JPS634846A - Adsorbent for carbon monoxide - Google Patents

Adsorbent for carbon monoxide

Info

Publication number
JPS634846A
JPS634846A JP61146232A JP14623286A JPS634846A JP S634846 A JPS634846 A JP S634846A JP 61146232 A JP61146232 A JP 61146232A JP 14623286 A JP14623286 A JP 14623286A JP S634846 A JPS634846 A JP S634846A
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorbent
carbon
adsorption
cuprous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61146232A
Other languages
Japanese (ja)
Other versions
JPH0716605B2 (en
Inventor
Kikuji Tsuneyoshi
紀久士 常吉
Masahito Shimomura
下村 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61146232A priority Critical patent/JPH0716605B2/en
Publication of JPS634846A publication Critical patent/JPS634846A/en
Publication of JPH0716605B2 publication Critical patent/JPH0716605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain the titled adsorbent free from the deterioration of performance even if repeating adsorption and desorption by using polystyrene resin having amino group and cuprous chiocyanate as constitutional components. CONSTITUTION:Cuprous chiocyanate and a solvent (i.e. acetonitrile or the like) are mixed and stirred. Then dried polystyrene resin having amino group is added thereto in 0.1-30 preferably 0.5-3 molar ratio for cuprous thiocyanate and stirred. The mixture is heated under reduced pressure to sufficiently distill the solvent and an adsorbent being a solid for carbon monoxide is obtained. The obtained adsorbent quickly adsorbs carbon monoxide under ordinary temp. and ordinary pressure and adsorbed carbon monoxide can be desorbed by heating this adsorbent or decompressing it or reducing the partial pressure of carbon monoxide. Therefore carbon monoxide can be easily separated from a gaseous mixture. Furthermore the performance of this adsorbent is not deteriorated even if repeating adsorption and desorption.

Description

【発明の詳細な説明】 〔竜業上の利用分野〕 本発明は、−酸化炭素を含有する混合ガスからの一酸化
炭素分雅に用いられる、−酸化炭素吸着剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] The present invention relates to a carbon oxide adsorbent used for separating carbon monoxide from a mixed gas containing carbon oxide.

〔従来の技術〕[Conventional technology]

一酸化炭素は合成化学の基礎原料であり、コークス、石
炭から発生炉、水性ガス炉、ウィンクラ−炉、ルルギ炉
およびコツ・く−ス炉などを用いて製造される。また、
天然ガスおよび石油炭化水素から水蒸気改質法および部
分酸化法により製造される。これらの方法では、生成物
は、−ν化炭素、水素、二酸化炭素、メタンおよび窒素
などの混合ガスとして得られる。
Carbon monoxide is a basic raw material in synthetic chemistry, and is produced from coke and coal using generator furnaces, water gas furnaces, Winkler furnaces, Lurgi furnaces, and Kotsu-kusu furnaces. Also,
Produced from natural gas and petroleum hydrocarbons by steam reforming and partial oxidation. In these methods, the product is obtained as a mixture of gases such as -v carbon, hydrogen, carbon dioxide, methane and nitrogen.

たとえば、水性ガスの場合、−酸化炭素35〜40%、
水素45〜51%、二酸化炭素4〜5%、窒素4〜9%
の組成をもち、通常1000〜2000 ppmの水を
含んでいる。また、製鉄所や製油所あるいは石油化学工
場で副生ずる一酸化炭素も、同様に、混合ガスとして得
られる。
For example, in the case of water gas - carbon oxide 35-40%,
Hydrogen 45-51%, carbon dioxide 4-5%, nitrogen 4-9%
It usually contains 1000 to 2000 ppm of water. Carbon monoxide, which is produced as a by-product in steel mills, oil refineries, and petrochemical plants, can also be obtained as a mixed gas.

これらの−酸化炭素を合成化学原料として用いるために
は、混合ガスから一酸化炭素を分離することが必要であ
る。
In order to use these carbon oxides as raw materials for synthetic chemicals, it is necessary to separate carbon monoxide from the mixed gas.

