JPS6348638B2 - - Google Patents

Info

Publication number
JPS6348638B2
JPS6348638B2 JP3848680A JP3848680A JPS6348638B2 JP S6348638 B2 JPS6348638 B2 JP S6348638B2 JP 3848680 A JP3848680 A JP 3848680A JP 3848680 A JP3848680 A JP 3848680A JP S6348638 B2 JPS6348638 B2 JP S6348638B2
Authority
JP
Japan
Prior art keywords
welding
scanning line
groove
integral value
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3848680A
Other languages
Japanese (ja)
Other versions
JPS56134076A (en
Inventor
Tsutomu Fujita
Yukio Hioki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP3848680A priority Critical patent/JPS56134076A/en
Publication of JPS56134076A publication Critical patent/JPS56134076A/en
Publication of JPS6348638B2 publication Critical patent/JPS6348638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は、テレビジヨンカメラにより溶接ア
ーク部を監視し、該カメラの映像信号を処理する
ことにより、溶接アーク長,溶接心線突出し寸法
等を検出し、該検出値により溶接状態を制御して
高品質の溶接が行なえるようにした溶接状態検出
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention monitors the welding arc portion with a television camera, processes the video signal of the camera, detects the welding arc length, weld core protrusion dimension, etc., and detects the detected value. The present invention relates to a welding condition detection method that enables high-quality welding to be performed by controlling the welding condition.

一般に、消耗電極式自動溶接は、溶接アーク長
とそのアーク状態との関係が深いため、高品質の
溶接を行なうに際し、アーク長の制御を行なうこ
とが望ましい。
Generally, in consumable electrode type automatic welding, there is a close relationship between the welding arc length and the arc condition, so it is desirable to control the arc length when performing high quality welding.

しかし、アーク長を直接検出することは難し
く、このため、従来の溶接においては、アーク状
態に対する他の要素、たとえば溶接電圧,溶接電
流に関して制御または操作を行なつているのが現
状である。
However, it is difficult to directly detect the arc length, and therefore, in conventional welding, other factors related to the arc condition, such as welding voltage and welding current, are currently controlled or manipulated.

他方、消耗電極式自動溶接機により多層溶接を
行なう場合、溶接の進により溶接層が増し、開先
底が上昇するため、給電チツプと母材間の距離
(以下エクステンシヨンと云う)が小さくなり、
良好な溶接を行なうためには給電チツプを上昇さ
せてエクステンシヨンを一定に保つことが必要で
ある。厚板に対する狭開先溶接では、とくにこの
給電チツプの上下動操作が重要となり、たとえば
エクステンシヨンが過度に小さくなると、溶接ア
ークは給電チツプから発生し、給電チツプが母材
に溶け込む結果、溶接割れ等の溶接欠陥が生じ、
この修復に多大の労力と時間を要することにな
る。
On the other hand, when multilayer welding is performed using a consumable electrode type automatic welder, the weld layer increases as welding progresses, and the groove bottom rises, so the distance between the power supply tip and the base metal (hereinafter referred to as extension) becomes smaller. ,
In order to perform good welding, it is necessary to raise the power supply tip and keep the extension constant. In narrow gap welding of thick plates, the vertical movement of the power supply tip is especially important. For example, if the extension becomes too small, welding arc will be generated from the power supply tip and the power supply tip will melt into the base metal, resulting in weld cracking. Welding defects such as
This repair will require a great deal of effort and time.

そこで、従来、この給電チツプの上下移動によ
るエクステンシヨン制御に対し、溶接電流,電圧
に基く制御が行なわれている。すなわち、溶接電
流とエクステンシヨンの大きさとは、定電圧電源
を用いる場合、第1図に示すような関係があり、
これを利用して給電チツプの上下動操作による溶
接電流値制御を行なうことにより、エクステンシ
ヨンを一定値に制御するものである。
Conventionally, therefore, control based on welding current and voltage has been used to control extension by moving the power supply chip up and down. In other words, when a constant voltage power source is used, there is a relationship between welding current and the size of the extension as shown in Figure 1.
Utilizing this, the welding current value is controlled by vertically moving the power supply chip, thereby controlling the extension to a constant value.

