JPS6348281A - Production of thin film of phthalocyanine compound - Google Patents

Production of thin film of phthalocyanine compound

Info

Publication number
JPS6348281A
JPS6348281A JP61191428A JP19142886A JPS6348281A JP S6348281 A JPS6348281 A JP S6348281A JP 61191428 A JP61191428 A JP 61191428A JP 19142886 A JP19142886 A JP 19142886A JP S6348281 A JPS6348281 A JP S6348281A
Authority
JP
Japan
Prior art keywords
thin film
phthalocyanine compound
conductor
compound
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191428A
Other languages
Japanese (ja)
Other versions
JPH0341560B2 (en
Inventor
Seiichiro Iijima
誠一郎 飯島
Osamu Ono
修 大野
Kunihiro Ichimura
市村 国宏
Yoshio Tanaka
芳雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61191428A priority Critical patent/JPS6348281A/en
Publication of JPS6348281A publication Critical patent/JPS6348281A/en
Publication of JPH0341560B2 publication Critical patent/JPH0341560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PURPOSE:To obtain an electrodeposited thin film of a phthalocyanine compound useful as a catalyst and an organic electronic material, by dissolving an octaalkoxyphthalocyanine compound in an organic solvent, dipping a conductor into the solution and electrifying the solution using the conductor as a working electrode. CONSTITUTION:A compound of formula (R is 1-18C alkyl; M is H2, Mg, Cr, Mn, Fe, Cu, Zn, Pb, etc.) is dissolved in an organic solvent (e.g. dichloromethane, DMF, etc.), a supporting electrolyte (e.g. LiClO4) is added to the solution and the mixture is filled in an electrolytic cell. A conductor (e.g. Pt, graphite, etc.) and a counter electrode are inserted into the mixture to effect the electrolytic deposition of a thin film of a phthalocyanine compound on the conductor. The process enables the production of a thin film free from binder and having freely controllable thickness. The thin film has uniform composition and sufficiently high adhesivity to the substrate. The compound becomes insoluble in solvents other than concentrated sulfuric acid by the electrolytic deposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はごタロシアニン化合物からぴる電着薄膜の製造
方法に関するものである。さらに詳しくいえば1本発明
は、各種化学反応の触媒や有機電子材料として有用な電
着薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an electrodeposited thin film from a thalocyanine compound. More specifically, the present invention relates to a method for producing an electrodeposited thin film useful as a catalyst for various chemical reactions or as an organic electronic material.

従来の技術 フタロシアニン化合物は従来より青色顔料や各種化学反
応の触媒などとして広範に利用されてきた。これらフタ
ロシアニン化合物の薄膜の形成方法は各種基体を7タロ
シアニン化合物で塗装する上で重要であるとともに、触
媒として用いる場合にも少量のフタロシアニンで有効に
触媒機能を発揮させる手段として重要であり、さらに光
電変換機能のようにフタロシアニンを薄膜化して初めて
発現される機能もある。フタロシアニン化合物を薄膜と
して得る方法としては、従来、樹脂中にフタロシアニン
粒子を分散させ、これを基体上に塗布する方法が一般に
用いられてきた(例えば有機合成化学協会編「新版染料
便覧」 (昭45.7.20)。
BACKGROUND OF THE INVENTION Phthalocyanine compounds have been widely used as blue pigments and catalysts for various chemical reactions. The method of forming a thin film of these phthalocyanine compounds is important in coating various substrates with 7-thalocyanine compounds, and when used as a catalyst, it is important as a means to effectively exert the catalytic function with a small amount of phthalocyanine. Some functions, such as conversion functions, are only expressed when phthalocyanine is made into a thin film. Conventionally, the method of obtaining a thin film of a phthalocyanine compound has been to disperse phthalocyanine particles in a resin and apply it onto a substrate (for example, in ``New Edition Dye Handbook'' edited by the Organic Synthetic Chemistry Association (1973)). .7.20).

丸首、p168)が、この方法では薄い塗膜を得ること
が困難であるとともに触媒等として用いる場合には、樹
脂の混入により、フタロシアニンの触媒機能等が妨げら
れるといった欠点を有している。
However, it is difficult to obtain a thin coating film using this method, and when used as a catalyst, the catalytic function of phthalocyanine is hindered by the contamination of resin.