一方、水素も化学工業における重要な原料であり、前述
の各種混合ガスあるいは、石油化学工場の廃ガス、たと
えば、炭化水素の脱水素工程の廃ガスから分離されるが
、少量の一酸化炭素を含有することが多い。この−酸化
炭素は、水素を用いる反応の触媒に対して触媒毒となる
ので、分離除去する必要がある。また、これらの廃ガス
中には、少量の水が含まれるのが常である。
On the other hand, hydrogen is also an important raw material in the chemical industry, and is separated from the various gas mixtures mentioned above or from the waste gas of petrochemical plants, such as the waste gas of hydrocarbon dehydrogenation processes. It often contains Since this carbon oxide becomes a catalyst poison for the catalyst for reactions using hydrogen, it is necessary to separate and remove it. Additionally, these waste gases usually contain a small amount of water.

混合ガスから一酸化炭素を分離除去するには、通常、液
体吸収剤が用いられる。
A liquid absorbent is usually used to separate and remove carbon monoxide from a mixed gas.

調液洗浄法は、ギM @ (1)のアンモニア性水溶液
や塩化鋼(1)の塩酸懸濁液に、混合ガスを室温で15
0〜200 atmに加圧し吸収させて一酸化炭素を分
離除去し、次に、この調液を減圧下で加熱することによ
ね一酸化炭素を放出させて分離し、調液を再生させる方
法であるが、液体吸収剤堰板い操作の難しさ、装置の腐
蝕、溶液損失、沈澱物生成を防ぐための運転管理の難し
さ、ならびに高圧のため建設費が高いなどの短所を有し
ている。
The solution cleaning method involves adding a mixed gas to an ammoniacal aqueous solution of GiM@(1) or a hydrochloric acid suspension of chlorinated steel (1) at room temperature for 15 minutes.
Carbon monoxide is separated and removed by pressurizing it to 0 to 200 atm and absorbing it, and then the carbon monoxide is released and separated by heating this solution under reduced pressure, and the solution is regenerated. However, it has disadvantages such as difficulty in operating the liquid absorbent dam, difficulty in controlling the operation to prevent equipment corrosion, solution loss, and sediment formation, and high construction costs due to high pressure. .

英国特許第1.31 a790号によれば、銅アルミニ
ウム四塩化物(Cu(AtC14))のトルエン溶液は
、25℃で一酸化炭素50 mn6%を含む混合ガスと
接触させると、−酸化炭素を吸収し、これを80℃に加
温すると、95%の一酸化炭素が回収されるという。こ
の吸収液は、混合ガス中に含まれる水素、二酸化炭素、
メタン、窒素および酸素の影響を受けず、吸収圧力が低
いなどの長所を有するが、水とは不可逆的に反応して吸
収能力の劣化および沈澱物の生成をきたし、塩酸を発生
する。工業的に実施するためKは、混合ガス中の水は1
 ppm以下に厳重に抑制しなければならない。従って
、吸収工程の前に、混合ガスの強力な脱水処理工程が必
要となり、厳重な管理が不可欠である。なお、鋼アルミ
ニウム四塩化物は、水と強く反応して一酸化炭素の吸収
能を不可逆的に失うので、たとえ1 ppmの水を含有
する混合ガスを接触させた場合でも、混合ガスの処理量
の増加とともに次第に失活壇が増大して行くばかりでは
なく、水との反応で生成する塩酸によって装置腐蝕が進
行するという短所を有している。また、この吸収液を用
いた場合には、回収した一酸化炭素中にトルエン蒸気が
混入することが不可避であり、このトルエンを除去する
装置が必要であること、および液体吸収剤を用いるため
にプロセス上の制約を受けるなどの短所を有する。
According to British Patent No. 1.31 A790, a toluene solution of copper aluminum tetrachloride (Cu(AtC14)), when contacted with a gas mixture containing 50 mn and 6% of carbon monoxide at 25°C, produces -carbon oxide. By absorbing carbon monoxide and heating it to 80°C, 95% of carbon monoxide can be recovered. This absorption liquid absorbs the hydrogen and carbon dioxide contained in the mixed gas.
Although it has advantages such as being unaffected by methane, nitrogen, and oxygen and having a low absorption pressure, it irreversibly reacts with water, resulting in deterioration of absorption capacity and formation of precipitates, and generates hydrochloric acid. For industrial implementation, K is 1 for water in the mixed gas.
It must be strictly controlled to below ppm. Therefore, a strong dehydration process of the mixed gas is required before the absorption process, and strict control is essential. In addition, steel aluminum tetrachloride reacts strongly with water and irreversibly loses its ability to absorb carbon monoxide, so even if it is brought into contact with a mixed gas containing 1 ppm of water, the throughput of the mixed gas will be reduced. Not only does the number of deactivation plates gradually increase as the amount of water increases, but it also has the disadvantage that equipment corrosion progresses due to the hydrochloric acid produced by the reaction with water. In addition, when this absorption liquid is used, it is inevitable that toluene vapor will be mixed into the recovered carbon monoxide, and a device to remove this toluene is required. It has disadvantages such as being subject to process constraints.

