JPS6347922B2 - - Google Patents

Info

Publication number
JPS6347922B2
JPS6347922B2 JP58077192A JP7719283A JPS6347922B2 JP S6347922 B2 JPS6347922 B2 JP S6347922B2 JP 58077192 A JP58077192 A JP 58077192A JP 7719283 A JP7719283 A JP 7719283A JP S6347922 B2 JPS6347922 B2 JP S6347922B2
Authority
JP
Japan
Prior art keywords
throttle valve
hydraulic pressure
spool
liquid
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58077192A
Other languages
Japanese (ja)
Other versions
JPS59200873A (en
Inventor
Toshiro Tamada
Hiroshi Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEKUNOORU KK
Original Assignee
TEKUNOORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEKUNOORU KK filed Critical TEKUNOORU KK
Priority to JP7719283A priority Critical patent/JPS59200873A/en
Publication of JPS59200873A publication Critical patent/JPS59200873A/en
Publication of JPS6347922B2 publication Critical patent/JPS6347922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0716Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Servomotors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、分流機能と集流機能との両方を果た
し得る分集流弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow dividing and collecting valve that can perform both a flow dividing function and a flow collecting function.

従来の技術 例えば、トラツククレーンの多段に伸縮するブ
ームを駆動する複数の油圧シリンダを同期的に作
動させる等の目的で、分集流弁が広く使用されて
いる。1つの油圧源から複数の油圧シリンダに作
動油を供給し、しかも、それら複数の油圧シリン
ダが同速度あるいは予め定められた一定の速度比
で作動するようにするためには、各油圧シリンダ
に供給される作動油の流量並びに各油圧シリンダ
からタンクに戻される作動油の流量の比率を一定
に保つ必要があるからである。
BACKGROUND OF THE INVENTION For example, flow separation valves are widely used for the purpose of synchronously operating a plurality of hydraulic cylinders that drive booms of truck cranes that extend and retract in multiple stages. In order to supply hydraulic oil from one hydraulic source to multiple hydraulic cylinders and to have the multiple hydraulic cylinders operate at the same speed or at a predetermined constant speed ratio, it is necessary to supply hydraulic oil to each hydraulic cylinder. This is because it is necessary to keep constant the ratio of the flow rate of the hydraulic oil used and the flow rate of the hydraulic oil returned from each hydraulic cylinder to the tank.

しかも、ブームの伸縮速度は広い範囲で変え得
ることが望ましいため、分集流弁は広い範囲の流
量に対して正確な比率で分集流を行い得ることが
望ましい。
Furthermore, since it is desirable that the boom expansion/contraction speed can be varied over a wide range, it is desirable that the flow dividing/collecting valve be able to perform flow dividing/collecting at an accurate ratio for a wide range of flow rates.

そのような目的に使用し得る分集流弁が、特開
昭54−74523号公報および実開昭48−10015号公報
によつて知られている。前者に記載された分集流
弁を第9図に、後者のものを第10図に示す。
A flow dividing/collecting valve that can be used for such a purpose is known from Japanese Patent Laid-Open No. 74523/1983 and Japanese Utility Model Application No. 10015/1983. A flow dividing/collecting valve described in the former case is shown in FIG. 9, and a flow collector valve in the latter case is shown in FIG.

いずれの分集流弁も、(a)1個の第一ポート10
0、2個の第二ポート102、スプール室10
4、前記1個の第一ポート100と2個の第二ポ
ート102とを各々前記スプール室104を経て
つなぐ第一液通路106および第二液通路108
を備えたハウジング110と、(b)前記スプール室
104に摺動可能に配設されて常には2個のスプ
リング112によつて中立位置に保持されている
が、互いに反対向きの受圧面に、前記第一液通路
106および第二液通路108に連通する第一液
圧室114および第二液圧室116の液圧を受
け、両液圧室に圧力差が生じたときは液圧の低い
液圧室側へ移動して、前記第一液通路106およ
び第二液通路108の流路面積を両液圧室の液圧
が等しくなるように変えるスプール118と、(c)
前記第一液通路106および第二液通路108の
前記第一液圧室114および第二液圧室116よ
りそれぞれ前記第一ポート100側の部分に設け
られて、その部分を流れる流体に所定の抵抗を与
える第一絞り手段120および第二絞り手段12
2とを含むように構成される。そして、いずれの
分集流弁においても、分流機能を果たす状態と、
集流機能を果たす状態とでは、第一液圧室114
および第二液圧室116と、第一液通路106お
よび第二液通路108との連通状態がパイロツト
式切換弁124あるいは126によつて切り換え
られるようになつている。
Each branch/collection valve has (a) one first port 10;
0, 2 second ports 102, spool chamber 10
4. A first liquid passage 106 and a second liquid passage 108 that connect the one first port 100 and the two second ports 102 via the spool chamber 104, respectively.
(b) A housing 110 that is slidably disposed in the spool chamber 104 and is normally held in a neutral position by two springs 112, but on pressure receiving surfaces facing oppositely to each other, Receiving the hydraulic pressure of the first hydraulic pressure chamber 114 and the second hydraulic pressure chamber 116 communicating with the first liquid passage 106 and the second liquid passage 108, when a pressure difference occurs between the two hydraulic pressure chambers, the hydraulic pressure is low. (c) a spool 118 that moves toward the hydraulic pressure chamber and changes the flow area of the first liquid passage 106 and the second liquid passage 108 so that the hydraulic pressures in both the hydraulic pressure chambers are equal;
The first liquid passage 106 and the second liquid passage 108 are provided in the portions closer to the first port 100 than the first hydraulic pressure chamber 114 and the second hydraulic pressure chamber 116, respectively, and are provided in the portions of the first liquid passage 106 and the second liquid passage 108 that are closer to the first port 100 than the first liquid pressure chamber 114 and the second liquid pressure chamber 116, respectively. First restricting means 120 and second restricting means 12 providing resistance
2. In any of the flow dividing/collecting valves, a state in which the dividing function is performed,
In the state where the flow collecting function is performed, the first hydraulic pressure chamber 114
The state of communication between the second hydraulic chamber 116 and the first liquid passage 106 and the second liquid passage 108 is switched by a pilot type switching valve 124 or 126.