しかし、溶接電流値,溶接電圧値は、エクステ
ンシヨンの大きさのみに依存するものではなく、
溶接心線供給速度,開先形状,母材温度等に依存
して変化するため、溶接中でのこれらの溶接条件
の変化の影響が無視できない場合には、溶接電
流,電圧による制御では、過大または過小なエク
ステンシヨンとなる場合があり、溶接条件に依存
しない検出法が必要とされる。
However, the welding current value and welding voltage value do not depend only on the size of the extension;
It changes depending on the welding core supply speed, groove shape, base metal temperature, etc., so if the influence of changes in these welding conditions during welding cannot be ignored, controlling using welding current and voltage may not be effective. Otherwise, the extension may be too small, and a detection method that does not depend on welding conditions is required.

ところで、前述のように、定電圧電源を用いた
場合、エクステンシヨンの変化に対して溶接アー
ク長はほぼ一定であり、給電チツプからの心線突
出し寸法がエクステンシヨンに応じて変化し、さ
らに、溶接心線の溶融速度は心線突出し寸法に依
存し、しかも、この心線溶融速度が溶接条件の重
要な要因であるため、消耗電極式自動溶接により
多層溶接する場合、エクステンシヨンよりも心線
突出し寸法を検出し、その大きさが一定となるよ
うに給電チツプを上下動制御することが望まし
い。
By the way, as mentioned above, when a constant voltage power source is used, the welding arc length is almost constant as the extension changes, and the length of the core wire protruding from the power supply chip changes depending on the extension. The melting speed of the weld core depends on the core protrusion dimension, and this core melting speed is an important factor in the welding conditions. Therefore, when performing multilayer welding by consumable electrode automatic welding, the core wire It is desirable to detect the protrusion size and control the vertical movement of the power supply chip so that the protrusion size remains constant.

この発明は、前記の点に留意し、テレビジヨン
カメラにより溶接アーク部を監視し、該カメラの
走査線の映像信号を、1走査期間内で積分して走
査線番号に関する積分値系列に変換し、この積分
値系列を処理して溶接アーク長,溶接心線突出し
寸法等を検出するようにしたものであり、つぎに
この発明を、その1実施例を示した第2図以下の
図面とともに詳細に説明する。
Taking the above points into consideration, the present invention monitors the welding arc portion with a television camera, integrates the video signal of the scanning line of the camera within one scanning period, and converts it into an integral value series related to the scanning line number. , this integral value series is processed to detect the welding arc length, weld core protrusion dimension, etc. Next, this invention will be described in detail with reference to the drawings from FIG. 2 showing one embodiment of the invention. Explain.

まず、概略構成を示した第2図において、1は
溶接母材、2はI型狭開先、3は消耗電極式自動
溶接機の溶接トーチ、4は給電チツプ、5は溶接
心線、6はアーク部、7は水平走査線の方向が開
先2の開先線に直交するよう溶接トーチ3の軸に
取付けられたテレビジヨンカメラ(以下TVカメ
ラと云う)であり、遮光フイルタ,レンズ系から
なる光学系を有しており、開先内の溶接アーク部
を溶接線に沿つて開先の斜め上部方向より監視し
ている。8は検出装置、9はモニタである。
First, in FIG. 2 showing a schematic configuration, 1 is a welding base material, 2 is an I-type narrow gap, 3 is a welding torch of a consumable electrode type automatic welding machine, 4 is a power supply tip, 5 is a welding core wire, 6 7 is an arc portion, and 7 is a television camera (hereinafter referred to as TV camera) attached to the shaft of the welding torch 3 so that the direction of the horizontal scanning line is perpendicular to the groove line of the groove 2. The welding arc part within the groove is monitored along the weld line from an obliquely upper direction of the groove. 8 is a detection device, and 9 is a monitor.

そして、第3図に示すように、TVカメラ7が
θの伏角で溶接アーク部を監視し、第4図に示す
ようなモニタ画像が得られたとすると、該モニタ
画像における見かけの溶接アーク長L1,すなわ
ち溶接心線5の中心端からアーク部6の境界まで
の距離、および見かけの溶接心線突出し寸法L2
すなわち給電チツプ4の下端から溶接心線5の中
心端までの距離は、それぞれ第3図に示す真の溶
接アーク長l1、および真の溶接心線突出し寸法l2
に対応し、 l1=L1cos/cos(θ−) l2=L2cosθ の関係がある。ここで、は第3図に示すよう
に、アーク部6の垂直断面での拡がり角度を示
す。したがつて、第4図のモニタ画像からL1
よびL2を求めることにより、l1およびl2を容易に
求めることができる。なお、第3図および第4図
において、10および11はアーク部6の高輝度
アーク部および低輝度アーク部である。
As shown in FIG. 3, if the TV camera 7 monitors the welding arc section at an inclination angle of θ and a monitor image as shown in FIG. 4 is obtained, the apparent welding arc length L in the monitor image is 1 , that is, the distance from the center end of the weld core 5 to the boundary of the arc portion 6, and the apparent weld core protrusion dimension L2 ,
That is, the distance from the lower end of the power supply chip 4 to the center end of the welding core 5 is the true welding arc length l 1 and the true welding core protrusion dimension l 2 shown in FIG. 3, respectively.
Corresponding to this, there is a relationship of l 1 =L 1 cos/cos(θ−) l 2 =L 2 cosθ. Here, as shown in FIG. 3, represents the spread angle in the vertical cross section of the arc portion 6. Therefore, by determining L 1 and L 2 from the monitor image in FIG. 4, l 1 and l 2 can be easily determined. In addition, in FIGS. 3 and 4, 10 and 11 are a high brightness arc part and a low brightness arc part of the arc part 6.

