I! 2
Forms a film.

〔作用〕[Effect]

A2にCを含有することによりエレクトロマイグレーシ
ョンやヒロックを発生ずることがなく、又、磁界を加え
たプラズマCVD法によってA[1’に!線膜を形成す
ることにより、Al−Cの結合状態がよく、比抵抗の低
いA之配置股を形成しVする1゜(実施例〕 第1図は本発明装置の一実施例の概要断面図を示す。同
図中、1は3i基板、2は拡散層、3はSt、2酸化膜
である。4はCを含有するA4配線膜で、本発明の要部
をなす。
By including C in A2, electromigration and hillocks do not occur, and A[1'! By forming a wire film, a cross section of A with a good bonding state of Al-C and low specific resistance is formed and V is formed. In the figure, 1 is a 3i substrate, 2 is a diffusion layer, 3 is an St2 oxide film, and 4 is an A4 wiring film containing C, which is a main part of the present invention.

ここで、AlにCを混入する方法について説明する。A
之膜中にイオン注入によりCをドープすると、Cの0.
1%以上の注入で比抵抗は徐々に増加する6450℃の
熱処理でCが析出してしまう。
Here, a method of mixing C into Al will be explained. A
When C is doped into this film by ion implantation, 0.
C precipitates during heat treatment at 6450° C., where the specific resistance gradually increases when 1% or more is implanted.

これはCとA2とが結合状態にないために、固有限(0
,1%)以上のCが熱処理で析出するものど考えられる
This is because C and A2 are not in a bonded state, so the eigenlimit (0
, 1%) or more may precipitate during heat treatment.

そこで、AlとCとが結合している状態でAI!。Therefore, in the state where Al and C are combined, AI! .

膜中へのCの導入を行なった結果、熱処理後もCの析出
がないことが見出される。然るに、この場合、CのI3
rg、が一定値以上になると抵抗が指数関数的に増加す
るので配線として使用できなくなる。
As a result of introducing C into the film, it was found that no C was precipitated even after heat treatment. However, in this case, I3 of C
When rg exceeds a certain value, the resistance increases exponentially, making it impossible to use it as a wiring.

第2図は結合状態のC濃度(C/ (AJll十〇))
を変化した場合の比抵抗変化を熱処理前及び熱処理後の
条件で示した図である。同図より明らかな如(、熱処1
!l薗及び熱処理後ともに012度が20%以下であれ
ば比抵抗の増加が殆どなく、又、450℃の熱処理で比
抵抗が1/2になるこがわかる。
Figure 2 shows the C concentration in the bound state (C/ (AJll10))
FIG. 3 is a diagram showing the change in specific resistance when changing the resistance before and after the heat treatment. As is clear from the figure (, heat treatment 1
! It can be seen that there is almost no increase in resistivity if the temperature is 20% or less for both the heat treatment and after the heat treatment, and that the resistivity is reduced to 1/2 by heat treatment at 450 °C.

X線測定の結果、Cを混入したA2膜は配向した微結晶
(プラズマCVD法のA2膜の熱処理前で20na程度
の粒径)になっていることがわかり、Cがこの結晶粒界
に入っていることが考えられる。
As a result of X-ray measurement, it was found that the A2 film mixed with C had oriented microcrystals (grain size of about 20 na before heat treatment of the A2 film by plasma CVD method), and C entered the grain boundaries. It is possible that

このため、熱処理時でもA2原子のマイグレーションが
抑えられて結晶の成長は急速に起らず(600℃、30
分の熱処理で40nmの粒径になる)、又、電流密度増
加に伴うエレクトロマイグレーションも抑えられ、ヒロ
ックの発生もない。特に600℃の熱処理においてもヒ
ロックの発生はなく(CをU人しないものでは400℃
の熱処理でヒロックを生じる)、従来装置のA2膜には
ない優れた特性を右する。この場合、CとA之原子の結
合状態をX線光電子分析装置によって測定したが、これ
らは完全に化学結合していることが確かめられた。本発
明では微結晶中に結合状態の炭素を含むことも特徴であ
り、配線幅が1μm以下になっているので、結晶粒径が
1100n以下であることは更に細い配線を実現する上
で小型である。
Therefore, even during heat treatment, migration of A2 atoms is suppressed and crystal growth does not occur rapidly (600℃, 30℃
(The grain size becomes 40 nm after heat treatment for 30 minutes), and electromigration accompanying an increase in current density is also suppressed, and hillocks do not occur. In particular, there were no hillocks even during heat treatment at 600°C (400°C for those without C).
hillocks occur during heat treatment), it has excellent properties not found in the A2 film of conventional equipment. In this case, the bonding state between C and A atoms was measured using an X-ray photoelectron analyzer, and it was confirmed that they were completely chemically bonded. The present invention is characterized by containing carbon in a bonded state in the microcrystals, and since the wiring width is 1 μm or less, the crystal grain size of 1100 nm or less means that it is compact in order to realize even thinner wiring. be.