特開昭54−74523号公報に記載された分集流弁
においては、分流弁として機能する場合も集流弁
として機能する場合も、第一液通路106の液圧
が第二液通路108の液圧より低いときは、第一
液圧室114が第一液通路106の第一絞り手段
120よりスプール室104側の部分に連通させ
られ、第二液圧室116が第一ポート100に連
通させられる一方、第一液通路106の液圧が第
二液通路108の液圧より高いときは、第二液圧
室116が第二液通路108の第二絞り手段12
2よりスプール室104側の部分に連通させら
れ、第一液圧室114が第一ポート100に連通
させられるようになつている。すなわち、第一液
通路106の液圧が第二液通路108の液圧より
低いときは、スプール118の両側の液圧室11
4,116に第一絞り手段120の前後の液圧が
導かれ、第一液通路106の液圧が第二液通路1
08の液圧より高いときは、第二絞り手段122
の前後の液圧が導かれるようになつているのであ
る。通常の分流弁あるいは集流弁においては、ス
プールの両側の液圧室には第一液通路および第二
液通路の絞り手段よりスプール室側の部分の液圧
が導かれ、スプールが両液通路の絞り手段によつ
て生じさせられる液圧差の差によつて作動するよ
うにされているのに対して、この分集流弁におい
ては、可変絞り弁120,122によつて生じさ
せられる液圧差自体によつてスプール118が作
動させられるため、スプール118の作動力が通
常の分流弁や集流弁より大きく、比較的広い流量
範囲において正確な分流比率および集比率が得ら
れる。
In the diverting/collecting valve described in JP-A-54-74523, the hydraulic pressure in the first liquid passage 106 is equal to or equal to the liquid in the second liquid passage 108, whether it functions as a dividing valve or as a concentrating valve. When the pressure is lower than the pressure, the first hydraulic pressure chamber 114 is communicated with a portion of the first liquid passage 106 closer to the spool chamber 104 than the first throttle means 120, and the second hydraulic pressure chamber 116 is communicated with the first port 100. On the other hand, when the hydraulic pressure in the first liquid passage 106 is higher than the hydraulic pressure in the second liquid passage 108, the second hydraulic pressure chamber 116
2 is communicated with a portion closer to the spool chamber 104, and the first hydraulic chamber 114 is communicated with the first port 100. That is, when the hydraulic pressure in the first liquid passage 106 is lower than the hydraulic pressure in the second liquid passage 108, the hydraulic pressure chambers 11 on both sides of the spool 118
4, 116, the hydraulic pressure before and after the first throttle means 120 is introduced, and the hydraulic pressure in the first liquid passage 106 is guided to the second liquid passage 1
When the hydraulic pressure is higher than 08, the second throttle means 122
The hydraulic pressure before and after is guided. In a normal flow dividing valve or a flow collecting valve, the liquid pressure of the portion on the spool chamber side is guided from the throttle means of the first liquid passage and the second liquid passage to the hydraulic pressure chambers on both sides of the spool, and the spool is connected to both liquid passages. In contrast, in this branching/collecting valve, the hydraulic pressure difference itself generated by the variable throttle valves 120 and 122 operates. Since the spool 118 is actuated by the spool 118, the operating force of the spool 118 is greater than that of a normal diverter valve or collector valve, and accurate diverter ratio and collector ratio can be obtained in a relatively wide flow rate range.

一方、実開昭48−10015号に記載されている分
集流弁においては、第一絞り手段120および第
二絞り手段122として、分集流弁を通過する液
体の流量が大きい場合には流路面積が大きくな
り、流量が小さい場合には流路面積も小さくなる
可変絞り弁128が採用されており、それによつ
て、比較的広い流量範囲において正確な分流比率
および集比率が得られるようになつている。
On the other hand, in the dividing/collecting valve described in Utility Model Application No. 48-10015, the first throttle means 120 and the second restricting means 122 have a flow path area when the flow rate of liquid passing through the dividing/collecting valve is large. A variable throttle valve 128 is adopted, which increases the flow rate and reduces the flow path area when the flow rate is small, thereby making it possible to obtain accurate diversion and concentration ratios over a relatively wide flow rate range. There is.

発明が解決しようとする問題点 上記2種類の分集流弁によれば、流量が比較的
広い範囲にわたつて変化する場合にも、所定の分
集流機能が得られるのであるが、いずれもパイロ
ツト式切換弁を使用するため構造が複雑となり、
コストが高くなるという問題があつた。
Problems to be Solved by the Invention According to the above two types of flow dividing/collecting valves, a predetermined flow dividing/collecting function can be obtained even when the flow rate changes over a relatively wide range. The structure is complicated due to the use of switching valves,
There was a problem of high costs.

問題点を解決するための手段 本発明はこの問題を解決するために為されたも
のであり、前記(a)第一ポート、2個の第二ポー
ト、第一および第二液通路を有するハウジング
と、(b)スプールと、(c)2個の絞り手段を備えた分
集流弁において、スプールを、軸方向に一定距離
だけ互いに接近・離間可能に係合させた第一スプ
ール部材と第二スプール部材とを含むものとし、
それら両スプール部材の間に形成される空間を第
一ポートに連通させ、かつ、スプールの形状を、
第一および第二スプール部材が最も離間した状態
では、第一および第二液圧室の液圧差によつてス
プールが移動するとき、液圧が低い側の液圧室に
対応する液通路の流路面積を反対側の液通路の流
路面積に対して相対的に減少させ、第一および第
二スプール部材が最も接近した状態においては、
液圧が高い側の液圧室に対応する液通路の流路面
積を反対側の液通路の流路面積に対して相対的に
減少させる形状とし、さらに、2個の絞り手段を
流路面積の可変な可変絞り弁により構成し、その
可変絞り弁の流路面積を第一ポートにおける液流
量の増大に伴つて増大させる絞り弁制御手段を設
けて、分流弁としてのみならず集流弁としても機
能するようにしたことにある。
Means for Solving the Problem The present invention has been made to solve this problem, and includes (a) a housing having a first port, two second ports, and a first and second liquid passage. (b) a spool; and (c) a flow dividing valve having two throttling means, in which the spool is engaged with a first spool member and a second spool member so as to be able to approach and separate from each other by a certain distance in the axial direction. It shall include a spool member,
The space formed between both spool members is communicated with the first port, and the shape of the spool is
When the first and second spool members are furthest apart, when the spool moves due to the difference in hydraulic pressure between the first and second hydraulic pressure chambers, the flow of fluid in the hydraulic passage corresponding to the hydraulic pressure chamber on the side with lower hydraulic pressure occurs. When the passage area is reduced relative to the passage area of the liquid passage on the opposite side and the first and second spool members are closest to each other,
The flow area of the liquid passage corresponding to the hydraulic pressure chamber on the side where the liquid pressure is high is reduced relative to the flow area of the liquid passage on the opposite side. The variable throttle valve is configured with a variable throttle valve, and a throttle valve control means is provided to increase the flow path area of the variable throttle valve as the liquid flow rate increases at the first port. The key is to make it work as well.

作 用 上記のように構成された分集流弁においては、
第一および第二スプール部材が最も離間した状態
のスプール、すなわち伸長状態にあるスプール
と、互いに最も接近した状態のスプール、すなわ
ち収縮状態にあるスプールとでは、移動方向が同
じであつても流路面積の増減の方向が逆となり、
分流機能と集流機能との両方が得られることとな
る。つまり、伸縮可能なスプール自体が前記従来
技術におけるパイロツト式切換弁と同様な機能を
果たすのである。
Function In the flow dividing valve configured as above,
Even if the spool in which the first and second spool members move in the same direction, the spool in the extended state, that is, the spool in the extended state, and the spool in which the first and second spool members are closest to each other, in the contracted state, The direction of increase/decrease in area is reversed,
Both a flow dividing function and a flow collecting function can be obtained. In other words, the extendable and retractable spool itself performs the same function as the pilot type switching valve in the prior art.