つぎに、TVカメラ7により得られたモニタ画
像を用いて、見かけの溶接アーク長L1および見
かけの溶接心線突出し寸法L2を検出する方法に
ついて説明する。
Next, a method of detecting the apparent welding arc length L 1 and the apparent weld core protrusion dimension L 2 using the monitor image obtained by the TV camera 7 will be described.

第5図は、第4図のモニタ画像のアーク部6
を拡大したものであり、12は溶融プール部であ
り、溶接トーチ3へのTVカメラ7の取付方向と
溶接進行方向とが同一であれば、画像で見ること
はできず、両方向が逆であれば、同図のように見
える場合がある。また、a〜fはモニタ画像の各
部に対応する走査線であり、aはアーク部6の上
端、bは高輝度アーク部10の上端、cは溶接心
線5の中心端、dは高輝度アーク部10の下端、
eはアーク部6の下端、fは溶融プール部12の
下端の走査線をそれぞれ示している。したがつ
て、見かけの溶接アーク長L1は、c,e間の走
査線数により与えられ、cおよびeの走査線番号
を求めてeの走査線番号からcの走査線番号を減
算ればc,e間の走査線数が得られる。ところ
で、前記TVカメラ7は溶接トーチ3の軸に取付
けられ、給電チツプ4の下端は、モニタ画像上に
おいて、常に一定位置にあるため、見かけの溶接
心線突出し寸法L2は、溶接心線5の中心端のc
の走査番号を抽出すれば与えられることになる。
すなわち、モニタ画像の上端から溶接心線5の下
端までの寸法L2′は、溶接心線突出し寸法L2との
偏差L2′―L2が一定値であるため、検出目的に影
響を与えることはなく、間接的に溶接心線突出し
寸法L2を求めることになる。
FIG. 5 shows the arc portion 6 of the monitor image in FIG.
12 is the molten pool, which cannot be seen in the image if the direction in which the TV camera 7 is attached to the welding torch 3 and the welding progress direction are the same, and even if both directions are reversed. For example, it may look like the same figure. In addition, a to f are scanning lines corresponding to each part of the monitor image, a is the upper end of the arc portion 6, b is the upper end of the high brightness arc portion 10, c is the center end of the weld core line 5, and d is the high brightness the lower end of the arc portion 10;
e indicates the scanning line at the lower end of the arc portion 6, and f indicates the scanning line at the lower end of the molten pool portion 12, respectively. Therefore, the apparent welding arc length L 1 is given by the number of scanning lines between c and e, and by finding the scanning line numbers of c and e and subtracting the scanning line number of c from the scanning line number of e. The number of scanning lines between c and e is obtained. By the way, the TV camera 7 is attached to the shaft of the welding torch 3, and the lower end of the power supply chip 4 is always at a fixed position on the monitor image, so the apparent weld core protrusion dimension L2 is equal to the weld core 5. c at the center edge of
If you extract the scan number of , it will be given.
In other words, the dimension L 2 ′ from the upper end of the monitor image to the lower end of the weld core 5 has a constant deviation L 2 −L 2 from the weld core protrusion dimension L 2 , which affects the purpose of detection. Instead, the weld core protrusion dimension L 2 is indirectly determined.