ところで、S:基板に形成された素子との電気的接続を
行なうためにコンタクトを形成しなければならないが、
このコンタクトにおいて従来問題とされている3iのA
 e 110中への侵入は、本発明の場合、AIQ中へ
予めSiを混入することで解決される。更に、3i基板
1のSiのマイグレーションも配線4の膜で制限される
ので、コンタクト部への同相エピタキシャル成長も少な
く、サブミクロンのコンタクトホールも低いコンタクト
抵抗で形成される。この場合、固溶限(2%)以上の3
iを混入すると析出を生じるので、この値以下にする必
要がある。
By the way, S: It is necessary to form a contact in order to make an electrical connection with the element formed on the substrate.
A of 3i, which has traditionally been a problem in this contact
In the case of the present invention, the intrusion into the e 110 is solved by pre-mixing Si into the AIQ. Further, since the migration of Si in the 3i substrate 1 is also limited by the film of the wiring 4, there is little in-phase epitaxial growth on the contact portion, and submicron contact holes are also formed with low contact resistance. In this case, 3
If i is mixed in, precipitation will occur, so it is necessary to keep the content below this value.

次に、本発明で採用したプラズマCVD法について説明
する。一般に、熱によりソースガスを分解してA2躾を
形成する熱CVD法では、形成されたAlrlA表面は
凹凸が激しい。本発明で採用したプラズマCVD法にお
いても、熱分解を生じる以上の温度で成膜すると熱CV
D法と同様にA2膜表面に凹凸を生じる。これは、A2
の凝集力が大きいために起ると考えられ、熱CVD法で
は避けられない問題である。
Next, the plasma CVD method employed in the present invention will be explained. Generally, in the thermal CVD method in which a source gas is decomposed by heat to form an A2 layer, the formed AlrlA surface has severe irregularities. Even in the plasma CVD method adopted in the present invention, thermal CVD occurs if the film is formed at a temperature higher than that at which thermal decomposition occurs.
Similar to method D, unevenness is produced on the surface of the A2 film. This is A2
It is thought that this occurs due to the large cohesive force of , and is an unavoidable problem in the thermal CVD method.

そこで、本発明ではプラズマによって有機金属ガス等を
励起して解離、結合反応を促進することにより、熱分解
以下の温度(即ち、AEの凝集が起らない温度)でA2
を形成する。これは、プラズマを用いることにより、A
E−Cの結合が完全になるので有利である。
Therefore, in the present invention, by exciting organometallic gas etc. with plasma to promote dissociation and bonding reactions, A2
form. This can be achieved by using plasma.
This is advantageous because the E-C bond is complete.

第3図はプラズマCVD法による膜形成を説明する図を
示す。第3図に示す如く、真空とされた平行平板型プラ
ズマチャンバ10内にSiつrハコ1を置き、13.5
6 M HZのRF発振電源12及びSiウェハ11下
方のチャンバ10外部にヒータ13を設置する。有機金
属のトリメチルA2(AE(Cトh )3 )<TMA
)ガスを水素ガスで希釈し、上1gK極のシャワー状ノ
ズル14がらチ11ンバ10内に導入する。この場合、
トリメデルAには融点(15℃)以下の5℃程度に冷却
して用いる。
FIG. 3 shows a diagram illustrating film formation by plasma CVD method. As shown in FIG. 3, a Si tube 1 is placed in a parallel plate type plasma chamber 10 that is evacuated, and 13.5
A heater 13 is installed outside the chamber 10 below the 6 MHz RF oscillation power source 12 and the Si wafer 11. Organometallic trimethyl A2 (AE(Cth)3) < TMA
) The gas is diluted with hydrogen gas and introduced into the chamber 10 through a shower-like nozzle 14 with an upper 1 g K pole. in this case,
Trimedel A is used after being cooled to about 5°C below the melting point (15°C).