発明の効果 そのために、パイロツト式切換弁を設ける必要
がなく、装置の構造が単純となつて、製造コスト
が低減する効果が得られる。
Effects of the Invention Therefore, there is no need to provide a pilot type switching valve, and the structure of the device becomes simple, resulting in an effect of reducing manufacturing costs.

しかも、2個の絞り手段は、絞り弁制御手段に
よつて制御される可変絞り弁とされ、その流路面
積が第一ポートにおける液流量の増大に伴つて増
大させられるため、液流量が広い範囲にわたつて
変動する場合でも、液圧損失の増大を回避しつつ
正確な分流比率および集流比率を得ることがで
き、複数の液圧アクチユエータを正逆両方向にお
いて同期的に作動させ、しかもその作動速度を広
い範囲にわたつて変える必要がある用途に絶好の
分集流弁が得られる。
Moreover, the two throttle means are variable throttle valves controlled by the throttle valve control means, and the flow path area thereof increases as the liquid flow rate at the first port increases, so that the liquid flow rate is wide. Even when the hydraulic pressure varies over a range, it is possible to obtain accurate dividing and collecting ratios while avoiding an increase in hydraulic pressure loss, allowing multiple hydraulic actuators to operate synchronously in both forward and reverse directions, and This results in a flow splitting/collecting valve that is ideal for applications where the operating speed needs to be varied over a wide range.

実施例 以下、本発明のいくつかの実施例を図面に基づ
いて詳細に説明する。
Embodiments Hereinafter, some embodiments of the present invention will be described in detail based on the drawings.

第1図および第2図は分流機能と集流機能とを
共に果たし得る分集流弁を示す図であり、第1図
は分流弁として機能している状態を示し、第2図
は集流弁として機能している状態を示す。
Figures 1 and 2 are diagrams showing a flow divider/collector valve that can perform both a flow divider function and a flow collector function. Figure 1 shows the state in which it functions as a flow divider valve, and Figure 2 shows a flow collector valve. Indicates the state in which it is functioning as a

第1図において2はハウジングであり、ハウジ
ング本体4と補助部材6,6,7とから成つてい
る。ハウジング2は1個の第一ポート8、2個の
第二ポート10,11およびスプール室12を備
えている。スプール室12にはスプール14が摺
動可能に嵌合されている。このスプール14は軸
方向に距離dだけ接近、離間可能に係合させられ
た第一スプール部材16と第二スプール部材18
とから成つており、これら両スプール部材16,
18は常には圧縮コイルスプリング20,22,
22によつて上記距離のほぼ2分の1だけ離れた
状態に保たれている。スプール14はスプール室
12に嵌合されることによつてスプール室12の
両側に第一液圧室24と第二液圧室26とを形成
しており、互いに反対向きの受圧面に両液圧室2
4,26の液圧を受ける。
In FIG. 1, 2 is a housing, which is composed of a housing body 4 and auxiliary members 6, 6, and 7. The housing 2 includes one first port 8, two second ports 10, 11, and a spool chamber 12. A spool 14 is slidably fitted into the spool chamber 12. This spool 14 is axially engaged with a first spool member 16 and a second spool member 18 so as to be able to approach and separate by a distance d.
These two spool members 16,
18 is always a compression coil spring 20, 22,
22, approximately one half of the above distance. The spool 14 is fitted into the spool chamber 12 to form a first hydraulic chamber 24 and a second hydraulic chamber 26 on both sides of the spool chamber 12. Pressure chamber 2
Receives hydraulic pressure of 4,26.

ハウジング2には第一ポート8と第一液圧室2
4および第二液圧室26とをつなぐ液通路28お
よび30が設けられている。そして、これら両液
通路28および30と第一ポート8との分岐部に
は2個の可変絞り弁32および34と、これらを
制御する絞り弁制御手段36とが設けられてい
る。可変絞り弁32と34とは絞り弁本体38お
よび絞り弁子40を共有している。絞り弁本体3
8は両端が開口した円筒形の部材であつて、一方
の開口が第一ポート8に同心的に連通し、他方の
開口がハウジング2に形成された連通孔42を介
してスプール室12内の第一スプール部材16と
第二スプール部材18との間に形成された空間4
4に連通している。絞り弁本体38はハウジング
本体4に形成された円形穴に圧入されているが、
その周壁の前記液通路28および30に対応する
部分にはそれぞれ半径方向の貫通孔である絞り孔
46および48が同一形状、寸法で形成されてい
る。これら絞り孔46および48は第3図に示す
ように2個の半円を矩形でつないだトラツク形の
断面形状を備えており、前記絞り弁子40はこれ
ら絞り孔46および48の矩形の中央部分を丁度
覆い得る幅の円環体をなしている。そして、この
絞り弁子40は第1図から明らかなようにオリフ
イス部材50と一体に形成されている。オリフイ
ス部材50は絞り弁子40と同様円環形の部材で
あるが、中心の貫通孔の面積がここを通過する液
体に比較的低い抵抗を与え得る大きさとされてい
る。これら絞り弁子40とオリフイス部材50と
は円筒部によつて互いに連結されているが、この
円筒部には半径方向に貫通する複数の貫通孔52
が形成されており、絞り孔46および48の絞り
弁子40よりオリフイス部材50側の部分へも液
体が導かれるようにされている。絞り弁子40お
よびオリフイス部材50の両面にはそれぞれ1個
ずつの圧縮コイルスプリング53が設けられて、
これらを原位置、本実施例においては絞り弁子4
0が絞り孔46および48の中央部分を閉塞する
中立位置に保持している。
The housing 2 has a first port 8 and a first hydraulic chamber 2.
4 and the second hydraulic pressure chamber 26 are provided. Two variable throttle valves 32 and 34 and a throttle valve control means 36 for controlling these are provided at the branching portion between these liquid passages 28 and 30 and the first port 8. The variable throttle valves 32 and 34 share a throttle body 38 and a throttle element 40. Throttle valve body 3
8 is a cylindrical member with both ends open, one opening concentrically communicates with the first port 8, and the other opening communicates with the inside of the spool chamber 12 through a communication hole 42 formed in the housing 2. Space 4 formed between first spool member 16 and second spool member 18
It is connected to 4. The throttle valve body 38 is press-fitted into a circular hole formed in the housing body 4.
Throttle holes 46 and 48, which are radial through holes, are formed in portions of the peripheral wall corresponding to the liquid passages 28 and 30, respectively, and have the same shape and size. These throttle holes 46 and 48 have a track-shaped cross-sectional shape in which two semicircles are connected by a rectangle, as shown in FIG. It forms a torus with a width that just covers the whole area. As is clear from FIG. 1, this throttle valve element 40 is formed integrally with an orifice member 50. The orifice member 50 is an annular member like the throttle valve 40, but the area of the central through hole is large enough to provide relatively low resistance to the liquid passing therethrough. These throttle valve element 40 and orifice member 50 are connected to each other by a cylindrical portion, and this cylindrical portion has a plurality of through holes 52 that penetrate in the radial direction.
is formed so that the liquid is also guided to the portions of the throttle holes 46 and 48 closer to the orifice member 50 than the throttle valve element 40. One compression coil spring 53 is provided on each side of the throttle valve element 40 and the orifice member 50,
These are placed in the original position, in this example, the throttle valve 4
0 is held in a neutral position where the center portions of the throttle holes 46 and 48 are closed.