一方、真空蒸着法によってフタロシアニン化合物の薄膜
を作製することも可能であり(例えば南信次、佐々木寛
治「昭和55年度繊維高分子材料研究所研究発表会資料
」 (昭和55.11.27)、日本産業技術振興協会
、pss)、この方法によればフタロシアニン化合物の
みからなる薄膜を形成することができるが、真空蒸着を
行なうためには大がかりで高価な装置が必要であるとと
もに9作製した薄膜が強度的に劣り、指先でこすった程
度で基体よりはく離してしまうという欠点を有している
On the other hand, it is also possible to produce thin films of phthalocyanine compounds by vacuum deposition (for example, Shinji Minami and Hiroharu Sasaki, "Materials from the 1980 Textile and Polymer Materials Research Institute Research Presentation" (November 27, 1980), According to this method, a thin film consisting only of phthalocyanine compounds can be formed, but vacuum deposition requires large-scale and expensive equipment, and the thin film produced is It has the disadvantage of being inferior in strength and peeling off from the substrate even when rubbed with a fingertip.

はとんどのフタロシアニン化合物は水及び有機溶媒類に
極めて難溶性であり、フタロシアニン化合物の薄膜の形
成法として上記の粒子分散法及び蒸着法が主に用いられ
ている理由もこの点にあるが、最近、特定の有機溶媒に
対し大きな溶解度を示すものとしてオクタアルコキシフ
タロシアニン類が見出されている(例えば、大野修、市
村国宏。
Most phthalocyanine compounds are extremely poorly soluble in water and organic solvents, and this is also the reason why the above-mentioned particle dispersion method and vapor deposition method are mainly used to form thin films of phthalocyanine compounds. Recently, octaalkoxyphthalocyanines have been discovered to exhibit high solubility in specific organic solvents (for example, Osamu Ohno, Kunihiro Ichimura).

佐々木俊樹「日本化学会第51秋季年会講演予稿集」 
(昭60.9.17 ”) 、 日本化学会、p621
)。
Toshiki Sasaki “Proceedings of the 51st Autumn Annual Meeting of the Chemical Society of Japan”
(September 17, 1986), Chemical Society of Japan, p621
).

これらのオクタアルコキシフタロシアニン類の溶液を用
いればスプレー法、流延溶媒除法などによって基体上に
比較的容易に薄膜を形成することができるが、この方法
によって作製した薄膜は強度的に劣り、また均質な膜を
得ることが困難であるという欠点を有している。
If a solution of these octaalkoxyphthalocyanines is used, a thin film can be relatively easily formed on a substrate by a spray method, a casting solvent removal method, etc., but the thin film produced by this method has poor strength and is not homogeneous. It has the disadvantage that it is difficult to obtain a film of high quality.

発明が解決しようとする問題点 本発明の目的は、フタロシアニン化合物のみからなる薄
膜を容易に形成することができ、かつ基ニドに対する密
着性の良い均質な薄膜を得ることのできる製造方法を提
供することである。
Problems to be Solved by the Invention An object of the present invention is to provide a manufacturing method that can easily form a thin film consisting only of a phthalocyanine compound and that can obtain a homogeneous thin film with good adhesion to the base nide. That's true.

発明を解決するための手段 本発明者らはこの目的を達成するために種々研究を重ね
た結果、ある種のオクタアルコキシフタロシアニン類を
用いればこれを導体上に電着しつるという知見を得9本
発明はこの知見に基づいてなされたものである。
Means for Solving the Invention The inventors of the present invention have carried out various studies to achieve this objective, and as a result have found that certain octaalkoxyphthalocyanines can be electrodeposited on conductors9. The present invention has been made based on this knowledge.

すなわち9本発明は一般式 (式中のRは1〜18個の炭素数をもつアルキル基2M
は&4 w Mg * Cr、 Mns Fe、 Go
、 Ns、 Cu。
That is, 9 the present invention is based on the general formula (wherein R is an alkyl group having 1 to 18 carbon atoms)
&4 w Mg * Cr, Mns Fe, Go
, Ns, Cu.