高純度の一酸化炭素を天童に得る方法として深冷分離法
がある。これは、混合ガスを冷却液化し、−165〜−
210℃の低温で分留する方法であるが、複雑な冷凍・
熱回収システムが必要でちり、高級材料を使用するため
装置が高価であり、また、動力消費が大きいなどの雑煮
がある。さらに、混合ガス中に水および二酸化炭素など
が含まれていると、低温管システム内での閉塞事故が起
たるので、前処理設備で水を1r′Ipm以下にしてお
く必要がある。
Cryogenic separation is a method for obtaining high-purity carbon monoxide. This cools and liquefies the mixed gas, -165 to -
This method involves fractional distillation at a low temperature of 210℃, but it requires complicated freezing and
It requires a heat recovery system, generates dust, uses high-grade materials, is expensive, and consumes a lot of power. Furthermore, if the mixed gas contains water, carbon dioxide, etc., a clogging accident will occur in the cryogenic tube system, so it is necessary to reduce the water to 1r'Ipm or less in pretreatment equipment.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

本発明は前述の、液体吸収剤を用いる方法や深冷分離法
による一酸化炭素分離技術の短所および難点が解消しう
る混合ガスから一酸化炭素を選択的に分離する新規な吸
着剤を提供しようとする本のである。
The present invention provides a novel adsorbent for selectively separating carbon monoxide from a mixed gas, which can overcome the disadvantages and difficulties of carbon monoxide separation techniques using liquid absorbents or cryogenic separation methods. This is a book that says.

c問題点を解決するための手段〕 本発明者ら1は、−酸化炭素を選択的て吸着する物yI
Kを鋭意探索した結果、アミノ基を有するポリスチレン
樹脂とチオシアン酸銅(J)とを構成成分とする固体が
混合ガス中の一贋化炭素の吸着分離に極めて有効でちる
ことを見出し、本発明の完成に至った。
Means for Solving the Problem c] The present inventors 1 have developed a material yI that selectively adsorbs carbon oxide.
As a result of intensive search for K, it was discovered that a solid composed of polystyrene resin having an amino group and copper thiocyanate (J) is extremely effective in adsorbing and separating impersonated carbon in a mixed gas, and the present invention has been completed.

すなわち、本発明は、アばノ基を有するポリスチレン樹
脂とチオシアン酸銅(1)とを構成成分とすることを特
徴とする、混合ガス中の一酸化炭素の分離に有効な、新
規な吸着剤に関する。
That is, the present invention provides a novel adsorbent which is effective in separating carbon monoxide in a mixed gas and is characterized by comprising a polystyrene resin having an Abano group and copper thiocyanate (1) as constituent components. Regarding.

〔作用〕[Effect]

本発明の吸着剤は、アミノ基を有するポリスチレン樹脂
とチオシアン酸@(1)とを溶媒中で混合かくはんした
のち、溶媒を減圧、留去などの方法で除くことによって
得られる。
The adsorbent of the present invention can be obtained by mixing and stirring a polystyrene resin having an amino group and thiocyanic acid@(1) in a solvent, and then removing the solvent by a method such as reduced pressure or distillation.