前記第一液圧室24および第二液圧室26はそ
れぞれ第一スプール部材16および第二スプール
部材18に放射状に複数個形成された孔54と、
スプール室12の内周面に形成された環状溝56
とから成る液通路によつてそれぞれ第二ポート1
0および11につながれている。孔54の環状溝
56側の開口はスプール14が中立位置にある状
態では全体が環状溝56内に位置するようにされ
ているが、スプール14が第一液圧室24または
第二液圧室26の側へ移動した状態では孔54の
開口の一部が環状溝56から外れ、第一液圧室2
4と第二ポート10または第二液圧室26と第二
ポート11をつなぐ液通路の面積が減小させられ
るようになつている。
The first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 each have a plurality of holes 54 formed radially in the first spool member 16 and the second spool member 18,
An annular groove 56 formed on the inner peripheral surface of the spool chamber 12
and a second port 1 respectively by a liquid passage consisting of
Connected to 0 and 11. The opening on the annular groove 56 side of the hole 54 is arranged so that the entire opening is located within the annular groove 56 when the spool 14 is in the neutral position, but the spool 14 is located in the first hydraulic pressure chamber 24 or the second hydraulic pressure chamber. 26 side, a part of the opening of the hole 54 comes off from the annular groove 56, and the first hydraulic pressure chamber 2
4 and the second port 10 or the second hydraulic pressure chamber 26 and the second port 11, the area of the liquid passage is reduced.

以上のように構成された分集流弁は第一ポート
8側が高圧、第二ポート10,11側が低圧とな
つた場合には分流弁として機能する。すなわち、
第一ポート8から流入した液体は二分されて液通
路28および30を経て液圧室24および26に
至り、第二ポート10および11から外部へ流出
することとなる。
The diverting/collecting valve configured as described above functions as a diverting valve when the pressure on the first port 8 side is high and the pressure on the second ports 10 and 11 is low. That is,
The liquid flowing in from the first port 8 is divided into two parts, passes through the liquid passages 28 and 30, reaches the hydraulic pressure chambers 24 and 26, and flows out from the second ports 10 and 11.

第一ポート8から流入した液体は絞り弁本体3
8を軸方向に流れ、絞り孔46および48から液
通路28および30へ流れ出るのであるが、この
際、オリフイス部材50の前後には流量の二乗に
比例する圧力差が生じ、この圧力差によつてオリ
フイス部材50が第1図において下方へスプリン
グ53の弾性力に抗して移動し、これに伴つて絞
り弁子40も下方へ移動する。その結果、絞り孔
46,48の絞り弁子40によつて閉塞される部
分が一斉に変わり、第一ポート8における流量の
増大に伴つて可変絞り弁32および34の流路面
積が互に等しい関係を保ちつつ増大する。この際
の絞り弁子40および可変絞り弁32(または3
4)の前後における圧力差と流量との関係の一例
を第4図に示す。第4図には比較のために従来絞
り手段として使用されていた流量不変の固定オリ
フイスにおける流量と液圧差との関係を二点鎖線
で示すが、液圧差が5Kg/cm2から10Kg/cm2まで変
動することを許す場合に本実施例の装置は従来装
置の数倍の流量範囲に対処し得ることが解る。
The liquid flowing in from the first port 8 is transferred to the throttle valve body 3.
8 flows in the axial direction and flows out from the restrictor holes 46 and 48 to the liquid passages 28 and 30. At this time, a pressure difference proportional to the square of the flow rate is generated before and after the orifice member 50, and this pressure difference causes The orifice member 50 then moves downward in FIG. 1 against the elastic force of the spring 53, and the throttle valve element 40 also moves downward. As a result, the portions of the throttle holes 46 and 48 that are blocked by the throttle valve element 40 change simultaneously, and as the flow rate at the first port 8 increases, the flow path areas of the variable throttle valves 32 and 34 become equal to each other. Increase while maintaining relationships. At this time, the throttle valve 40 and the variable throttle valve 32 (or 3
An example of the relationship between the pressure difference before and after 4) and the flow rate is shown in FIG. For comparison, Figure 4 shows the relationship between the flow rate and the hydraulic pressure difference in a fixed orifice with an unchanged flow rate, which is conventionally used as a restricting means, using a chain double -dashed line . It can be seen that the device of this embodiment can handle a flow rate range several times larger than that of the conventional device if the flow rate is allowed to fluctuate.