2n又はpbである) で表わされるフタロシアニン化合物を有機溶媒に溶解し
1次いで上記のフタロシアニン化合物の溶液中に導体を
挿入し、しかる後に上記の導体を作用電極として通電す
ることにより、上記導体上に上記フタロシアニン化合物
を薄膜上に電着させることを特徴とするフタロシアニン
化合物薄膜の製造方法を提供するものである。
A phthalocyanine compound represented by 2n or pb) is dissolved in an organic solvent, a conductor is inserted into the solution of the phthalocyanine compound, and then a current is applied using the conductor as a working electrode to form a conductor on the conductor. The present invention provides a method for producing a phthalocyanine compound thin film, which comprises electrodepositing the phthalocyanine compound onto the thin film.

本発明で用いられるフタロシアニン化合物は。The phthalocyanine compound used in the present invention is:

前記一般式(I)で表わされるものであって2式中のR
は1〜18個の炭素原子をもつアルキル基のいずれでも
良く、直鎖状のものが特に均質な電着膜を与えるので好
ましい。また式中のMはHlt Mg。
It is represented by the general formula (I) above, and R in the formula 2 is
may be any alkyl group having 1 to 18 carbon atoms, and linear ones are preferred because they provide a particularly homogeneous electrodeposited film. Moreover, M in the formula is Hlt Mg.

Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Z
ns Pbのいずれでも良<、Mg、Znが特に密着性
の優れた電着膜を与えるので好ましい。
Cr, Mn, Fe, Co, Ni, Cu, Z
Any of Pb, Mg, and Zn are preferable because they provide an electrodeposited film with particularly excellent adhesion.

本発明の7タロシアニン化合物薄膜の製造方法において
は、まず上記のフタロシアニン化合物を含んだ有機溶媒
溶液を調製する。この際のフタロシアニン化合物の濃度
は0.1ないし10mMの範−のものが好都合に用いら
れる。また使用する有−j 機溶媒としては通常の電気化学反応の非水溶媒として汎
用されるものの中から、上記のフタロシアニン化合物に
対する溶解度を考慮しながら任意に選ぶことができ2例
えば、ジクロルメタン、アセトニトリル、ニトロメタン
、プロピレンカーボネート、ジメチルホルムアミド、ジ
メチルスルホキシドなどを挙げることができ、この際、
2種類以上の溶媒を混合して用いても良い。また上記の
フタロシアニン化合物溶液には、電導度を付与するため
に支持電解質を混入する必要があるが、この場合用いる
支持電解質としては9通常の電気化学反応において非水
溶媒用に汎用されるものの中から、上記の有機溶媒への
溶解度を考慮しながら任意に選ぶことができ、たとえば
、陰イオンとしてCノα−、BF<−、PF6−等を有
するリチウム塩や同じ(陰イオンとして0自−、BF4
−、 PF6−等を有するテトラメチルアンモニウム、
テトラエチルアンモニウム、テトラ−n−ブチルアンモ
ニウム等のテトラアルキルアンモニウム塩類を挙げるこ
とがで、きる。この際の支持電解質の濃度としては0.
05ないし0.5Mの範囲のものが好都合に用いられる
In the method for producing a 7-thalocyanine compound thin film of the present invention, first, an organic solvent solution containing the above-mentioned phthalocyanine compound is prepared. The concentration of the phthalocyanine compound at this time is conveniently in the range of 0.1 to 10 mM. The organic solvent to be used can be arbitrarily selected from among those commonly used as non-aqueous solvents for ordinary electrochemical reactions, taking into consideration the solubility for the phthalocyanine compound2.For example, dichloromethane, acetonitrile, Examples include nitromethane, propylene carbonate, dimethylformamide, dimethyl sulfoxide, etc.
A mixture of two or more types of solvents may be used. In addition, it is necessary to mix a supporting electrolyte into the above phthalocyanine compound solution in order to impart conductivity, but the supporting electrolyte used in this case is one of the 9 commonly used non-aqueous solvents in ordinary electrochemical reactions. For example, lithium salts having C-α-, BF<-, PF6-, etc. as anions, or lithium salts having the same anion (0- , BF4
-, tetramethylammonium with PF6-, etc.
Examples include tetraalkylammonium salts such as tetraethylammonium and tetra-n-butylammonium. The concentration of supporting electrolyte at this time is 0.
A range of 0.05 to 0.5M is advantageously used.