該吸着剤の一酸化炭素吸着能の発現はアばノ基を有する
ポリスチレン樹脂とチオシアン酸銅(])との組合せに
起因するものであり、比較例に示すとおり、アミノ基を
有するポリスチレン樹脂またはチオシアン酸′?pJ(
1)のみでは−酸化炭素吸着能は認められない。
The carbon monoxide adsorption ability of this adsorbent is due to the combination of polystyrene resin having an ABANO group and copper thiocyanate (). Thiocyanic acid? pJ(
With 1) alone, no carbon oxide adsorption ability was observed.

本発明の吸着剤の構成成分であるアばノ基を有するポリ
スチレン樹脂は、たとえば、スチレンまたはスチレン誘
導体の重合体あるいはスチレンまたはスチレン誘導体と
エチレンまたは工チレン誘導体との共重合体はアミノ基
が直接またはメチレン基、エチレン基などの他の原子団
を介して結合した樹脂である。
The polystyrene resin having an abano group, which is a constituent component of the adsorbent of the present invention, is, for example, a polymer of styrene or a styrene derivative, or a copolymer of styrene or a styrene derivative and ethylene or an engineered styrene derivative, in which the amino group is directly Or it is a resin bonded via other atomic groups such as methylene groups or ethylene groups.

一方、本発明の吸着剤の調)に用いられる溶媒は、九と
えば、アセトニトリル、テトラヒドロフラン、ジエチル
エーテルなどでちる。
On the other hand, the solvent used in the preparation of the adsorbent of the present invention includes, for example, acetonitrile, tetrahydrofuran, diethyl ether, and the like.

本発明の吸着剤の組成について述べると、該吸着剤の構
成成分とする樹脂のアミノ基のチオシアン酸M l) 
ttc対するモル比は11〜30、好ましくは15〜3
である。
Regarding the composition of the adsorbent of the present invention, thiocyanic acid M l) of the amino group of the resin which is a constituent component of the adsorbent.
The molar ratio to ttc is 11-30, preferably 15-3
It is.

本発明の吸着剤は、常潴、常圧下で一酸化炭素を迅速に
吸着し、この吸着剤を加温するか、減圧にするか、ちる
いは−酸化炭素分圧を下げることKより、吸着された一
酸化炭素を脱着させることができるので、混合ガスから
一酸化炭素を容易に分離することが可能である。
The adsorbent of the present invention rapidly adsorbs carbon monoxide under normal pressure, and by heating the adsorbent, reducing the pressure, or lowering the partial pressure of carbon oxide, Since the adsorbed carbon monoxide can be desorbed, it is possible to easily separate carbon monoxide from the mixed gas.

次!で、本発明を実施例によってさらに説明する。Next! Now, the present invention will be further explained by examples.

〔実施例〕〔Example〕

実施例1 本発明の吸着剤を次のように調製した。壕ず、内容積1
00Wltのなす形フラスコ中にチオシアン酸@(1)
s t (a 1.1 rn mat )、アセトニト
リル20−を入れ、磁気かくはん機を用いて室温で混合
した。次いで、このフラスコ内の混合物K、5?lll
lHfの減圧下において80℃で10時間の乾燥を行っ
た。三菱化成工業(株)製のアミノ、基を有するポリス
チレン樹脂Wへ20(1,2級アミノ苓含有51) &
 S m mOA / f−乾燥樹脂)5fを加え、フ
ラスコを密栓して、フラスコ内容物を室温で6時間かく
はんしたのち、5 mHfの減圧下において80℃でか
くはんしなからアセトニトリルを十分に留去し、灰緑色
の粒状固体を得た。これが−酸化炭素吸着剤である。
Example 1 An adsorbent of the present invention was prepared as follows. No trench, internal volume 1
Thiocyanic acid @(1) in a 00 Wlt eggplant flask
s t (a 1.1 rn mat ) and 20 - of acetonitrile were added and mixed at room temperature using a magnetic stirrer. Then the mixture K, 5? in this flask? lll
Drying was carried out at 80° C. for 10 hours under a reduced pressure of 1Hf. To polystyrene resin W having amino groups manufactured by Mitsubishi Chemical Industries, Ltd. 20 (contains 51 primary and secondary amino acids) &
After adding 5 f of S m mOA/f-dry resin), sealing the flask and stirring the flask contents at room temperature for 6 hours, acetonitrile was thoroughly distilled off while stirring at 80 °C under a reduced pressure of 5 mHf. A gray-green granular solid was obtained. This is - carbon oxide adsorbent.