ここで、エツチング時間対強度特性図を第4図に示す。Here, a diagram of etching time versus intensity characteristics is shown in FIG.

条件としては、R「パワー1 kW、圧力4.5T o
rr 、熱処理温度450℃及び時間30m1nである
。p!A処理前(実線(H)及び破線(C))では膜中
にはCだけではなくト1(水系)も観測されるが、45
0℃の熱望pl!後(二点鎖線(1−1>及び−点鎖線
(C))ではト1が減少していることがわかる。これは
、熱処理1)ηの膜中には未分解のCH3基が含まれて
おり、これが熱処理によって消失Vるためと考えられる
。このように、デボジジョンした後に熱処理を施すこと
が必要である。
The conditions are: R "power 1 kW, pressure 4.5T o
rr, the heat treatment temperature was 450° C. and the time was 30 m1n. p! Before A treatment (solid line (H) and broken line (C)), not only C but also T1 (aqueous) is observed in the film, but 45
0℃ aspiration pl! It can be seen that after (two-dot chain line (1-1> and - dot-dashed line (C)), t1 decreases. This is because the film of heat treatment 1) η contains undecomposed CH3 groups. It is thought that this is because it disappears by heat treatment. Thus, it is necessary to perform heat treatment after deposition.

なお、103 (任意単位)付近に示す破線範囲は測定
限界である。
Note that the dashed line range near 103 (arbitrary unit) is the measurement limit.

又、A2膜中のC濃度はRFパワー、希釈H2量を変え
れば制罪することが可能である。第5図に112希釈B
対jft積速度、比抵抗特性図を示す。
Further, the C concentration in the A2 film can be controlled by changing the RF power and the amount of diluted H2. Figure 5 shows 112 dilution B.
A characteristic diagram of the product velocity versus JFT and specific resistance is shown.

この場合、希釈量が一定値以上でないと、比抵抗が高い
だけでなく、堆積速度も小さいことがわかる。つまり、
希釈11zmとしてはキャリアガスの60倍程度以上に
する必要がある。このキャリアガスとしては有機金属ガ
ス(TMAガス)の他、有機金属ガスとシランガス(S
!H4)とを混合したものでもよい。
In this case, it can be seen that if the dilution amount is not a certain value or more, not only the specific resistance is high but also the deposition rate is low. In other words,
The dilution 11zm needs to be about 60 times or more that of the carrier gas. As this carrier gas, in addition to organometallic gas (TMA gas), organometallic gas and silane gas (S
! A mixture of H4) may also be used.

ここで、プラズマCVD法としては、プラズマに磁界を
加えたプラズマCVD法を用いることにより、反応が更
に促進されて比抵抗の小さい膜を1qることができる。
Here, as the plasma CVD method, by using a plasma CVD method in which a magnetic field is applied to plasma, the reaction can be further promoted and a film with a small specific resistance can be produced in a thickness of 1q.

次に、単なるプラズマCVD法(P−CVD法)とプラ
ズマに磁界を加えたブ7ズ?CVD法(MP−CVD法
)とを、圧力。
Next, what is the difference between a simple plasma CVD method (P-CVD method) and a method in which a magnetic field is added to plasma? CVD method (MP-CVD method) and pressure.

膜厚、比抵抗、カーボン濃度について比較してみると次
表のようになる。なお、表中、()内は450℃、25
1nの熱処理後の値である。
A comparison of film thickness, resistivity, and carbon concentration is shown in the following table. In addition, in the table, the values in parentheses are 450°C and 25°C.
This is the value after heat treatment of 1n.

これによると、ガス圧は、プラズマの発生が安定である
範囲内で高い方が良く、磁界もそれにつれて高い方が比
抵抗が低くなってよいことがわかる。この場合、第9図
に示す如く、C濃度及び比抵抗は磁界強度を制御するこ
とにより低くでき、特に磁界強度が200G以上である
ととC濃度及び比抵抗を低く I7られる。
According to this, it can be seen that the higher the gas pressure is within the range where plasma generation is stable, the higher the magnetic field is, the lower the specific resistance is. In this case, as shown in FIG. 9, the C concentration and resistivity can be lowered by controlling the magnetic field strength, and in particular, when the magnetic field strength is 200 G or more, the C concentration and resistivity can be lowered.