本発明においてフタロシアニン化合物の薄膜を形成させ
る基体となる導体は、後述のように電着反応の作用電極
として用いられ、かつこの電着反応が陽分極下で進行す
ることから、陽分極により溶解、不動態化等を起こさな
い導体である必要があり、この条件にかなうものとして
9例えば、白金、金、パラジウム、ロジウム、ルテニウ
ム、イリジウム等の貴金属類、グラッシーカーボン、グ
ラファイト等の炭素材料、および酸化スズ、酸化インジ
ウム等を表面層として有する電導性ガラスや導電性セラ
ミックスを挙げることができる。これら導体の形状につ
いては特に制限はない。
In the present invention, the conductor serving as the substrate on which the thin film of the phthalocyanine compound is formed is used as a working electrode for the electrodeposition reaction as described below, and since this electrodeposition reaction proceeds under anodic polarization, it is dissolved by anodic polarization. It is necessary to be a conductor that does not cause passivation, etc., and materials that meet this condition include noble metals such as platinum, gold, palladium, rhodium, ruthenium, and iridium, carbon materials such as glassy carbon and graphite, and oxidized materials. Examples include conductive glass and conductive ceramics having a surface layer containing tin, indium oxide, or the like. There are no particular restrictions on the shape of these conductors.

本発明においては2次に、支持電解質を含んだ上記のフ
タロシアニン化合物溶液を電解セル中に満たし、これに
作用電極として使用する上記導体および対極、また必要
に応じ参照電極を挿入し。
In the present invention, secondly, the above-mentioned phthalocyanine compound solution containing a supporting electrolyte is filled into an electrolytic cell, and the above-mentioned conductor used as a working electrode, a counter electrode, and, if necessary, a reference electrode are inserted into the cell.

ついで定電位法、電位走査法、定電流法等により’b用
電極を陽分極することにより9作用電極上に往で1 フタロシアニン化合物を薄膜状に電着させる。対極およ
び参照電極については9通常の電気化学測定法において
汎用されるものを任意に用いることができ、対極として
は例えば、白金、金などの貴金属電極、参照電極として
は例えば、水素電極。
Next, the 'b electrode is anodically polarized using a constant potential method, a potential scanning method, a constant current method, etc., so that a thin film of at least 1 phthalocyanine compound is electrodeposited on the working electrode. As for the counter electrode and the reference electrode, any one commonly used in ordinary electrochemical measurement methods can be used.The counter electrode is, for example, a noble metal electrode such as platinum or gold, and the reference electrode is, for example, a hydrogen electrode.

甘こう電極、銀−塩化銀電極などを挙げることができる
Examples include a sweet tooth electrode, a silver-silver chloride electrode, and the like.