次に、スプール14の作用について説明する。
今、仮に2個の第二ポート10および11におけ
る液圧が等しいとすれば、スプール14は第1図
に示す中立位置から移動せず、2つの第二ポート
10および11から同量の液体が排出されること
となる。しかし、2つの第二ポート10,11に
おける液圧に差が生じたとき、たとえば第二ポー
ト10の液圧が第二ポート11の液圧より高くな
つたときには、第一液圧室24の液圧も第二液圧
室26の液圧より高くなり、スプール14を液圧
の低い第二液圧室26側へ移動させる。この移動
によつて第二スプール部材18の孔54の開口の
一部が環状溝56から外れた状態となつて液圧室
26とポート11とをつなぐ液通路の流路面積が
減小させられて絞り効果が増大し、それによつて
液圧室26の液圧が高められることとなる。これ
に対して第一スプール部材16側においては孔5
4の開口は全体が環状溝56内に位置する状態に
保たれるため、液圧室24とポート10とをつな
ぐ液通路の流路面積は変わらず、絞り効果は変わ
らない。スプール14の第二液圧室26側への移
動は第一液圧室24と第二液圧室26との液圧が
等しくなるまで行われ、両液圧室の液圧が等しく
なつたときスプール14は停止する。すなわち、
スプール14は2個の第二ポート10と11との
液圧変動に無関係に第一液圧室24と第二液圧室
26との液圧を相等しく保つように、両液圧室2
4,26とポート10,11とをつなぐ液通路の
流路面積を変える作用を為すものなのである。そ
して、このように第一液圧室24と第二液圧室2
6との液圧が相等しく保たれれば、可変絞り弁3
2と34との前後における液圧差が相等しく保た
れることとなり、これら可変絞り弁の流路面積が
前述のように相等しくされているのであるから、
これら可変絞り弁を通過する液体の流量も相等し
く保たれることとなる。すなわち、2つの第二ポ
ート10および11に液圧差がある場合でも第一
ポート8から供給された液体は第二ポート10お
よび11に2分の1ずつ分配されることとなるの
である。
Next, the function of the spool 14 will be explained.
Now, if the liquid pressures at the two second ports 10 and 11 are equal, the spool 14 will not move from the neutral position shown in FIG. It will be discharged. However, when a difference occurs between the hydraulic pressures in the two second ports 10 and 11, for example, when the hydraulic pressure in the second port 10 becomes higher than the hydraulic pressure in the second port 11, the liquid in the first hydraulic pressure chamber 24 The pressure also becomes higher than the hydraulic pressure in the second hydraulic pressure chamber 26, and the spool 14 is moved to the second hydraulic pressure chamber 26 side where the hydraulic pressure is lower. Due to this movement, a part of the opening of the hole 54 of the second spool member 18 comes out of the annular groove 56, and the flow area of the liquid passage connecting the hydraulic pressure chamber 26 and the port 11 is reduced. This increases the throttling effect, thereby increasing the hydraulic pressure in the hydraulic chamber 26. On the other hand, on the first spool member 16 side, the hole 5
Since the entire opening of No. 4 is maintained within the annular groove 56, the flow area of the liquid passage connecting the hydraulic pressure chamber 24 and the port 10 remains unchanged, and the throttling effect remains unchanged. The movement of the spool 14 toward the second hydraulic pressure chamber 26 is performed until the hydraulic pressures in the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 become equal, and when the hydraulic pressures in both hydraulic pressure chambers become equal. Spool 14 stops. That is,
The spool 14 is connected to the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 so that the hydraulic pressure in the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 is kept equal regardless of the fluctuation in the hydraulic pressure in the two second ports 10 and 11.
This serves to change the flow area of the liquid passage connecting the ports 10, 11 and the ports 10, 11. In this way, the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 2
If the hydraulic pressure with 6 is maintained equal, variable throttle valve 3
Since the hydraulic pressure difference before and after valves 2 and 34 is kept equal, and the flow path areas of these variable throttle valves are made equal as described above,
The flow rates of liquid passing through these variable throttle valves are also kept equal. That is, even if there is a hydraulic pressure difference between the two second ports 10 and 11, the liquid supplied from the first port 8 is distributed to the second ports 10 and 11 by half.

つぎに本実施例の分集流弁が集流弁として機能
する場合の作動を説明する。集流弁として機能す
るのは第二ポート10および11の液圧が第一ポ
ート8の液圧より高くなつた場合であるが、この
場合には第一スプール部材16と第二スプール部
材18とが第2図に示すように互いに最も接近し
た状態となる。第一液圧室24と第二液圧室26
との液圧が可変絞り弁32と34とにおける液圧
差だけ空間44の液圧より高くなるからである。
Next, an explanation will be given of the operation when the flow dividing valve of this embodiment functions as a flow collecting valve. It functions as a flow collecting valve when the hydraulic pressure in the second ports 10 and 11 becomes higher than the hydraulic pressure in the first port 8. In this case, the first spool member 16 and the second spool member 18 are closest to each other as shown in FIG. First hydraulic chamber 24 and second hydraulic chamber 26
This is because the hydraulic pressure between the variable throttle valves 32 and 34 becomes higher than the hydraulic pressure in the space 44 by the difference in hydraulic pressure between the variable throttle valves 32 and 34.

また、絞り弁制御手段36のオリフイス部材5
0は第2図において上方へ移動し、絞り弁子40
を上方へ移動させる。この移動方向は前述の分流
弁として機能する場合と逆であるが、絞り弁子4
0が液体の流動のない状態においては絞り孔46
および48の中央位置に保持され、絞り孔46お
よび48はこの中央位置の両側で対称な形状とさ
れているため、可変絞り弁32および34の絞り
作用は分流弁として機能する場合と全く同様であ
る。
Also, the orifice member 5 of the throttle valve control means 36
0 moves upward in FIG.
move upward. This direction of movement is opposite to the case where the flow diverter valve functions as described above, but the throttle valve 4
0 is the throttle hole 46 when there is no liquid flow.
and 48, and the throttle holes 46 and 48 are symmetrically shaped on both sides of this central position, so that the throttle action of the variable throttle valves 32 and 34 is exactly the same as when they function as flow divider valves. be.

さらに、スプール14も、集流弁として機能す
る場合においても第二ポート10と11との液圧
差に無関係に第一液圧室24と第二液圧室26と
の液圧を相等しく保つ作用を為すため、可変絞り
弁32と34との前後における液圧差が等しく保
たれる。たとえば、2個の第二ポート10と11
とにおける液圧が等しく、スプール14が第2図
に示す中立位置に停止している状態から第二ポー
ト10の液圧が高くなつたとすれば、第一液圧室
24の液圧もそれにつれて高くなり、スプール1
4を第二液圧室26側へ移動させる。この移動に
伴つて第一スプール部材16の孔54の開口の一
部が環状溝56から外れて、第二ポート10と第
一液圧室24とをつなぐ液通路の流路面積が減小
させられてその絞り効果が増大し、第一液圧室2
4の液圧が低下する。これに対して第二スプール
部材18においては孔54の開口は環状溝56か
ら外れることがないため流路面積が変わらず、絞
り効果も変化しない。結局、スプール14は第一
液圧室24と第二液圧室26との液圧が等しくな
る位置まで移動して静止することとなるのであ
り、このように第一液圧室24と第二液圧室26
との液圧が等しく保たれれば可変絞り弁32と3
4との前後における液圧差も等しく保たれ、第二
ポート10と11とにおける液圧変動にもかかわ
らず可変絞り弁32と34とを通過する液体の流
量、すなわちポート10と11とにおける液流量
は液圧差が生ずる前と同じ比率に保たれることと
なるのである。
Furthermore, even when the spool 14 functions as a flow collecting valve, it has the function of keeping the hydraulic pressures of the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 equal regardless of the hydraulic pressure difference between the second ports 10 and 11. In order to achieve this, the hydraulic pressure difference before and after the variable throttle valves 32 and 34 is kept equal. For example, two second ports 10 and 11
If the hydraulic pressure in the second port 10 increases from the state where the spool 14 is stopped at the neutral position shown in FIG. high, spool 1
4 to the second hydraulic pressure chamber 26 side. With this movement, a part of the opening of the hole 54 of the first spool member 16 comes off the annular groove 56, and the flow area of the liquid passage connecting the second port 10 and the first hydraulic pressure chamber 24 is reduced. As a result, the throttling effect increases, and the first hydraulic pressure chamber 2
4 fluid pressure decreases. On the other hand, in the second spool member 18, the opening of the hole 54 does not deviate from the annular groove 56, so the flow path area remains unchanged and the throttling effect also remains unchanged. Eventually, the spool 14 moves to a position where the hydraulic pressures in the first hydraulic pressure chamber 24 and the second hydraulic pressure chamber 26 become equal, and comes to rest. Hydraulic pressure chamber 26
If the hydraulic pressures of the variable throttle valves 32 and 3 are maintained equal,
4 is also kept equal, and the flow rate of the liquid passing through the variable throttle valves 32 and 34 despite fluctuations in the liquid pressure at the second ports 10 and 11, that is, the liquid flow rate at the ports 10 and 11. will be maintained at the same ratio as before the hydraulic pressure difference occurred.

