JPS6348138B2 - - Google Patents
Info
- Publication number
- JPS6348138B2 JPS6348138B2 JP53102052A JP10205278A JPS6348138B2 JP S6348138 B2 JPS6348138 B2 JP S6348138B2 JP 53102052 A JP53102052 A JP 53102052A JP 10205278 A JP10205278 A JP 10205278A JP S6348138 B2 JPS6348138 B2 JP S6348138B2
- Authority
- JP
- Japan
- Prior art keywords
- fixed
- plate
- movable
- electrode
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000010409 thin film Substances 0.000 description 19
- 239000004020 conductor Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Description
【発明の詳細な説明】
本発明は、静電吸引力とばね復元力によつて接
点を開閉させる機構を有する継電器に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a relay having a mechanism for opening and closing contacts using electrostatic attraction force and spring restoring force.
一般に、機械式の継電器は信号電流を断続する
ための少なくとも一対の接点、各接点を保持する
ばねまたは支持板、および接点を開閉させるため
のばね変位機構等からなる。前記接点は可動接点
と固定接点とからなり、多くの継電器では、可動
接点は可動ばね上に、固定接点は固定ばねまたは
接点支持板上に設けられている。 Generally, a mechanical relay consists of at least one pair of contacts for connecting and disconnecting a signal current, a spring or support plate for holding each contact, and a spring displacement mechanism for opening and closing the contacts. The contacts include a movable contact and a fixed contact, and in many relays, the movable contact is provided on a movable spring, and the fixed contact is provided on a fixed spring or a contact support plate.
また、継電器は可動接点および固定接点に接続
されている導体および信号電流用端子、ばね変位
機構を電気的に動作させるための駆動電流が流れ
る導体および端子を有し、継電器内では信号電流
が流れる回路と駆動電流が流れる回路は互いに絶
縁され独立している。 In addition, the relay has conductors and signal current terminals connected to the movable and fixed contacts, a conductor and terminal through which a drive current flows to electrically operate the spring displacement mechanism, and a signal current flows within the relay. The circuit and the circuit through which the drive current flows are isolated and independent from each other.
可動接点と固定接点の開閉動作は、ばね変位機
構とばね復元力を利用した可動ばねの変位動作に
よつて行われる。ばね変位機構としては電磁吸引
力を利用した電磁駆動形、静電吸引力を利用した
静電駆動形等がある。 The opening and closing operations of the movable contact and the fixed contact are performed by the displacement operation of the movable spring using a spring displacement mechanism and spring restoring force. The spring displacement mechanism includes an electromagnetic drive type that uses electromagnetic attraction, an electrostatic drive type that uses electrostatic attraction, and the like.
本発明が属する静電駆動形継電器の従来のもの
は第1図および第2図に示すように、ガラス基板
1上に設けた固定電極板2、一端をガラス基板1
上に固定されたばね板としてのプラスチツク薄板
3、該プラスチツク薄板3に基端側を取りつけら
れた可動ガラス板4、該可動ガラス板に設けた可
動電極板5、固定電極端子6を端部に形成した固
定電極板接続導体7、可動電極板端子8を端部に
形成した可動電極板接続導体9、前記可動電極板
5を固定、支持する金属固定部10からなり、前
記固定電極板接続導体7および可動電極板接続導
体9を経由して電圧を印加されることにより固
定、可動両電極板2,5間に静電吸引力が働き、
可動ガラス板4の一端縁が金属固定部10を支点
として回動し、可動ガラス板4に設けた可動接点
11とガラス基板1に設けた信号端子12に接続
されている固定接点14とが接触し、信号線路を
閉成するものである。また15は支持片16によ
り支持され継電器の主要部を被う蓋体をなす上部
ガラス板、17はハーメチツクシール部である。 As shown in FIGS. 1 and 2, the conventional electrostatic drive type relay to which the present invention pertains has a fixed electrode plate 2 provided on a glass substrate 1, one end of which is connected to the glass substrate 1.