電着反応を起こすのに必要とされる作用電極の最低電位
は、使用する溶媒により異なり、またフタロシアニン化
合物の構造によっても若干具なるが、−例としてジクロ
ルメタンを溶媒として用いた場合を示すと、1.3〜1
.5V(参照電極として銀−塩化銀電極を用いた場合、
以下同じ)の範囲にある。したがって定電位法による場
合には、この電位範囲よりやや高めの電位、たとえば1
.6〜2.0M程度に作用電極の電位を設定することに
より効率的に電着を行うことができる。一方、電位走査
法は作用電極について陽分極、陰分極を繰り返す方法で
あるが、陽分極の際に上述した電着反応を起こすのに必
要とされる最低電位をやや上ま−わる電位まで電位走査
を行うことにより電着薄膜を作製することができる。な
お、参照電極を用いない場合には2作用電極と対極の間
の電圧を調節することにより電着をおこなう。たとえば
9作用電極と対極との間の電圧を変えながら作用電極の
表面を観察する等の方法により、あらかじめ電着の起こ
る電圧の最低値を求めておき、つぎに2作用電極と対極
の間の電圧を上記の最低値をやや上まわる値に設定する
ことにより効率的に電着を行うことができる。この他室
電流法によっても電着薄膜を作製することができるが、
得られる薄膜の均質性2強度のいずれにおいても、定電
位法もしくは電位走査法によって作製したものの方が優
れている。
The minimum potential of the working electrode required to cause the electrodeposition reaction varies depending on the solvent used and also depends on the structure of the phthalocyanine compound, but as an example, when dichloromethane is used as the solvent, 1.3~1
.. 5V (when using a silver-silver chloride electrode as a reference electrode,
(same below). Therefore, when using the constant potential method, a potential slightly higher than this potential range, for example 1
.. Electrodeposition can be carried out efficiently by setting the potential of the working electrode to about 6 to 2.0M. On the other hand, the potential scanning method is a method in which the working electrode is repeatedly polarized anodically and cathodically. During anodic polarization, the potential is raised to a potential slightly higher than the minimum potential required to cause the electrodeposition reaction described above. An electrodeposited thin film can be produced by scanning. Note that when a reference electrode is not used, electrodeposition is performed by adjusting the voltage between the two working electrodes and the counter electrode. For example, the minimum voltage at which electrodeposition occurs is determined in advance by observing the surface of the working electrode while changing the voltage between the working electrode and the counter electrode. By setting the voltage to a value slightly higher than the above-mentioned minimum value, electrodeposition can be performed efficiently. Although electrodeposited thin films can also be produced by this extra-chamber current method,
In both of the homogeneity and strength of the resulting thin film, those produced by the constant potential method or the potential scanning method are superior.

発明の効果 本発明のフタロシアニン化合物薄膜の製造方法は、特定
のフタロシアニン化合物が導体上に電着される現象を利
用しているので、樹脂等のパインダーを含有しないフタ
ロシアニン化合物のみからなる薄膜を容易に製造するこ
とができる。さらに電気化学的方法であるために、たと
えば定電位法であれば通電時間により、また電位走査法
であれば走査回数により自由に膜厚を制御できるという
特徴も有している。
Effects of the Invention The method for producing a phthalocyanine compound thin film of the present invention utilizes the phenomenon in which a specific phthalocyanine compound is electrodeposited on a conductor, so it is possible to easily produce a thin film made only of a phthalocyanine compound without containing a binder such as a resin. can be manufactured. Furthermore, since it is an electrochemical method, it also has the feature that the film thickness can be freely controlled, for example, by controlling the current application time in the case of a constant potential method, or by controlling the number of scans in the case of a potential scanning method.

本発明ニよって製造されたフタロシアニン化合物薄膜は
均質であり、基体への密着性も十分であり、実用上満足
し得るものである。特に電位走査法によれば、膜厚が1
ooX程度と極めて薄くともピンホールのない、十分強
い膜が得られる。また上記のフタロシアニン化合物は電
着の結果不溶化し、濃硫酸以外の溶媒、たとえば水、有
機溶媒類に実質上溶解しなくなるので2本発明によって
製造されたフタロシアニン化合物薄膜はこれらの溶媒中
においても安定に使用することができる。
The phthalocyanine compound thin film produced according to the present invention is homogeneous, has sufficient adhesion to the substrate, and is practically satisfactory. In particular, according to the potential scanning method, the film thickness is 1
Even if it is extremely thin, on the order of ooX, a sufficiently strong film without pinholes can be obtained. Furthermore, the above phthalocyanine compound becomes insolubilized as a result of electrodeposition and becomes virtually insoluble in solvents other than concentrated sulfuric acid, such as water and organic solvents, so the phthalocyanine compound thin film produced by the present invention is stable even in these solvents. It can be used for.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 式 を有するフタロシアニン化合物と過塩素酸テトラエチル
アンモニウムをそれぞれ2 mM 、  0.1 Mの
濃度で含んだジクロルメタン溶液を調製した。つぎに5
01fLlのガラス製ビーカーを電解セルとして用い、
これに上記のジクロルメタン溶液3Q’mlを満たし、
さらにこの溶液中に1作用電極としての白金板(10m
mX 10mmX 0.5mm)、対極としての白金線
(直径0.3mm)および参照電極としての銀−塩化銀
電極(東亜電波製H3−2’05C型)を挿入した。
Example 1 A dichloromethane solution containing a phthalocyanine compound having the formula and tetraethylammonium perchlorate at concentrations of 2 mM and 0.1 M, respectively, was prepared. Next 5
Using a glass beaker of 01fLl as an electrolytic cell,
Fill this with 3Q'ml of the above dichloromethane solution,
Furthermore, a platinum plate (10 m
A platinum wire (diameter 0.3 mm) as a counter electrode and a silver-silver chloride electrode (Model H3-2'05C manufactured by Toa Denpa) as a reference electrode were inserted.