なお、絞り孔46,48は、加工の容易さを考
慮して前述のような形状にされたのであつて、加
工が困難になることを許容するのであれば一定流
量範囲において可変絞り弁32,34の前後の液
圧差が実質的に変化しないようにすることも可能
である。
Note that the throttle holes 46 and 48 are shaped as described above in consideration of ease of machining, and if machining becomes difficult, the variable throttle valves 32 and 48 can be used within a constant flow rate range. It is also possible to make the hydraulic pressure difference before and after 34 not substantially changed.

また、2個の絞り孔46,48の形状、寸法を
同一とすることも不可欠ではなく、相異ならせる
ことによつて、たとえば任意の分集流比率を設定
することができる。
Furthermore, it is not essential that the two throttle holes 46 and 48 have the same shape and size, and by making them different, it is possible to set, for example, an arbitrary flow concentration ratio.

第5図に本発明の別の実施例を示す。本実施例
は絞り弁子58が幅広のものとされて、長手形状
の絞り孔60および62の全部をも閉塞し得る大
きさとされている。また、絞り弁子58の一端面
からロツド64が延び出させられて、その先端部
は補助部材66を貫通してハウジング2の外部へ
突出している。そして、この突出端部は図示しな
いレバーやロツドから成る連結機構によつて、本
分集流弁に液体を圧送する可変吐出容量型ポンプ
の吐出量変更機構に作動的に連結されている。吐
出量変更機構がポンプの吐出量を増大させると
き、絞り弁子58がその増大量に見合つた量だけ
絞り孔60および62の開口面積を増大させるよ
うに連結されているのであり、本実施例において
はこの連結機構が絞り弁制御手段を構成している
のである。その他の部分は前記実施例と同様であ
るため、同一の部分には同一の符号を付して対応
関係を示し、詳細な説明は省略する。
FIG. 5 shows another embodiment of the invention. In this embodiment, the throttle valve element 58 is wide enough to completely close the elongated throttle holes 60 and 62. Further, a rod 64 is extended from one end surface of the throttle valve element 58, and its tip portion passes through an auxiliary member 66 and projects to the outside of the housing 2. This protruding end portion is operatively connected to a discharge amount changing mechanism of a variable discharge displacement pump that pumps liquid to the main flow collecting valve by a coupling mechanism consisting of a lever or rod (not shown). When the discharge rate changing mechanism increases the discharge rate of the pump, the throttle valve element 58 is connected to increase the opening area of the throttle holes 60 and 62 by an amount commensurate with the increase. In this case, this connecting mechanism constitutes the throttle valve control means. Since the other parts are the same as those in the previous embodiment, the same parts are given the same reference numerals to indicate correspondence, and detailed explanation will be omitted.

本実施例においてもポンプの吐出容量が増大さ
せられて分集流弁を通過する液体の流量、すなわ
ち第一ポート8における液流量が増大するとき
は、可変絞り弁68および70の流路面積が増大
させられるため可変絞り弁68および70の前後
における液圧差の増大が回避され、広い流量範囲
において使用することができる。
Also in this embodiment, when the discharge capacity of the pump is increased and the flow rate of liquid passing through the flow dividing valve, that is, the flow rate of liquid at the first port 8 is increased, the flow path area of the variable throttle valves 68 and 70 is increased. Therefore, an increase in the hydraulic pressure difference before and after the variable throttle valves 68 and 70 is avoided, and it can be used in a wide flow rate range.

なお付言すれば、分集流弁に液体を圧送するポ
ンプが可変吐出容量型のものでない場合には、た
とえばそのポンプの駆動源であるエンジンの回転
数を制御するアクセル操作機構にロツド64を適
宜の連結機構によつて連結すればよい。エンジン
の回転数はポンプの吐出量とほぼ対応しているた
め、分集流弁を通過する液体の流量の増大に見合
つた量だけ絞り弁子58を移動させて上記実施例
と同様な効果を得ることができるのである。
It should be noted that if the pump that pumps liquid to the dividing/collecting valve is not of the variable displacement type, the rod 64 can be connected to the accelerator operating mechanism that controls the rotational speed of the engine that is the driving source for the pump. They may be connected by a connecting mechanism. Since the rotation speed of the engine approximately corresponds to the discharge amount of the pump, the same effect as in the above embodiment is obtained by moving the throttle valve 58 by an amount commensurate with the increase in the flow rate of liquid passing through the flow dividing valve. It is possible.

また、可変絞り弁は絞り弁子が軸方向に移動す
るものに限られるわけではなく、第6図に示すよ
うに絞り弁子72が軸74によつて回転させられ
るロータリ式可変絞り弁とすることも可能であ
る。本実施例においても可変絞り弁76および7
8は絞り弁本体80と絞り弁子72とを共有して
おり、絞り弁子72が回動させられるとき同時に
流路面積が変わるようにされている。絞り弁本体
80に形成された絞り孔82,84の開口面積が
同時に変えられるのである。軸72の先端部がハ
ウジング外へ突出させられ、ポンプの吐出量変更
機構やエンジンのアクセル操作機構に作動的に連
結されることは前記実施例と同様である。
Further, the variable throttle valve is not limited to one in which the throttle valve element moves in the axial direction, but may be a rotary type variable throttle valve in which the throttle valve element 72 is rotated by a shaft 74, as shown in FIG. It is also possible. Also in this embodiment, the variable throttle valves 76 and 7
8 shares a throttle valve main body 80 and a throttle valve element 72, and when the throttle valve element 72 is rotated, the flow passage area is changed at the same time. The opening areas of the throttle holes 82 and 84 formed in the throttle valve body 80 can be changed at the same time. As in the previous embodiment, the tip of the shaft 72 is made to protrude outside the housing and is operatively connected to the pump's discharge amount changing mechanism and the engine's accelerator operating mechanism.