A thin plastic plate 3 as a spring plate fixed on the top, a movable glass plate 4 whose base end side is attached to the thin plastic plate 3, a movable electrode plate 5 provided on the movable glass plate, and a fixed electrode terminal 6 formed at the end. The fixed electrode plate connecting conductor 7 includes a fixed electrode plate connecting conductor 7, a movable electrode plate connecting conductor 9 having a movable electrode plate terminal 8 formed at the end, and a metal fixing part 10 that fixes and supports the movable electrode plate 5. By applying a voltage via the movable electrode plate connecting conductor 9, an electrostatic attraction force is exerted between the fixed and movable electrode plates 2 and 5.
One end edge of the movable glass plate 4 rotates about the metal fixing part 10, and the movable contact 11 provided on the movable glass plate 4 and the fixed contact 14 connected to the signal terminal 12 provided on the glass substrate 1 come into contact. and closes the signal line. Further, 15 is an upper glass plate which is supported by a support piece 16 and forms a lid covering the main part of the relay, and 17 is a hermetic seal portion.
このような継電器の静電吸引力は、第3図に示
すように固定電極板2と可動電極板5の距離を一
端側でl0(m)、他端側でl1(m)とし、継電器をと
りまく大気の誘電率は真空の誘電率ε0(8.855×
10-12F/m)にほぼ等しいことにより真空の誘電
率に置換え、可動電極板の電極面積をS(m2)、電
極板間電圧をV(volt)とすると、静電吸引力f
(N)は
f=(1/2)ε0SV2(1/l0l1) (1)
で与えられる。 The electrostatic attraction force of such a relay is determined by setting the distance between the fixed electrode plate 2 and the movable electrode plate 5 as l 0 (m) at one end and l 1 (m) at the other end, as shown in Fig. 3. The permittivity of the atmosphere surrounding the relay is the permittivity of vacuum ε 0 (8.855×
10 -12 F/m), the electrostatic attraction force f
(N) is given by f=(1/2)ε 0 SV 2 (1/l 0 l 1 ) (1).
このような継電器では、静電吸引力が大きいこ
とが望ましい。静電吸引力を大にするには上記第
(1)式からも明らかなように、電極面積を大にする
か、電極板間距離を小さくするか、あるいは電極
板間電圧を高くするかの3つの手段が考えられ
る。しかし、電極面積を大きくすることは継電器
全体を大きくすることになり、また電極の平面
度、電極位置決めなどの機械的精度をより高度化
しなければならないので製作、組立て工数が複雑
化する。また電極板間距離を小さくすることも前
記と同様機械的に高精度が必要となり製作組立が
困難となるうえに、何等かの原因により両電極が
接触して短絡を起し易くなり、また電極板間距離
を小さくすることには両電極板間の絶縁耐力から
の限度がある。電極板間電圧を高くすることも同
様に両電極板間の絶縁上限度があり、却つて電極
間隔を大きくしなければならないという矛盾が生
じる。このように従来の構成のものでは静電吸引
力を容易に大にする有効な手段がなかつた。 It is desirable for such a relay to have a large electrostatic attraction force. To increase the electrostatic attraction force, follow the steps above.
As is clear from equation (1), three methods can be considered: increasing the electrode area, decreasing the distance between the electrode plates, or increasing the voltage between the electrode plates. However, increasing the electrode area means increasing the size of the entire relay, and the mechanical precision of electrode flatness, electrode positioning, etc. must be improved, which complicates the manufacturing and assembly man-hours. Furthermore, reducing the distance between the electrode plates also requires high mechanical precision as described above, making manufacturing and assembly difficult. There is a limit to reducing the distance between the plates due to the dielectric strength between the two electrode plates. Increasing the inter-electrode voltage similarly has an upper limit to the insulation between both electrode plates, which creates a contradiction in that the electrode spacing must be increased. As described above, in the conventional structure, there was no effective means for easily increasing the electrostatic attraction force.