上記の吸着剤5?を内容積100−のなす形フラスコ中
に入れ、5 m1n9の減圧下で排気しながら80℃に
1時間保ったのち、減圧下で室温になるまで放置した。
Adsorbent 5 above? The flask was placed in an oval-shaped flask with an internal volume of 100-100 mm, and the mixture was kept at 80° C. for 1 hour while being evacuated under a vacuum of 5 m1n9, and then allowed to cool to room temperature under reduced pressure.

次いで、この□なす形フラスコを1気圧の一酸化炭素3
tを入れた容器と結合し、室温で、−酸化炭素を該吸着
剤と接触させ、−酸化炭素吸着量をガスビューレット法
により測定した。
Next, this □ eggplant-shaped flask was heated to 1 atm of carbon monoxide 3
-carbon oxide was brought into contact with the adsorbent at room temperature, and the adsorbed amount of -carbon oxide was measured by the gas buret method.

一酸化炭素の吸着はすみやかに始まり、10分後に!I
i”b 37 m motの一酸化炭素が吸着され、6
0分後の一酸化炭素吸着量は4.51 m mojに達
した。
Carbon monoxide adsorption begins quickly, after 10 minutes! I
i”b 37 m mot of carbon monoxide is adsorbed, 6
The amount of carbon monoxide adsorbed after 0 minutes reached 4.51 m moj.

次に、真空ポンプを用いて、この−酸化炭素吸着剤の入
ったなす形フラスコ内を、室温において、5 mHfの
減圧下で20分間排気して、吸着された一1俊化炭素を
脱着させたのち、このなす形フラスコを1気圧の一酸化
炭素5tを入れた容器と結合し、室温で、−酸化炭素を
吸着剤と接触させた。
Next, using a vacuum pump, the inside of the eggplant-shaped flask containing the carbon oxide adsorbent was evacuated at room temperature under a reduced pressure of 5 mHf for 20 minutes to desorb the adsorbed carbon oxide. This eggplant flask was then connected to a container containing 5 tons of carbon monoxide at 1 atm, and the -carbon oxide was brought into contact with the adsorbent at room temperature.

一酸化炭素の吸着はすみやかに始まり、10分後ては2
.72 m motの一酸化炭素が吸着され、60分後
の一酸化炭素吸着量はl 46 m rnaLに達した
Carbon monoxide adsorption begins quickly, and after 10 minutes, 2
.. 72 m mot of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes reached l 46 m rnaL.

以後、上記の操作を繰り返しても、−+1e化炭素の吸
着速度および吸着量に変化は見られなかった。
Thereafter, even if the above operation was repeated, no change was observed in the adsorption rate and amount of -+1e carbon.

その後、この−酸化炭素吸着剤の入ったなす形フラスコ
を160q(a9mmot)の水を含有する1気圧の窒
素ガス(水の濃度1l1000pp ) 2 OLを入
れた容器と結合し、室温で、この水を含む窒素ガスを該
吸着剤と6時間接触させた。次いで、このなす形フラス
コを1気圧の一酸化炭素5tを入れた容器と結合し、室
温で、−1俊化炭素を該吸着剤と接触させた。
The eggplant-shaped flask containing the -carbon oxide adsorbent was then combined with a container containing 1 atm of nitrogen gas (concentration of 1 l 1000 pp of water) 2 OL containing 160 q (a9 mmot) of water, and the water was evaporated at room temperature. was contacted with the adsorbent for 6 hours. The eggplant flask was then coupled to a container containing 5 tons of carbon monoxide at 1 atm, and -1 atomized carbon was contacted with the adsorbent at room temperature.

−酸化炭素の吸着はすみやか(C始まり、10分後には
2.72 m mOLの一酸化炭素が吸着され、60分
後の一酸化炭素吸着量は五47 m mnlに達した。
- Adsorption of carbon oxide started quickly (C, 2.72 mmOL of carbon monoxide was adsorbed after 10 minutes, and the adsorption amount of carbon monoxide reached 547 mmNL after 60 minutes.