ついでポテンショスタット(北斗電工製HA−501型
)と関数発生装置(北斗電工製HB−104型)を組み
合わせて、−1,0V〜+1.7vの範囲内で100m
V/sの走査速度において電位走査を繰返したところ(
電位は銀−塩化銀電極に対する値)、白金板上に徐々に
フタロシアニン化合物特有の青色を呈する薄膜が形成さ
れた。電位走査を50回で停止して白金板を溶液より取
り出したところ、均質で極めて表面の平滑な薄膜が白金
板上に形成されており、このものの膜厚はlzo′Aで
あった。またこの薄膜は粘着テープ法によっても白金板
よりはく離することはなかった。
Next, combine a potentiostat (HA-501 type manufactured by Hokuto Denko) and a function generator (HB-104 type manufactured by Hokuto Denko) to generate a voltage of 100 m within the range of -1.0V to +1.7V.
When potential scanning was repeated at a scanning speed of V/s (
The potential was a value relative to a silver-silver chloride electrode), and a thin film exhibiting a blue color characteristic of phthalocyanine compounds was gradually formed on the platinum plate. When the potential scanning was stopped after 50 times and the platinum plate was taken out from the solution, a homogeneous thin film with an extremely smooth surface was formed on the platinum plate, and the film thickness of this film was lzo'A. Moreover, this thin film was not peeled off from the platinum plate even by the adhesive tape method.

上記のように作製した薄膜の各種溶媒に対する溶解性を
調べたところ9浪硫酸にのみ溶解し、これ以外の溶媒2
例えば水やベンゼン、ジクロルメタン、アセトニル、ジ
メチルホルムアミド、ジメチルスルホキシドなどの有機
溶媒類に極めて難溶性であった。他方、原料として用い
たフタロシアニン化合物に!′−れらの有機溶、媒に相
当の溶解度介有するので、電着により原料として用いた
フタロシアニン化合物の化学構造に変化が生じているこ
とも考えられる。しかしながら薄膜がフタロシアニン化
合物特有の青色を呈すること、およびこの□薄膜につい
て光電子分光法によってZnとNの含有比を求めたとこ
ろ1:8であって、原料として用いたフタロシアニン化
合物と同じであったことから、フタロシアニン環自体の
構造が保持されていることは明らかであり、したがって
、化学構造上の変゛化があったとしても1例えば置換基
の化学構造の変化のような部分的なものであると予想で
きる。
When the solubility of the thin film prepared above in various solvents was investigated, it was dissolved only in 9% sulfuric acid, and in other solvents 2.
For example, it is extremely poorly soluble in water and organic solvents such as benzene, dichloromethane, acetonyl, dimethylformamide, and dimethyl sulfoxide. On the other hand, the phthalocyanine compound used as a raw material! Since the phthalocyanine compound has a considerable solubility in these organic solvents and media, it is possible that the chemical structure of the phthalocyanine compound used as a raw material is changed by electrodeposition. However, the thin film exhibited a blue color characteristic of phthalocyanine compounds, and the content ratio of Zn and N of this thin film was determined by photoelectron spectroscopy to be 1:8, which was the same as that of the phthalocyanine compound used as a raw material. From this, it is clear that the structure of the phthalocyanine ring itself is maintained, and therefore, even if there is a change in the chemical structure, it is only a partial change, such as a change in the chemical structure of a substituent. It can be expected.