本発明は以上の点にかんがみ、電極板面積を大
にすることなく固定、可動両電極板間の静電吸引
力を大にし得るようにした静電駆動形継電器を提
供するものであつて、以下図面について詳細に説
明する。 In view of the above points, the present invention provides an electrostatically driven relay that can increase the electrostatic attractive force between fixed and movable electrode plates without increasing the area of the electrode plates. The drawings will be explained in detail below.
本発明を2メーク接点を有する継電器に適用し
た一実施例を、第4図に縦断面図、第5図にその
要部を斜視図で示す。両図において、21は絶縁
性板体、22は絶縁性板体上に設けた駆動電圧を
印加する固定電極板、23は固定電極板上に配設
した強誘電体または常誘電体の薄膜であつて、こ
の誘電体薄膜23は誘電体材料の塗布、吹き付け
等によつて形成しても、また誘電体薄膜材を接着
材により貼着したもの、あるいは固定電極板22
の表面に形成させた酸化膜であつてもよい。24
−1,24−2は前記絶縁性板体21に配設さ
れ、その表面に頭部を突出させた2個の信号電流
路の固定接点であり、その相互間隔は後述する2
つの可動接点間隔と等しくえらばれる。2つの固
定接点24−1,24−2それぞれは前記絶縁性
板体21下面に配設された導体25−1と接続さ
れ、この導体の端部が固定側信号端子25−2を
形成する。固定電極板22の接続導体及び端子
(図示せず)も同様に設けられる。26は比重の
小さいプラスチツクよりなる軽量な可動電極支持
板であり、前記固定電極22と対坑する面に可動
電極板27が設けられ、さらに、この可動電極支
持板26内を貫通して埋め込まれ導電体を兼ねる
3個の平行に配設された支持ばね28により支持
されている。各支持ばね28−1,28−2およ
び28−3は前記絶縁性板体21の端辺に固定さ
れた絶縁材よりなる固定部29に固定されこの固
定部を基点として撓み得るようになつている。前
記3個のうちの1個の支持ばね28−3は可動電
極板27と接続され、一端部は駆動電圧を印加す
る可動電極端子30を形成している。他の2個の
支持ばね28−1,28−2は可動接点板であ
り、信号電流路を兼ね平行に且つ相互の間隔が前
記2個の固定接点24−1,24−2の間隔と対
応するように配列され、前記可動電極支持板26
から延展されたそれぞれの端部には信号電流路を
断続させる可動接点31−1又は31−2が配設
され、前記固定部29に固定された他端部はそれ
ぞれ信号電流端子32−1,32−2が形成され
ている。かかる可動電極板27を上面に有し、且
つ可動接点板である支持ばね28−1,28−2
を貫通させた可動電極支持板26が本実施例の可
動接極子を構成している。 An embodiment in which the present invention is applied to a relay having two make contacts is shown in FIG. 4 as a longitudinal cross-sectional view, and in FIG. 5 as a perspective view of the main parts thereof. In both figures, 21 is an insulating plate, 22 is a fixed electrode plate provided on the insulating plate to apply a driving voltage, and 23 is a ferroelectric or paraelectric thin film disposed on the fixed electrode plate. The dielectric thin film 23 may be formed by coating or spraying a dielectric material, or may be formed by pasting a dielectric thin film material with an adhesive, or by forming the dielectric thin film 23 on the fixed electrode plate 22.
It may be an oxide film formed on the surface of. 24
-1 and 24-2 are fixed contacts of two signal current paths disposed on the insulating plate 21 and having heads protruding from the surface thereof, and the mutual spacing between them is 2 as will be described later.