すなわち、−酸化炭素の吸着速度および吸着量は、吸着
剤を11000 ppmの水を含有するガスと接触させ
ても、はとんど変化しなかった。
That is, the adsorption rate and amount of -carbon oxide hardly changed even when the adsorbent was brought into contact with a gas containing 11,000 ppm of water.

実施例2 実施例1と同様に調製した一酸化炭素吸着量52を内容
積100−の々す形フラスコ中に入れ、5naHtの減
圧下で排気しながら80℃に1時間保ったのち、減圧下
で室温になるまで放置した。次いで、このなす形フラス
コを1気圧の一酸化炭素5tを入れた容器と結合し、室
温で、−酸化炭素を該吸着剤と接触させ、−酸化炭素吸
着計をガスビューレット法により測定した。
Example 2 Carbon monoxide adsorption amount 52 prepared in the same manner as in Example 1 was placed in a 100-mm internal volume glass-shaped flask, kept at 80°C for 1 hour while being evacuated under a reduced pressure of 5 naHt, and then heated under reduced pressure. It was left to stand until it reached room temperature. Next, this eggplant-shaped flask was connected to a container containing 5 tons of carbon monoxide at 1 atm, and -carbon oxide was brought into contact with the adsorbent at room temperature, and the -carbon oxide adsorption meter was used to measure the amount by gas buret method.

−酸化炭素の吸着はすみやかく始まり、10分後には五
37 m motの一酸化炭素が吸着され、60分後の
一酸化炭素吸着量は4.51 m motに達した。
- The adsorption of carbon oxide started quickly, and after 10 minutes, 537 m mot of carbon monoxide was adsorbed, and after 60 minutes, the adsorption amount of carbon monoxide reached 4.51 m mot.

次に、この吸着剤を1気圧下で80℃に加温し、−酸化
炭素の脱着緊をガスビューレット法により測定した。−
酸化炭素はすみやかに脱着され、脱着1i(ri10分
後に分径9mm・〕tに達した。脱着ガスをガスクロマ
トグラフで分析した結果、脱着ガスは一酸化炭素のみで
あり、他の成分は検出されなかった。
Next, this adsorbent was heated to 80° C. under 1 atm, and the desorption rate of -carbon oxide was measured by the gas buret method. −
The carbon oxide was quickly desorbed and reached desorption 1i (minute diameter 9 mm·)t after 10 minutes of desorption. As a result of analyzing the desorbed gas with a gas chromatograph, the desorbed gas was only carbon monoxide, and no other components were detected. There wasn't.

その後、−酸化炭素を脱着させた吸着剤の入ったなす形
フラスコを、窒素を通じながら放冷したのち、1気圧の
一酸化炭素3tを入れた容器と結合し、室温で、−酸化
炭素を吸着剤と接触させた。
After that, the eggplant-shaped flask containing the adsorbent that had desorbed the -carbon oxide was allowed to cool while passing nitrogen through it, and then combined with a container containing 3 tons of carbon monoxide at 1 atm, and the flask was placed at room temperature to adsorb the -carbon oxide. was brought into contact with the agent.

一酸化炭素の吸着はすみやかに始まり、10分後にはA
 O3m matの一酸化炭素が吸着され、60分後の
一酸化炭素吸着量はl 89 m motK達した。
Adsorption of carbon monoxide begins quickly, and after 10 minutes, A
O3m mat of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes reached l 89 m motK.

比較例 実施例1と同様の乾燥を行った樹脂WA205Fを内容
積100−のなす形フラスコ中に入れ、5 mHtの減
圧下で排気しながら80℃に1時間保ったのち、減圧下
で室温になるまで放置した。次いで、このなす形フラス
コを1気圧の一酸化炭素5を金入れた容器と結合し、−
酸化炭素を該樹脂と接触させたが、−酸化炭素の吸着は
認められなかった。
Comparative Example Resin WA205F, which had been dried in the same manner as in Example 1, was placed in an oval-shaped flask with an internal volume of 100-100 mm, and the flask was kept at 80°C for 1 hour while being evacuated under a reduced pressure of 5 mHt, and then brought to room temperature under reduced pressure. I left it until it was done. This eggplant-shaped flask was then combined with a container containing 1 atm of carbon monoxide 5, and -
Although carbon oxide was brought into contact with the resin, no adsorption of carbon oxide was observed.