さらに、第7図および第8図に示すように、絞
り弁子86を回動と軸方向の移動との両方が可能
なものとすれば、軸方向の移動によつて両絞り孔
88,90の開口面積の和を増減させることがで
きるのみならず、回動によつて2個の絞り孔8
8,90の一方の開口面積を増大させる一方、他
方の開口面積を減少させることができる。すなわ
ち、分集流比率を可変にできるのである。絞り弁
子86の軸方向の移動は上記各実施例のいずれか
と同様な絞り弁制御手段によつて制御することが
できる。さらに、絞り弁子86を移動させる代り
に絞り弁本体92を移動させても、また、いずれ
か一方を軸方向に移動させ、他方を回動させて
も、同様な効果が得られる。
Furthermore, as shown in FIGS. 7 and 8, if the throttle valve element 86 is capable of both rotation and axial movement, both the throttle holes 88 and 90 can be moved by the axial movement. Not only can the sum of the opening areas of the two aperture holes 8 be increased or decreased, but also the two aperture holes 8 can be
It is possible to increase the opening area of one of 8 and 90 while decreasing the opening area of the other. In other words, it is possible to make the split/concentrate ratio variable. The axial movement of the throttle valve element 86 can be controlled by the same throttle valve control means as in any of the above embodiments. Furthermore, the same effect can be obtained by moving the throttle valve main body 92 instead of moving the throttle valve element 86, or by moving one of them in the axial direction and rotating the other.

以上の実施例においては2個の可変絞り弁がい
ずれも本体と弁子とを共有するものとされていた
が、液通路28および30の途中の部分、たとえ
ば2個の補助部材6に形成されている部分にそれ
ぞれ一個ずつの可変絞り弁を設け、それら両可変
絞り弁の絞り弁子を分集流弁を通過する液体の流
量の増減に対応して連動して回動、もしくは軸方
向に移動させることによつても本発明の目的を達
し得る。
In the above embodiment, the two variable throttle valves both share the main body and the valve element, but the variable throttle valves are formed in the intermediate portions of the liquid passages 28 and 30, for example, in the two auxiliary members 6. One variable throttle valve is installed in each section, and the throttle valve elements of both variable throttle valves are rotated or moved in the axial direction in response to increases and decreases in the flow rate of liquid passing through the dividing and collecting valve. The object of the present invention can also be achieved by doing so.

その他、本発明の趣旨を逸脱することなく、当
業者の知識に基づいて種々の変更、改良を施した
態様で本発明を実施し得ることは勿論である。
In addition, it goes without saying that the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例である
分集流弁がそれぞれ分流機能を果たす状態と集流
機能を果たす状態とを示す正面断面図である。第
3図は上記分集流弁における可変絞り弁の一部を
断面にして示す正面図である。第4図は第1図な
いし第3図に示した分集流弁の作動特性を従来の
分集流弁との比較において示すグラフである。第
5図は本発明の別の実施例である分集流弁の正面
断面図である。第6図は本発明のさらに別の実施
例における可変絞り弁の平面断面図である。第7
図は本発明のさらに別の実施例に使用される可変
絞り弁の斜視図であり、第8図は同可変絞り弁の
平面断面図である。第9図は従来の分集流弁の一
例を原理的に示す図であり、第10図は別の従来
の分集流弁を示す正面断面図である。 2:ハウジング、8:第一ポート、10,1
1:第二ポート、12:スプール室、14:スプ
ール、16:第一スプール部材、18:第二スプ
ール部材、20,22:圧縮コイルスプリング、
24:第一液圧室、26:第二液圧室、28,3
0:液通路、32,34,68,70,76,7
8:可変絞り弁、36:絞り弁制御手段、38,
80,92:絞り弁本体、40,58,72,8
6:絞り弁子、44:空間、46,48,60,
62,82,84,88,90:絞り孔、50:
オリフイス部材、54:孔、56:環状溝、6
4:ロツド、74:軸。
FIGS. 1 and 2 are front sectional views showing a state in which a flow dividing and collecting valve according to an embodiment of the present invention performs a flow dividing function and a state in which it performs a flow collecting function, respectively. FIG. 3 is a front view showing a part of the variable throttle valve in the above-mentioned flow dividing/collecting valve in cross section. FIG. 4 is a graph showing the operating characteristics of the flow dividing/collecting valve shown in FIGS. 1 to 3 in comparison with a conventional separating/collecting valve. FIG. 5 is a front sectional view of a flow dividing/collecting valve which is another embodiment of the present invention. FIG. 6 is a plan sectional view of a variable throttle valve in still another embodiment of the present invention. 7th
The figure is a perspective view of a variable throttle valve used in yet another embodiment of the present invention, and FIG. 8 is a plan sectional view of the variable throttle valve. FIG. 9 is a diagram showing the principle of an example of a conventional flow separation/collection valve, and FIG. 10 is a front sectional view showing another conventional flow separation/collection valve. 2: Housing, 8: First port, 10,1
1: second port, 12: spool chamber, 14: spool, 16: first spool member, 18: second spool member, 20, 22: compression coil spring,
24: First hydraulic pressure chamber, 26: Second hydraulic pressure chamber, 28,3
0: Liquid passage, 32, 34, 68, 70, 76, 7
8: variable throttle valve, 36: throttle valve control means, 38,
80, 92: Throttle valve body, 40, 58, 72, 8
6: Throttle valve, 44: Space, 46, 48, 60,
62, 82, 84, 88, 90: Aperture hole, 50:
Orifice member, 54: hole, 56: annular groove, 6
4: Rod, 74: Axis.

Claims (1)