The distance between the two movable contacts is selected to be equal to the distance between the movable contacts. Each of the two fixed contacts 24-1 and 24-2 is connected to a conductor 25-1 disposed on the lower surface of the insulating plate 21, and the end of this conductor forms a fixed side signal terminal 25-2. Connecting conductors and terminals (not shown) of the fixed electrode plate 22 are similarly provided. 26 is a lightweight movable electrode support plate made of plastic with low specific gravity, and a movable electrode plate 27 is provided on the surface facing the fixed electrode 22, and a movable electrode plate 27 is embedded in the movable electrode support plate 26. It is supported by three parallel supporting springs 28 which also serve as conductors. Each of the support springs 28-1, 28-2, and 28-3 is fixed to a fixed part 29 made of an insulating material fixed to the edge of the insulating plate 21, and can be bent about this fixed part. There is. One of the three support springs 28-3 is connected to the movable electrode plate 27, and one end forms a movable electrode terminal 30 to which a driving voltage is applied. The other two support springs 28-1, 28-2 are movable contact plates, which also serve as signal current paths, and are parallel to each other, and their mutual spacing corresponds to the spacing between the two fixed contacts 24-1, 24-2. The movable electrode support plate 26 is arranged so as to
A movable contact 31-1 or 31-2 for connecting and disconnecting the signal current path is provided at each end extending from the base, and a signal current terminal 32-1 or 31-2 is provided at the other end fixed to the fixed portion 29, respectively. 32-2 is formed. Support springs 28-1 and 28-2 have such a movable electrode plate 27 on the upper surface and are movable contact plates.
The movable electrode support plate 26 having the movable electrode supporting plate 26 penetrated therethrough constitutes the movable armature of this embodiment.
なお、33は可動電極支持板26のバツクスト
ツプを兼ねた蓋体であつて、固定板21との協動
によつて筐体を形成している。34は絶縁体の基
台である。 Note that 33 is a lid that also serves as a backstop for the movable electrode support plate 26, and forms a housing in cooperation with the fixed plate 21. 34 is an insulator base.
このような構成を有する本実施例の前記固定電
極板22の接続導体および前記可動電極27に接
続されている支持ばね28−3を経由して直流駆
動電圧が印加されると、両電極板22,27間に
静電吸引力が生じ、支持ばね28−1,28−2
および28−3が撓み、前記固定接点24−1と
前記可動接点31−1、および前記固定接点24
−2と前記可動接点31−2とがそれぞれ接触
し、一対の信号電流路を閉成する。 When a DC drive voltage is applied via the support spring 28-3 connected to the connecting conductor of the fixed electrode plate 22 and the movable electrode 27 of this embodiment having such a configuration, both electrode plates 22 , 27, an electrostatic attraction force is generated between the support springs 28-1, 28-2.
and 28-3 are bent, and the fixed contact 24-1, the movable contact 31-1, and the fixed contact 24
-2 and the movable contact 31-2 are in contact with each other to close a pair of signal current paths.
第6図は本発明の他の実施例の側断面図を示し
たものである。本実施例では駆動電圧印加用端子
および信号電流用端子の引き出し方向を前記実施
例と異ならしめたもので、固定側信号端子25′
を可動側信号端子32′と反対側へ突出させ、こ
れら両端子25′および32′を下方へ折曲したも
のである。 FIG. 6 shows a side sectional view of another embodiment of the invention. In this embodiment, the direction in which the driving voltage application terminal and the signal current terminal are led out is different from that of the previous embodiment, and the fixed side signal terminal 25'
protrudes to the side opposite to the movable signal terminal 32', and both terminals 25' and 32' are bent downward.
なお、上記実施例では固定接点24を固定板2
1側にのみ設けたが、蓋体33の内側にブレーク
側接点となる固定接点を設け、さらに前記導電性
支持ばね28の裏面つまり蓋体33の側にも可動
接点を設ければ、メーク・ブレーク接点組を有す
る静電駆動形継電器を実現することができる。 In the above embodiment, the fixed contact 24 is connected to the fixed plate 2.
However, if a fixed contact serving as a break side contact is provided inside the lid body 33, and a movable contact is also provided on the back side of the conductive support spring 28, that is, on the lid body 33 side, it is possible to make and An electrostatically actuated relay having a set of break contacts can be realized.