一方、上記と同様に、−酸化炭素をチオシアン酸銅(1
)と接触させたが、−酸化炭素の吸着は認められなかっ
た。
On the other hand, in the same way as above, -carbon oxide was replaced with copper thiocyanate (1
), but no adsorption of -carbon oxide was observed.

〔発明の効果〕〔Effect of the invention〕

実施例の結果から明らかなように、本発明の吸着剤は、
常温、常圧下で迅速に一酸化炭素を吸着し、簡単な操作
で吸着した一酸化炭素を脱着させることができるので、
混合ガスから一酸化炭素を容易に分離できるし、吸着、
脱着を繰り返しても性能低下のない優れた吸着剤である
As is clear from the results of the examples, the adsorbent of the present invention has the following properties:
It can quickly adsorb carbon monoxide at room temperature and pressure, and desorb the adsorbed carbon monoxide with simple operations.
Carbon monoxide can be easily separated from mixed gas, adsorbed,
It is an excellent adsorbent that does not deteriorate in performance even after repeated desorption.

また、本発明の一酸化炭素吸着剤は固体でちるので、充
填カラム形式、充填塔形式および流動層形式などの装置
を一酸化炭素の吸着および脱着の装置として用いること
ができる。更L(水分の存在下でも劣化しない吸着剤で
ちる。
Furthermore, since the carbon monoxide adsorbent of the present invention is solid, devices such as packed column type, packed column type, and fluidized bed type can be used as devices for adsorption and desorption of carbon monoxide. (Clean with an adsorbent that does not deteriorate even in the presence of moisture.)

復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara - Sub-agent Atsuo Yasunishi

Claims (1)

【特許請求の範囲】[Claims] アミノ基を有するポリスチレン樹脂とチオシアン酸銅(
I )とを構成成分とすることを特徴とする一酸化炭素
吸着剤。
Polystyrene resin with amino groups and copper thiocyanate (
A carbon monoxide adsorbent characterized by comprising I) as a constituent component.
JP61146232A 1986-06-24 1986-06-24 Carbon monoxide adsorbent Expired - Lifetime JPH0716605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146232A JPH0716605B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146232A JPH0716605B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Publications (2)

Publication Number Publication Date
JPS634846A true JPS634846A (en) 1988-01-09
JPH0716605B2 JPH0716605B2 (en) 1995-03-01

Family

ID=15403094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146232A Expired - Lifetime JPH0716605B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Country Status (1)

Country Link
JP (1) JPH0716605B2 (en)

Also Published As

Publication number Publication date
JPH0716605B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US4470829A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
US4587114A (en) Method for separating carbon dioxide from mixed gas
EP0794240B1 (en) Mercury adsorbent
CA1242684A (en) Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
JPH0147216B2 (en)
KR20180042143A (en) Organic-inorganic porous hybrid material containing intramolecular anhydride groups, adsorbent composition comprising the same and usage thereof for the separation of gaseous hydrocarbon mixtures
JPS6230550A (en) Adsorbent for selectively adsorbing and separating gas and its preparation
Li et al. On the use of 1-butene double-bond isomerization as a probe reaction on cesium-loaded zeolite X
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPH0217214B2 (en)
KR20160107253A (en) Method for removing sulfur compounds from hydrocarbon streams
JPS634846A (en) Adsorbent for carbon monoxide
JPS58124516A (en) Separation of carbon monooxide from mixed gas
JPS634844A (en) Adsorbent for carbon monoxide
JPS634845A (en) Adsorbent for carbon monoxide
JPS6126417B2 (en)
JPS63267434A (en) Carbon monoxide adsorbent
JPH0218896B2 (en)
JPH0232040A (en) Production of terephthalic acid
US4460384A (en) Process for separating carbon monoxide from a gas mixture
JPS6240333B2 (en)
JPS62237942A (en) Preparation of carbon monoxide adsorbent
JPS58104009A (en) Separation of carbon monoxide from mixed gas
JPS5824321A (en) Separation of carbon monoxide
JPS6135128B2 (en)