第6図G、t P −CV D法及びMP−CVD法ニ
J5ける熱処TEl温度対比抵抗特性図を示ず。同図よ
り明らかな如く、300℃以上の熱処理により、しかも
、磁界780Gを加えた場合のプラズマCVD法が比抵
抗の低減に効果があることがわかる。
FIG. 6G, t A temperature-resistance characteristic diagram of the heat-treated TEL in the P-CVD method and the MP-CVD method J5 is not shown. As is clear from the figure, it can be seen that the plasma CVD method using heat treatment at 300° C. or higher and applying a magnetic field of 780 G is effective in reducing the resistivity.

第7図はp−cvo法におけるRFパワ一対堆積速度及
び比抵抗特性図を示す。堆積速度はRFパワーの増加と
共に増加するが、比抵抗は特異な変化をする。つまり、
低いRFパワーで堆積すると堆積速度が遅くなって相対
的に酸素の取込みが多くなって比抵抗が人になる問題点
があり、更に、RFパワーが大き過ぎるとポリマーが形
成されて(Cの含有が多すぎる)不都合である。従って
、RFパワーは300W〜800W程度がよい。
FIG. 7 shows a graph of RF power versus deposition rate and resistivity characteristics in the p-cvo method. Although the deposition rate increases with increasing RF power, the resistivity changes uniquely. In other words,
If the RF power is too high, the deposition rate will be slow and the specific resistance will be low due to the relatively large amount of oxygen taken in. Furthermore, if the RF power is too high, a polymer will be formed (C content). too many) is inconvenient. Therefore, the RF power is preferably about 300W to 800W.

又、第8図は従来及び本発明のCVD法によって形成さ
れる膜の断面図を示1゛。同図(△)は従来の熱CVD
法によるもので、A2膜20表面の凹凸が激しく、又、
同図(B)は熱着やスパッタリングにて形成された膜を
450℃の熱処理したもので、Al21にヒロック22
が発生している。
Furthermore, FIG. 8 shows cross-sectional views of films formed by the conventional CVD method and the present invention. The figure (△) shows conventional thermal CVD
method, the surface of the A2 film 20 is extremely uneven, and
In the same figure (B), a film formed by thermal bonding or sputtering was heat-treated at 450°C.
is occurring.

これに対して、本発明方法のようにCを含むA2を78
0ガウスの磁界を加えたプラズマCVD法によって形成
すると、同図(C)に示す如く、600℃の熱処理後に
おいてもA2摸23にヒロックが発生せず、A2膜がA
2原子のマイグレーション耐性に高いことを示す。
On the other hand, as in the method of the present invention, A2 containing C is 78
When formed by the plasma CVD method applying a magnetic field of 0 Gauss, no hillocks occur on the A2 film 23 even after heat treatment at 600°C, as shown in the same figure (C), and the A2 film becomes A2.
It shows high resistance to two-atom migration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、A2にCを含有した構成としたため、
エレクトロマイグレーションを抑え得、ヒロックの発生
もなく、従来のものに比してA2配線膜のi線を防止し
得、又、プラズマ中で膜を形成するようにしたため、A
之−Cの結合が完全になり、更に、磁界を加えたプラズ
マ中でA2を形成するようにしたため、比抵抗の低い膜
を得ることができる等の特長を有する。
According to the present invention, since A2 contains C,
Electromigration can be suppressed, hillocks do not occur, and the i-line of the A2 wiring film can be prevented compared to conventional ones, and since the film is formed in plasma, the
Since the -C bond is perfect and A2 is formed in plasma to which a magnetic field is applied, it has the advantage that a film with low resistivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例の断面図、第2図は本発
明方法によるカーボン濃度対比抵抗特性図、 第3図はP−CVD法による膜形成を説明する図、 第4図はエツチング時間対強度特性図、第5図は水素希
釈が対J(f積速度、比抵抗特性図、第6図は熱処理温
度対比抵抗特性図、 第7図はpc−cvo法におけるRFパワ一対堆積速度
及び比抵抗特性図、 第8図は従来及び本発明のCVD法によって形成される
膜の断面図 第9図は磁界強度対比抵抗及びカーボン溌1α特性図で
ある。 図中において、 1は81基板、 2は拡散層、 3は5iOz膜、 4.20は△2配線膜、 10はチャンバ、 11はウェハ、 12はR「発振電源、 13はヒータ、 14はシャワー状ノズルである。 第1図 P−CVD六シL:壮る財ぺ9室乙帽Tう回第3図 ←?ili!!致(矛枦側4〕 一法豹州番 一式興ズ、響 −HIユ Iへ −七1ンン
Fig. 1 is a sectional view of an embodiment of the device of the present invention, Fig. 2 is a graph of resistance versus carbon concentration according to the method of the present invention, Fig. 3 is a diagram illustrating film formation by the P-CVD method, and Fig. 4 is a diagram illustrating film formation by the P-CVD method. Etching time vs. strength characteristic diagram, Figure 5 shows hydrogen dilution vs. Figure 8 is a cross-sectional view of films formed by conventional and inventive CVD methods. Figure 9 is a graph of magnetic field strength vs. resistance and carbon 1α characteristics. In the figure, 1 is 81 1 is a substrate, 2 is a diffusion layer, 3 is a 5iOz film, 4.20 is a Δ2 wiring film, 10 is a chamber, 11 is a wafer, 12 is an R oscillation power source, 13 is a heater, and 14 is a shower-like nozzle. Figure P-CVD Rokushi L: Soaring wealth Pe 9th room Otshat T turn Figure 3 ←? ili!! Attachment (opponent side 4) Ippo Hyoushu Ban Ichiki Kozu, Hibiki - To HI YuI - Seventy-one