また第4図、第5図においては誘電体薄膜23
は固定電極板22にのみ配設する構造を示した
が、前記可動電極板27の固定電極板22との対
向面に配設してもよく、あるいは固定および可動
両電極の各対向面に配設してもよい。 In addition, in FIGS. 4 and 5, the dielectric thin film 23
shows a structure in which the electrodes are disposed only on the fixed electrode plate 22, but they may be disposed on the surface of the movable electrode plate 27 facing the fixed electrode plate 22, or on the opposing surfaces of both the fixed and movable electrodes. may be set.
つぎに本発明の静電駆動継電器の静電吸引力特
性について述べるが、ここでは簡単のため対向す
る電極板の一方の側の電極にのみ誘電体薄膜を配
設した場合について説明する。 Next, the electrostatic attractive force characteristics of the electrostatic drive relay of the present invention will be described, but here, for the sake of simplicity, a case will be described in which a dielectric thin film is disposed only on the electrode on one side of the opposing electrode plates.
第7図に模式化した側断面図で示したように支
持ばね28の固定点に近い方の可動電極板27の
端部における可動、固定両電極板間の距離をl0、
可動電極板27の上記端部と反対側端部における
両電極板間の距離をl1(l0,l1とを誘電体薄膜23
の表面からの距離)、誘電体薄膜23の厚さをL
とし、また誘電体薄膜23の誘電率をε、電極面
積をS、電極板間印加電圧をVとすると、両電極
間に働く力f(N)は、
f=(1/2)ε0SV2〔{l0+(ε0/ε)L
}{l1+(ε0/ε)L}〕-1(2)
で与えられる。比誘電率ε′(=ε/ε0)を用いて
上記第(2)式を書き直すと、
(1/2)ε0SV2{(l0+L/ε′)(
l1+L/ε′)}-1(3)
となる。第(3)式から得られる両電極板間に働く力
をf1とし、前記第(1)式で求めた誘電体薄膜が介在
しない場合のそれをf2とすると
f1/f2=(l0+L)(l1+L)/(l0+L/
ε′)(l1+L/ε′)(4)
となる。第(4)式より、誘電体薄膜23を設けるこ
とにより、従来のように誘電体薄膜を設けないも
のより静電吸引力が大になることが明らかであ
る。 As shown in the schematic side sectional view of FIG. 7, the distance between the movable and fixed electrode plates at the end of the movable electrode plate 27 that is closer to the fixed point of the support spring 28 is l 0 ,
The distance between the two electrode plates at the end opposite to the above end of the movable electrode plate 27 is l 1 (l 0 , l 1 is the dielectric thin film 23
), the thickness of the dielectric thin film 23 is L
If the dielectric constant of the dielectric thin film 23 is ε, the electrode area is S, and the voltage applied between the electrode plates is V, then the force f(N) acting between the two electrodes is f=(1/2)ε 0 SV 2 [{l 0 + (ε 0 /ε)L
}{l 1 + (ε 0 /ε)L}] -1 (2) It is given by: Rewriting the above equation (2) using the relative permittivity ε' (=ε/ε 0 ), we get (1/2)ε 0 SV 2 {(l 0 +L/ε')(
l 1 +L/ε′)} -1 (3). Let f 1 be the force acting between both electrode plates obtained from equation (3), and let f 2 be the force obtained in the case where the dielectric thin film obtained from equation (1) is not interposed, then f 1 / f 2 = ( l 0 +L) (l 1 +L)/(l 0 +L/
ε′)(l 1 +L/ε′)(4). From equation (4), it is clear that by providing the dielectric thin film 23, the electrostatic attraction force becomes larger than the conventional case where no dielectric thin film is provided.
第8図にS=1cm3、l0=0.5μmの一定と仮定
し、L=1μm、V=100volt ε′=1、10、100の
場合について静電吸引力fのl1に対する特性を示
す。この図からも明らかのようにε′=10の常誘電
体を用いた場合でも、ε′=1すなわち誘電体薄膜
23を設けない場合の数倍の静電吸引力が得られ
る。 Figure 8 shows the characteristics of the electrostatic attraction force f with respect to l 1 for the cases of L = 1 μm, V = 100 volts, and ε' = 1, 10, and 100, assuming that S = 1 cm 3 and l 0 = 0.5 μm. . As is clear from this figure, even when a paraelectric material with ε'=10 is used, an electrostatic attraction force several times greater than that when ε'=1, that is, no dielectric thin film 23 is provided, can be obtained.