実施例2    ′ 式                ・を有するフタロ
シアニン化合物とホウフッ化テトラ−n−ブチルアンモ
ニウムをそれぞれ0.5 mM 。
Example 2 0.5 mM each of a phthalocyanine compound having the formula . and tetra-n-butylammonium borofluoride.

0.05Mの濃度で含んだジクロルメタンとアセトニト
リルの混合溶液(容積比1:1)を調製した。
A mixed solution of dichloromethane and acetonitrile (volume ratio 1:1) containing a concentration of 0.05M was prepared.

つぎに5QmJのガラス製ビーカーを電解セルとして用
い、これに上記のジクロルメタン−アセトニトリル混合
溶液30m1を満たし、さらにこの溶液中に9作用電極
としての金板(10mmX 10mmX0.5mm)+
対極としての白金線(直径0.3 mm )および参照
電極としての銀−塩化銀電極(東亜電波製H3−205
C型)を挿入した。ついでポテンショスタット(北斗電
工製HA−501型)を用いて9作用電極の電位を+1
.7vに設定した(電位は銀−塩化銀電極に対する値)
。30分後に通電を停止して金板を溶液より取り出した
ところ、フタロシアニン化合物特有の青色を呈する均質
で平滑な薄膜が金板上に形成されており、このものの膜
厚は370Aであった。またこの薄膜は指先で強くこす
っても金板よりはく離することはなかった。上記のよう
にして作製した薄膜の各種溶媒に対する溶解性を調べた
ところ、濃硫酸にのみ溶解し、これ以外の溶媒、たとえ
ば水やベンゼン、ヘキサン。
Next, a 5QmJ glass beaker was used as an electrolytic cell, filled with 30ml of the above dichloromethane-acetonitrile mixed solution, and in this solution was added 9 gold plates (10mm x 10mm x 0.5mm) as working electrodes.
A platinum wire (diameter 0.3 mm) as a counter electrode and a silver-silver chloride electrode (H3-205 manufactured by Toa Denpa) as a reference electrode.
Type C) was inserted. Then, using a potentiostat (Hokuto Denko HA-501 model), the potential of the 9 working electrodes was increased by +1.
.. It was set to 7V (potential is for silver-silver chloride electrode)
. After 30 minutes, the electricity was turned off and the gold plate was removed from the solution, and a homogeneous and smooth thin film with a blue color characteristic of phthalocyanine compounds was formed on the gold plate, and the film thickness was 370A. Moreover, this thin film did not peel off from the metal plate even when rubbed strongly with the fingertips. When the solubility of the thin film produced as described above in various solvents was investigated, it was found that it was only soluble in concentrated sulfuric acid, but not in other solvents such as water, benzene, and hexane.

ジクロルメタン、エタノール、メタノール、アセトニト
リル、ジメチルホルムアミド、ジメチルスルホキシドな
どの有機溶媒類に極めて難溶性であった。
It was extremely poorly soluble in organic solvents such as dichloromethane, ethanol, methanol, acetonitrile, dimethylformamide, and dimethyl sulfoxide.

特許出願人 工業技術院長    飯塚 幸三指定代理
人 工業技術院繊維高分子材料竺究所長 −°・、量大
  昭  □
Patent applicant Kozo Iizuka, Director of the Agency of Industrial Science and Technology Designated representative: Director of the Textile and Polymer Materials Research Institute, Agency of Industrial Science and Technology −°・, Akira Yodai □

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中のRは1〜18個の炭素数をもつアルキル基、M
はH_2、Mg、Cr、Mn、Fe、Co、Ni、Cu
、Zn又はPbである) で表わされるフタロシアニン化合物を有機溶媒に溶解し
、次いで上記のフタロシアニン化合物の溶液中に導体を
挿入し、しかる後に上記の導体を作用電極として通電す
ることにより、上記導体上に上記フタロシアニン化合物
を薄膜状に電着させることを特徴とするフタロシアニン
化合物薄膜の製造方法。
[Claims] 1. General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R is an alkyl group having 1 to 18 carbon atoms, M
is H_2, Mg, Cr, Mn, Fe, Co, Ni, Cu
, Zn or Pb) in an organic solvent, then inserting a conductor into the solution of the above phthalocyanine compound, and then applying current to the above conductor as a working electrode. 1. A method for producing a phthalocyanine compound thin film, which comprises electrodepositing the phthalocyanine compound in the form of a thin film.
JP61191428A 1986-08-15 1986-08-15 Production of thin film of phthalocyanine compound Granted JPS6348281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191428A JPS6348281A (en) 1986-08-15 1986-08-15 Production of thin film of phthalocyanine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191428A JPS6348281A (en) 1986-08-15 1986-08-15 Production of thin film of phthalocyanine compound