第5図は、TVカメラ7の各水平走査線の映
像信号を、それぞれ1水平走査期間内で積分し、
同図に対応する走査線番号を縦軸に、積分値を
横軸に示したものであり、2次元座標の関数であ
るモニタ画像が、走査線番号の1次元座標の関数
に圧縮変換され、走査線番号に関する積分値系列
に変換されたものである。このとき、第5図と
同図との対応は、開先内各部の明るさの相違お
よびその面積の変化により説明でき、開先内各部
は高輝度アーク部10、低輝度アーク部11、溶
融プール部12、母材1と溶接心線5の順にその
明るさが変化し、各々の積分値に大きな相違を示
すため、モニタ画像の各部の境界に対応するa〜
fの各走査線では積分値の変化が大きくなり、他
方、他の走査線での積分値の変化は、対応部分の
面積の変化によるものとなり、おだやかな変化を
示すことになる。したがつて、該積分値系列によ
りモニタ画像の各部の境界を判別することがで
き、cおよびeの走査線番号を求めることができ
る。ここで、第5図に示すように、得られた積
分値系列より差分値系列を求めると、a〜fの走
査線では差分値系列の絶対値が大きくなり、a〜
c間の差分値の正の値、d〜f間の差分値が負の
値を示し、しかも、c,d間の積分値系列に極大
値が存在することになる。したがつて、差分値系
列の大きさからa〜fの候補を求めることがで
き、さらに、積分値の極大値をもつ区間の両端が
cおよびdとなり、しかもcの走査線番号がdよ
り若いことからcの走査線番号を求めることがで
き、他方、eは差分値系列から求められる候補に
おいて、cから2番目の走査線番号であることを
利用して求めることができる。
FIG. 5 shows that the video signals of each horizontal scanning line of the TV camera 7 are integrated within one horizontal scanning period, and
The corresponding scanning line number is shown on the vertical axis and the integral value is shown on the horizontal axis, and the monitor image, which is a function of two-dimensional coordinates, is compressed and transformed into a function of the one-dimensional coordinate of the scanning line number, This is converted into an integral value series regarding scanning line numbers. At this time, the correspondence between Fig. 5 and the same figure can be explained by the difference in brightness of each part inside the groove and the change in its area. The brightness changes in the order of the pool part 12, the base material 1, and the weld core 5, and the integral values of each part show large differences.
For each scanning line of f, the change in the integral value becomes large, while for other scanning lines, the change in the integral value is due to a change in the area of the corresponding portion, and shows a gentle change. Therefore, the boundaries of each part of the monitor image can be determined based on the integral value series, and the scanning line numbers of c and e can be determined. Here, as shown in FIG. 5, when the difference value series is calculated from the obtained integral value series, the absolute value of the difference value series becomes large in the scanning lines a to f, and
The difference value between c shows a positive value, the difference value between d and f shows a negative value, and a maximum value exists in the integral value series between c and d. Therefore, candidates a to f can be found from the size of the difference value series, and furthermore, both ends of the interval having the maximum value of the integral value are c and d, and the scanning line number of c is smaller than d. From this, the scanning line number of c can be found, and on the other hand, e can be found by utilizing the fact that it is the second scanning line number from c among the candidates found from the difference value series.

そして、積分値系列を{Si}、差分値系列を
{Di}とすると、第6図に示すフローチヤートに
よりcの走査線番号を求めることができる。すな
わち、走査線番号を順次更新しながら、差分値系
列より所定の値δより大きい差分値を検出し、検
出された差分値の走査線番号iを記憶するととも
に、積分値系列より極大値を検出し、極大値が検
出されたとき、その直前に記憶された走査線番号
iをcの走査線番号とするものである。
Then, if the integral value series is {Si} and the difference value series is {Di}, the scanning line number of c can be determined by the flowchart shown in FIG. That is, while sequentially updating the scanning line number, a difference value larger than a predetermined value δ is detected from the difference value series, the scanning line number i of the detected difference value is stored, and the maximum value is detected from the integral value series. However, when a local maximum value is detected, the scanning line number i stored immediately before that value is set as the scanning line number c.

また第7図に示すものは、以上の溶接アーク長
L1、溶接心線突出し寸法L2の検出を実行するた
めのブロツク回路図であり、TVカメラ7より得
られたモニタ画像の映像信号を、積分回路13に
おいて走査線番号に関する積分値系列に変換し、
該積分値系列を差分回路14において差分値系列
に変換し、両回路13,14からの出力信号と、
論理回路15において、前述のフローチヤートに
示すように、論理判定してcおよびeの走査線番
号を求める。なお、16は各回路13,14,1
5の動作タイミング等を制御する制御回路であ
る。
In addition, the welding arc length shown in Figure 7 is
L 1 is a block circuit diagram for detecting the weld core protrusion dimension L 2 , in which the video signal of the monitor image obtained from the TV camera 7 is converted into an integral value series related to the scanning line number in the integrating circuit 13. death,
The integral value series is converted into a difference value series in the difference circuit 14, and the output signals from both circuits 13 and 14,
In the logic circuit 15, the scanning line numbers of c and e are determined by logical determination as shown in the flowchart described above. Note that 16 indicates each circuit 13, 14, 1
This is a control circuit that controls the operation timing, etc. of 5.