以上のように本発明によれば、固定電極板と可
動電極板の互いの対向面の一方または両方の面に
誘電体薄膜を設けたことにより、電極面積を大き
くすることなく静電吸引力を従来のものより大き
くできる。しかも誘電体薄膜が可動、固定両電極
板間に介在するため、これら両電極板が接触して
も短絡する恐れがなく、したがつて機械的精度の
制約がゆるやかになるので、製作、組立が容易に
なる利点を生ずる。 As described above, according to the present invention, by providing a dielectric thin film on one or both of the opposing surfaces of the fixed electrode plate and the movable electrode plate, electrostatic attraction force can be achieved without increasing the electrode area. Can be made larger than conventional ones. Furthermore, since the dielectric thin film is interposed between the movable and fixed electrode plates, there is no risk of short circuiting even if the two electrode plates come into contact with each other.Therefore, restrictions on mechanical precision are relaxed, making manufacturing and assembly easier. This gives rise to the advantage of ease of use.
第1図は従来の静電駆動形継電器の縦断面図、
第2図は同ガラス基板の平面図、第3図は同継電
器の電極間隔の説明図、第4図は本発明の一実施
例の縦断面図、第5図は同要部の斜視図、第6図
は他の実施例の縦断面図、第7図は電極間隔と誘
電体薄膜の厚さとの関係の説明図、第8図は比誘
電率をパラメータとした誘電体薄膜厚、電極間距
離に対する静電吸引力の関係を示す特性図であ
る。
21……固定板、22……固定電極板、23…
…誘電体薄膜、24,24−1,24−2……固
定接点、25−1……固定側駆動電圧端子、25
−2……固定側信号電流端子、26……可動電極
支持板、27……可動電極板、28,28−1,
28−2,28−3……支持ばね、29……固定
部、30……可動電極駆動端子、31−1,31
−2……可動接点、32−1,32−2……可動
側信号電流端子。
Figure 1 is a longitudinal cross-sectional view of a conventional electrostatic drive type relay.
FIG. 2 is a plan view of the glass substrate, FIG. 3 is an explanatory diagram of the electrode spacing of the relay, FIG. 4 is a longitudinal cross-sectional view of an embodiment of the present invention, and FIG. 5 is a perspective view of the main parts. Fig. 6 is a longitudinal cross-sectional view of another embodiment, Fig. 7 is an explanatory diagram of the relationship between electrode spacing and dielectric thin film thickness, and Fig. 8 is a diagram showing the relationship between electrode spacing and dielectric thin film thickness, and Fig. 8 shows dielectric thin film thickness and electrode spacing using relative permittivity as a parameter. FIG. 3 is a characteristic diagram showing the relationship between electrostatic attraction force and distance. 21... Fixed plate, 22... Fixed electrode plate, 23...
... Dielectric thin film, 24, 24-1, 24-2 ... Fixed contact, 25-1 ... Fixed side drive voltage terminal, 25
-2... Fixed side signal current terminal, 26... Movable electrode support plate, 27... Movable electrode plate, 28, 28-1,
28-2, 28-3... Support spring, 29... Fixed part, 30... Movable electrode drive terminal, 31-1, 31
-2...Movable contact, 32-1, 32-2...Movable side signal current terminal.