Claims (9)

【特許請求の範囲】[Claims] (1)金属配線膜(4)として、アルミニウム中に炭素
を含有してなることを特徴とする薄膜装置。
(1) A thin film device characterized in that the metal wiring film (4) contains carbon in aluminum.
(2)該炭素は、固溶限以上20%以下の濃度であり、
アルミニウム中にAl−Cとして化学結合した状態で含
有してなることを特徴とする特許請求の範囲第1項記載
の薄膜装置。
(2) the carbon has a concentration of not less than the solid solubility limit and not more than 20%;
2. The thin film device according to claim 1, wherein the thin film device contains aluminum in a chemically bonded state as Al-C.
(3)該金属配線膜(4)は、該炭素を含有されたアル
ミニウム膜に更にシリコンを2%以下含有してなること
を特徴とする特許請求の範囲第1項記載の薄膜装置。
(3) The thin film device according to claim 1, wherein the metal wiring film (4) is made of the carbon-containing aluminum film further containing 2% or less silicon.
(4)炭素を含有するアルミニウム膜、又は炭素及びシ
リコンを含有するアルミニウム膜の金属配線膜(4)を
形成するに際し、アルミニウムの凝集温度以下に保って
金属配線膜を形成し、しかる後300℃以上の熱処理を
行なうことを特徴とする薄膜装置の形成方法。
(4) When forming the metal wiring film (4) of an aluminum film containing carbon or an aluminum film containing carbon and silicon, the metal wiring film is formed by keeping the temperature below the agglomeration temperature of aluminum, and then heated to 300°C. A method for forming a thin film device, characterized by performing the above heat treatment.
(5)炭素を含有するアルミニウム膜、又は炭素及びシ
リコンを含有するアルミニウム膜の金属配線膜(4)を
形成するに際し、少なくともアルミニウム、炭素を含む
プラズマ中、又は少なくともアルミニウム、炭素、シリ
コンを含むプラズマ中で形成してなることを特徴とする
薄膜装置の形成方法。
(5) When forming the metal wiring film (4) of an aluminum film containing carbon or an aluminum film containing carbon and silicon, use plasma containing at least aluminum and carbon, or plasma containing at least aluminum, carbon, and silicon. 1. A method for forming a thin film device, characterized in that the thin film device is formed inside a thin film device.
(6)該プラズマで形成する方法は、有機金属を水素中
のプラズマで解離するか、又は、これにシランガスを同
時に用いることを特徴とする特許請求の範囲第5項記載
の薄膜装置の形成方法。
(6) The method for forming a thin film device according to claim 5, wherein the method for forming a thin film device using plasma includes dissociating the organic metal with plasma in hydrogen, or using silane gas at the same time. .
(7)該プラズマで形成する方法は、(希釈水素)/(
有機金属ガス、又は、有機金属ガスとシランガスとの混
合ガス)の比を60/1以上に設定したことを特徴とす
る特許請求の範囲第6項記載の薄膜装置の形成方法。
(7) The method of forming with the plasma is (diluted hydrogen)/(
7. The method of forming a thin film device according to claim 6, wherein the ratio of the organic metal gas or a mixed gas of an organic metal gas and a silane gas is set to 60/1 or more.
(8)該プラズマで形成する方法は、該有機金属の温度
を融点以下に冷却した状態で用いることを特徴とする特
許請求の範囲第6項又は第7項記載の薄膜装置の形成方
法。
(8) The method for forming a thin film device according to claim 6 or 7, wherein the method for forming a thin film device using plasma is used in a state where the temperature of the organic metal is cooled to below the melting point.
(9)該プラズマで形成する方法は、基板表面に強い磁
界を加えたプラズマを用いることを特徴とする特許請求
の範囲第5項乃至第8項のうちいずれか1項記載の薄膜
装置の形成方法。
(9) Formation of a thin film device according to any one of claims 5 to 8, wherein the plasma forming method uses plasma in which a strong magnetic field is applied to the substrate surface. Method.
JP61193445A 1986-08-19 1986-08-19 Thin film device and formation thereof Granted JPS6348845A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61193445A JPS6348845A (en) 1986-08-19 1986-08-19 Thin film device and formation thereof
EP87111993A EP0256557B1 (en) 1986-08-19 1987-08-18 Semiconductor device having thin film wiring layer and method of forming thin wiring layer
DE8787111993T DE3783405T2 (en) 1986-08-19 1987-08-18 SEMICONDUCTOR ARRANGEMENT WITH A THICK LAYER WIRING AND METHOD FOR PRODUCING THE SAME.
KR1019870009034A KR900006486B1 (en) 1986-08-19 1987-08-19 Semiconductor device having thin film layer and method of forming thin wiring layer
US07/740,872 US5148259A (en) 1986-08-19 1991-07-31 Semiconductor device having thin film wiring layer of aluminum containing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193445A JPS6348845A (en) 1986-08-19 1986-08-19 Thin film device and formation thereof