したがつて、前記実施例によると、溶接アーク
部を監視するTVカメラ7の各水平走査線の映像
信号を、それぞれ1水平走査期間内で積分して走
査線番号に関する積分値系列に変換し、該積分値
系列を処理して溶接心線5の下端、アーク部6の
下端に対応する走査線番号をそれぞれ求め、両走
査線番号を演算することにより、溶接アーク長、
溶接心線突出し寸法を正確に検出ることができ、
アーク長の制御を高精度に行なうことができると
ともに、商品質の溶接を実行でき、さらに、多層
溶接においても、給電チツプ4の上下動制御を高
精度に行ない、エクステンシヨンを一定に保つこ
とができ、良好な溶接が行なえる。
Therefore, according to the embodiment, the video signal of each horizontal scanning line of the TV camera 7 monitoring the welding arc portion is integrated within one horizontal scanning period and converted into an integral value series related to the scanning line number, By processing the integral value series to obtain the scanning line numbers corresponding to the lower end of the weld core line 5 and the lower end of the arc portion 6, respectively, and calculating both scanning line numbers, the welding arc length,
It is possible to accurately detect the protruding dimensions of weld core wires,
It is possible to control the arc length with high precision and perform commercial quality welding.Furthermore, even in multi-layer welding, the vertical movement of the power supply chip 4 can be controlled with high precision to keep the extension constant. It is possible to perform good welding.

なお、前記実施例では、I型の狭開先を対象と
したが、他の開先形状でも大差なく行なえるもの
である。
In the above embodiments, an I-type narrow groove was used, but other groove shapes can be used without much difference.

以上のように、この発明の溶接状態検出方法に
よると、水平走査線の方向が開先線に直交するよ
うに消耗電極式自動溶接機の溶接トーチ軸に取り
付けられたテレビジヨンカメラにより、溶接線に
沿つて開先の斜め上部方向から開先内のアーク部
を監視するとともに、前記カメラの各水平走査線
の映像信号を、それぞれ1水平走査期間内で積分
して走査線番号に関する積分値系列に変換し、該
積分値系列からアーク部の下端、溶接心線端に対
応する走査線番号をそれぞれ求め、前記両走査線
番号の演算によりアーク長、溶接心線突出し寸法
を検出するようにしたことにより、アーク長、溶
接心線突出し寸法等の溶接状態を正確に検出で
き、したがつて、アーク長の制御、給電チツプの
上下動制御等溶接状態の制御を高精度に行ない
得、高品質の溶接を可能にできる。
As described above, according to the welding state detection method of the present invention, the welding line is detected by the television camera attached to the welding torch shaft of the consumable electrode type automatic welding machine so that the direction of the horizontal scanning line is perpendicular to the groove line. The arc portion within the groove is monitored from the diagonally upper direction of the groove along the groove, and the video signal of each horizontal scanning line of the camera is integrated within one horizontal scanning period to obtain an integral value series regarding the scanning line number. The scan line numbers corresponding to the lower end of the arc portion and the weld core end are determined from the integral value series, and the arc length and weld core protrusion dimension are detected by calculating the two scan line numbers. As a result, welding conditions such as arc length and welding core protrusion dimensions can be accurately detected, and welding conditions such as arc length control and vertical movement control of the power supply chip can be controlled with high precision, resulting in high quality. can be welded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は消耗電極式自動溶接における給電チツ
プ、母材間距離(エクステンシヨン)と溶接電流
との関係図、第2図以下の図面はこの発明の溶接
状態検出方法の1実施例を示し、第2図は概略構
成図、第3図は一部の側面図、第4図は溶接アー
ク部のモニタ画像、第5図は第4図の拡大図、
同図は同図の走査線番号と積分値との関係
図、同図は同図の走査線番号と差分値との関
係図、第6図はフローチヤート、第7図はブロツ
ク回路図である。 2…I型狭開先、3…溶接トーチ、5…溶接心
線、6…アーク部、7…テレビジヨンカメラ。
Fig. 1 is a diagram of the relationship between the power supply chip, the distance between base materials (extension), and welding current in consumable electrode automatic welding, Fig. 2 and the following drawings show an embodiment of the welding state detection method of the present invention, Figure 2 is a schematic configuration diagram, Figure 3 is a partial side view, Figure 4 is a monitor image of the welding arc, Figure 5 is an enlarged view of Figure 4,
The same figure is a relationship diagram between the scanning line number and the integral value in the same figure, the same figure is a relationship diagram between the scanning line number and the difference value in the same figure, Figure 6 is a flowchart, and Figure 7 is a block circuit diagram. . 2... I-type narrow gap, 3... Welding torch, 5... Welding core wire, 6... Arc portion, 7... Television camera.