Claims (1)
電極板と少なくとも1個の信号電流の固定接点を
配設してなる固定電極支持板と、該固定電極支持
板の一端縁に設けた固定部に支持固定され且つ該
固定部を基点として撓み得る導電性の支持ばねに
支持された絶縁性板体からなる可動電極支持板の
前記固定電極と対向する板体表面に駆動電圧を印
加する可動電極板を設け、且つ前記板体内を貫通
し一端部に信号電流端子を形成し、他端部の前記
固定接点と接触し得る位置に少なくとも1個の可
動接点を配設した可動接点板とを有してなる静電
駆動形継電器において、前記固定電極板と前記可
動電極板の相対する面の何れか一方又は両方の表
面に誘電体膜を配設してなることを特徴とする静
電駆動形継電器。1. A fixed electrode support plate comprising a fixed electrode plate for applying a driving voltage to the surface of an insulating plate and at least one fixed contact for a signal current, and a fixing member provided at one end edge of the fixed electrode support plate. A movable electrode support plate that applies a driving voltage to the surface of the plate facing the fixed electrode of a movable electrode support plate, which is an insulating plate supported by a conductive support spring that is supported and fixed to the fixed part and can be bent about the fixed part. A movable contact plate provided with an electrode plate, having a signal current terminal formed at one end thereof penetrating through the plate body, and at least one movable contact disposed at a position capable of contacting the fixed contact at the other end. An electrostatic drive type relay comprising: a dielectric film disposed on one or both opposing surfaces of the fixed electrode plate and the movable electrode plate. type relay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10205278A JPS5530113A (en) | 1978-08-22 | 1978-08-22 | Electrostatically drive relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10205278A JPS5530113A (en) | 1978-08-22 | 1978-08-22 | Electrostatically drive relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5530113A JPS5530113A (en) | 1980-03-03 |
JPS6348138B2 true JPS6348138B2 (en) | 1988-09-27 |
Family
ID=14316986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10205278A Granted JPS5530113A (en) | 1978-08-22 | 1978-08-22 | Electrostatically drive relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5530113A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004512671A (en) * | 2000-05-17 | 2004-04-22 | ゼロックス コーポレイション | Variable capacitor by photolithography pattern formation and method of manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2095911B (en) * | 1981-03-17 | 1985-02-13 | Standard Telephones Cables Ltd | Electrical switch device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE965592C (en) * | 1952-10-28 | 1957-06-13 | Erich Steingroever Dr Ing | Electrostatic relay |
-
1978
- 1978-08-22 JP JP10205278A patent/JPS5530113A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE965592C (en) * | 1952-10-28 | 1957-06-13 | Erich Steingroever Dr Ing | Electrostatic relay |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004512671A (en) * | 2000-05-17 | 2004-04-22 | ゼロックス コーポレイション | Variable capacitor by photolithography pattern formation and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS5530113A (en) | 1980-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5051643A (en) | Electrostatically switched integrated relay and capacitor | |
US6734770B2 (en) | Microrelay | |
US4747670A (en) | Electrostatic device and terminal therefor | |
EP0067883B1 (en) | Piezo-electric relay | |
US7280014B2 (en) | Micro-electro-mechanical switch and a method of using and making thereof | |
US4093883A (en) | Piezoelectric multimorph switches | |
US4570139A (en) | Thin-film magnetically operated micromechanical electric switching device | |
US4978881A (en) | Piezoelectric actuator of lamination type | |
JP3106389B2 (en) | Variable capacitance capacitor | |
US4205242A (en) | Electret bistable system | |
JP2001143595A (en) | Folded spring based on micro electro-mechanical rf switch and method of manufacturing the same | |
US4112279A (en) | Piezoelectric relay construction | |
SE8504703L (en) | ABSOLUTTRYCKTRANSDUKTOR | |
US7463126B2 (en) | Micro electromechanical switch and method of manufacturing the same | |
US4506198A (en) | Trigger speed control switch | |
JPS6348138B2 (en) | ||
JP2002100276A (en) | Micro machine switch | |
CA1293758C (en) | Piezoelectric relay | |
US6246305B1 (en) | Apparatus and method for operating a micromechanical switch | |
JPH09199376A (en) | Variable-capacitance capacitor | |
US6693735B1 (en) | MEMS structure with surface potential control | |
EP1026718B1 (en) | Electrostatically controlled micro-relay device | |
JPH0314055Y2 (en) | ||
JP2892525B2 (en) | Electrostatic relay | |
US6818843B2 (en) | Microswitch with a micro-electromechanical system |