Publications (2)

Publication Number Publication Date
JPS6348845A true JPS6348845A (en) 1988-03-01
JPH0567053B2 JPH0567053B2 (en) 1993-09-24

Family

ID=16308110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193445A Granted JPS6348845A (en) 1986-08-19 1986-08-19 Thin film device and formation thereof

Country Status (1)

Country Link
JP (1) JPS6348845A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134930A (en) * 1981-02-16 1982-08-20 Toshiba Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134930A (en) * 1981-02-16 1982-08-20 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0567053B2 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JP2721023B2 (en) Deposition film formation method
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
US20050127477A1 (en) High resistivity silicon wafer and method for fabricating the same
JPS59210642A (en) Manufacture of semiconductor device
JPH0210772A (en) Mos-fet using beta-sic and its manufacture
KR100238564B1 (en) Manufacturing method of a semiconductor device
US3794516A (en) Method for making high temperature low ohmic contact to silicon
JPS6348845A (en) Thin film device and formation thereof
JPS5961146A (en) Manufacture of semiconductor device
JP2534434B2 (en) Oxidation resistant compound and method for producing the same
JPS609160A (en) Semiconductor device and manufacture thereof
CN115206789A (en) Silicon carbide ohmic contact and preparation method thereof
JPS60119755A (en) Semiconductor integrated circuit device with multilayered wiring
JPH03205830A (en) Manufacture of semiconductor device and polycrystalline germanium
JPS6079721A (en) Method of forming semiconductor structure
JP3072544B2 (en) Semiconductor device wiring method
JPH10289885A (en) Semiconductor device and manufacture thereof
EP0225224A2 (en) After oxide metal alloy process
JPH0628315B2 (en) Semiconductor device
JP3321896B2 (en) Al-based material forming method, Al-based wiring structure, method of manufacturing semiconductor device, and semiconductor device
JPS5966165A (en) Electrode wiring and manufacture thereof
JPH05102148A (en) Semiconductor device
JPH01253241A (en) Manufacture of semiconductor device
JPH05102154A (en) Semiconductor device
JPH02235372A (en) Semiconductor device and its manufacture