Claims (1)

【特許請求の範囲】[Claims] 1 水平走査線の方向が開先線に直交するように
消耗電極式自動溶接機の溶接トーチ軸に取付けら
れたテレビビジヨンカメラにより、溶接線に沿つ
て開先の斜め上部方向から開先内のアーク部を監
視するとともに、前記カメラの各水平走査線の映
像番号を、それぞれ1水平走査期間内で積分して
走査線番号に関する積分値系列に変換し、該積分
値系列からアーク部の下端、溶接心線端に対応す
る走査線番号をそれぞれ求め、前記両走査線番号
の演算によりアーク長、溶接心線突出し寸法を検
出するようにしたことを特徴とする溶接状態検出
方法。
1 Using a television vision camera attached to the welding torch shaft of a consumable electrode automatic welding machine so that the direction of the horizontal scanning line is perpendicular to the groove line, the inside of the groove is scanned from diagonally above the groove along the weld line. At the same time, the video numbers of each horizontal scanning line of the camera are integrated within one horizontal scanning period to convert into an integral value series regarding the scanning line number, and from this integral value series, the lower end of the arc part is monitored. . A welding state detection method, characterized in that scanning line numbers corresponding to the ends of the welding core are obtained, and arc length and protrusion dimension of the welding core are detected by calculating the scanning line numbers.
JP3848680A 1980-03-25 1980-03-25 Detecting method for welding state Granted JPS56134076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3848680A JPS56134076A (en) 1980-03-25 1980-03-25 Detecting method for welding state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3848680A JPS56134076A (en) 1980-03-25 1980-03-25 Detecting method for welding state

Publications (2)

Publication Number Publication Date
JPS56134076A JPS56134076A (en) 1981-10-20
JPS6348638B2 true JPS6348638B2 (en) 1988-09-29

Family

ID=12526581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3848680A Granted JPS56134076A (en) 1980-03-25 1980-03-25 Detecting method for welding state

Country Status (1)

Country Link
JP (1) JPS56134076A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951218A (en) * 1986-07-15 1990-08-21 Kabushiki Kaisha Yaskawa Denki Seisakusho Positional information detecting method in arc welding
JP4647914B2 (en) * 2004-01-07 2011-03-09 川崎重工業株式会社 Arc welding method and arc welding apparatus
JP2008110388A (en) * 2006-10-31 2008-05-15 Toshiba Corp Method and apparatus for measuring welding operation information

Also Published As

Publication number Publication date
JPS56134076A (en) 1981-10-20

Similar Documents

Publication Publication Date Title
JPS6345911B2 (en)
JP3322617B2 (en) Welding line copying method during welding
WO1988000508A1 (en) Method of detecting position data in arc welding
JPS6348638B2 (en)
JP3463142B2 (en) Welding equipment
JP3408749B2 (en) Automatic welding equipment
JPS63192562A (en) Method and device for profile control in welding
JP2989384B2 (en) Arc status judgment method
JP2000351071A (en) Automatic welding system
JP2895289B2 (en) Automatic welding copying machine
JPH0220661A (en) Automatic welding process for cylindrical vessel
JPS6117364A (en) Double electrode type narrow groove welding
JP4237963B2 (en) Welding position automatic scanning control device
JP3166507B2 (en) Narrow butt welding method for fixed pipe
JPH09295146A (en) Welding seam copying method in weaving welding
JPH05318142A (en) Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller
JPH0866769A (en) First pass welding method in one side butt welding of fixed tube
JP3077931B2 (en) Welding method
JPS6332546B2 (en)
JPH0866770A (en) First pass welding method in one side butt welding of fixed tube
JPS595070B2 (en) Automatic visible arc welding method
JP3166508B2 (en) Narrow butt welding method for fixed pipe
JPS63154263A (en) Control method for automatic welding machine
JP3166509B2 (en) Narrow butt welding method for fixed pipe
JP3462353B2 (en) Groove tracking control method