Publications (2)

Publication Number Publication Date
JPS6348281A true JPS6348281A (en) 1988-02-29
JPH0341560B2 JPH0341560B2 (en) 1991-06-24

Family

ID=16274448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191428A Granted JPS6348281A (en) 1986-08-15 1986-08-15 Production of thin film of phthalocyanine compound

Country Status (1)

Country Link
JP (1) JPS6348281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296162A (en) * 1988-12-15 1994-03-22 Mitsui Toatsu Chemicals, Incorporated Near infrared absorbers and display/recording materials using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296162A (en) * 1988-12-15 1994-03-22 Mitsui Toatsu Chemicals, Incorporated Near infrared absorbers and display/recording materials using the same
US5409634A (en) * 1988-12-15 1995-04-25 Mitsui Toatsu Chemicals, Incorporated Near infrared absorbers and display/recording materials using the same

Also Published As

Publication number Publication date
JPH0341560B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
US5876581A (en) Film of iron (III) hexacyanoferrate (II) and process of synthesizing same
Bond et al. Mechanistic aspects of the electron and ion transport processes across the electrode| solid| solvent (electrolyte) interface of microcrystalline decamethylferrocene attached mechanically to a graphite electrode
CN100580153C (en) Method for forming polymer film on surface that conducts or semiconducts electricity by means of electrografting, surfaces obtained thereby, and applications thereof
Rubinstein The influence of the polymer structure on electrochemical properties of uncharged molecules in nafion films on electrodes
WO1999000536A2 (en) Porous film and method of preparation thereof
Assaker et al. Electrochemical study and electrodeposition of copper in the hydrophobic tri-n-octylmethylammonium chloride ionic liquid media
EP0618276A1 (en) Method of depositing a film of composite material on a electroconductive surface by electropoymerisation
CN110129850A (en) A kind of stepped depositions preparation method of ferrocyanide iron thin film
CN103788016B (en) Containing can the organic molecule film and preparation method thereof of protonated nitrogen-atoms
US4451348A (en) Functional electrode
JPS6348281A (en) Production of thin film of phthalocyanine compound
Smith et al. Charge-transport properties of an electrode-confined redox polymer derived from a monomer consisting of a quinone flanked by two benzylviologen subunits
EP0193978B1 (en) Process for incorporating powders into a polymer layer
Nishihara et al. New approach to graphite synthesis: electrochemical carbonization of hexachlorobuta-1, 3-diene
Katsu et al. Photoelectrochemical studies of metallotetraphenylporphyrin electrodes
CA1212075A (en) Iron (iii) hexacyanoferrate (ii) film and its process of synthesizing same
US3914509A (en) Chemical modification of the surface of pyrolytic graphite
Rosseinsky et al. Anion-dependent aqueous electrodeposition of electrochromic 1, 1′-bis-cyanophenyl-4, 4′-bipyridilium (cyanophenylparaquat) radical cation by cyclic voltammetry and spectroelectrochemical studies
JPS62164730A (en) Production of polyaniline film
Zippel et al. ATR-IR studies of CO adsorption from solutions
CN114892233B (en) Method for electrochemical deposition of metal organic framework film on porous carrier
JP2509635B2 (en) Method for producing metal chalcogenide particle dispersed film
Borole et al. Electrochemical synthesis and characterization of the conducting copolymer poly (aniline-co-o-anisidine-co-o-toluidine)
JPS6223195A (en) Conductive circuit board and improvement in conductivity thereof
JP2805018B2 (en) Manufacturing method of modified electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term