【特許請求の範囲】 1 1個の第一ポート、2個の第二ポート、スプ
ール室、前記1個の第一ポートと2個の第二ポー
トとを各々前記スプール室を経てつなぐ第一液通
路および第二液通路を備えたハウジングと、 前記スプール室に摺動可能に配設されて常には
スプリングによつて中立位置に保持されている
が、互いに反対向きの受圧面に、前記第一液通路
および第二液通路と連通した第一液圧室および第
二液圧室の液圧を受け、両液圧室に圧力差が生じ
たときは液圧の低い液圧室側へ移動して、前記第
一液通路および第二液通路の流路面積を両液圧室
の液圧が等しくなるように変えるスプールと、 前記第一液通路および第二液通路の前記第一液
圧室および第二液圧室よりそれぞれ前記第一ポー
ト側の部分に設けられて、その部分を流れる液体
に所定の抵抗を与える2個の絞り手段と を備えた分集流弁において、 前記スプールを、軸方向に一定距離だけ互いに
接近・離間可能に係合した第一スプール部材と第
二スプール部材とを含むものとし、該両スプール
部材の間に形成される空間を前記第一ポートに連
通させ、かつ、当該スプールの形状を、第一およ
び第二スプール部材が最も離間した状態では、前
記第一および第二液圧室の液圧差によつて当該ス
プールが移動するとき、液圧が低い側の液圧室に
対応する液通路の流路面積を反対側の液通路の流
路面積に対して相対的に減少させ、第一および第
二スプール部材が最も接近した状態においては、
液圧が高い側の液圧室に対応する液通路の流路面
積を反対側の液通路の流路面積に対して相対的に
減少させる形状とし、さらに、前記2個の絞り手
段を流路面積の可変な可変絞り弁で構成し、その
可変絞り弁の流路面積を前記第一ポートにおける
液流量の増大に伴つて増大させる絞り弁制御手段
を設けて、分流弁としてのみならず集流弁として
も機能するようにしたことを特徴とする分集流
弁。 2 前記2個の可変絞り弁が、前記第一液通路と
第二液通路との分岐部に設けられて絞り弁本体と
絞り弁子とを共有しており、該絞り弁本体が、前
記第一ポートに連通する開口と前記第一および第
二の液通路のそれぞれに連通する2個の絞り孔と
を備え、また前記絞り弁子が、該絞り弁本体内に
摺動可能に嵌合されて前記2個の絞り孔の開口面
積を同時に増減させ得る形状を有している特許請
求の範囲第1項記載の分集流弁。 3 前記絞り弁子が前記絞り弁本体内に回動可能
に嵌合され、該回動によつて前記絞り孔の開口面
積を変えるものである特許請求の範囲第2項記載
の分集流弁。 4 前記絞り弁子が前記絞り弁本体内に軸方向に
摺動可能に嵌合され、該軸方向の摺動によつて前
記絞り孔の開口面積を変えるものである特許請求
の範囲第2項記載の分集流弁。 5 前記絞り弁本体が筒形部材であつて該筒形部
材の一部が前記第一ポートに連通する液通路の少
なくとも一部をなすとともに該筒形部材の周壁に
前記2個の絞り孔が形成されており、かつ、前記
絞り弁制御手段が、該筒形部材内を流れる液体の
流量に対応した大きさの軸方向力を前記絞り弁子
に与える手段と、絞り弁子を中立位置に向かつて
付勢するとともに該絞り弁子が前記軸方向力によ
つて該中立位置から移動して前記絞り孔の開口面
積を変えることを許容するスプリングとを含むも
のである特許請求の範囲第4項記載の分集流弁。 6 前記絞り弁制御手段が、当該分集流弁に液体
を圧送する可変吐出容量形ポンプの容量変更機構
と前記可変絞り弁の絞り弁子とを作動的に連結す
る連結機構である特許請求の範囲第1項乃至第4
項のいずれかに記載の分集流弁。 7 前記絞り弁制御手段が、当該分集流弁に液体
を圧送するポンプの駆動源であるエンジンのアク
セル操作機構と前記可変絞り弁の絞り弁子とを作
動的に連結する連結機構である特許請求の範囲第
1項乃至第4項のいずれかに記載の分集流弁。
[Claims] 1. One first port, two second ports, a spool chamber, and a first liquid that connects the one first port and the two second ports through the spool chambers. a housing having a passageway and a second liquid passageway; a housing slidably disposed in the spool chamber and always held in a neutral position by a spring; It receives the hydraulic pressure of the first hydraulic pressure chamber and the second hydraulic pressure chamber that communicate with the liquid passage and the second liquid passage, and when a pressure difference occurs between the two hydraulic pressure chambers, it moves to the hydraulic pressure chamber with lower hydraulic pressure. a spool that changes the flow area of the first liquid passageway and the second liquid passageway so that the hydraulic pressures of both the hydraulic pressure chambers are equal; and the first hydraulic pressure chamber of the first liquid passageway and the second liquid passageway; and two throttling means each provided in a portion closer to the first port than the second hydraulic pressure chamber and providing a predetermined resistance to the liquid flowing through that portion, wherein the spool is connected to a shaft. The spool member includes a first spool member and a second spool member that are engaged so as to be able to approach and separate from each other by a certain distance in the direction, and a space formed between the two spool members is communicated with the first port, and When the shape of the spool is such that the first and second spool members are furthest apart, when the spool moves due to the difference in hydraulic pressure between the first and second hydraulic pressure chambers, the hydraulic pressure on the side with lower hydraulic pressure increases. When the flow area of the liquid passage corresponding to the chamber is reduced relative to the flow area of the liquid passage on the opposite side, and the first and second spool members are closest to each other,
The flow path area of the liquid passage corresponding to the hydraulic pressure chamber on the side where the liquid pressure is high is reduced relative to the flow path area of the liquid passage on the opposite side, and the two throttle means are arranged in the flow path. It is composed of a variable throttle valve with a variable area, and is provided with a throttle valve control means that increases the flow path area of the variable throttle valve as the liquid flow rate increases at the first port, so that it can be used not only as a flow dividing valve but also as a flow concentrator. A flow dividing/collecting valve characterized in that it also functions as a valve. 2. The two variable throttle valves are provided at a branch part between the first liquid passage and the second liquid passage and share a throttle valve body and a throttle valve element, and the throttle valve body is connected to the first liquid passage and the second liquid passage. an opening communicating with one port and two throttle holes communicating with each of the first and second liquid passages, and the throttle valve element is slidably fitted within the throttle valve main body. 2. The flow dividing/collecting valve according to claim 1, which has a shape that allows the opening areas of the two throttle holes to be increased or decreased simultaneously. 3. The flow dividing/collecting valve according to claim 2, wherein the throttle valve element is rotatably fitted into the throttle valve main body, and the opening area of the throttle hole is changed by the rotation. 4. Claim 2, wherein the throttle valve element is fitted into the throttle valve body so as to be slidable in the axial direction, and the opening area of the throttle hole is changed by sliding in the axial direction. Divider/collector valve as described. 5. The throttle valve main body is a cylindrical member, a part of the cylindrical member forms at least a part of a liquid passage communicating with the first port, and the two throttle holes are formed in the peripheral wall of the cylindrical member. and the throttle valve control means includes means for applying an axial force to the throttle valve element of a magnitude corresponding to the flow rate of the liquid flowing within the cylindrical member, and the throttle valve control means is configured to set the throttle valve element in a neutral position. Claim 4, further comprising a spring that biases the throttle valve element toward the throttle valve and allows the throttle valve element to be moved from the neutral position by the axial force to change the opening area of the throttle hole. Divider/collector valve. 6. Claims in which the throttle valve control means is a connection mechanism that operatively connects the throttle valve element of the variable throttle valve and the capacity changing mechanism of a variable discharge displacement pump that pressure-feeds liquid to the flow dividing valve. Items 1 to 4
The flow dividing valve according to any of paragraphs. 7. A patent claim in which the throttle valve control means is a connection mechanism that operatively connects the throttle valve element of the variable throttle valve to an accelerator operation mechanism of an engine that is a driving source of a pump that pumps liquid to the flow dividing valve. The flow separating/collecting valve according to any one of items 1 to 4.
JP7719283A 1983-04-29 1983-04-29 Flow distributing and collecting valve Granted JPS59200873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7719283A JPS59200873A (en) 1983-04-29 1983-04-29 Flow distributing and collecting valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7719283A JPS59200873A (en) 1983-04-29 1983-04-29 Flow distributing and collecting valve

Publications (2)

Publication Number Publication Date
JPS59200873A JPS59200873A (en) 1984-11-14
JPS6347922B2 true JPS6347922B2 (en) 1988-09-27

Family

ID=13626949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7719283A Granted JPS59200873A (en) 1983-04-29 1983-04-29 Flow distributing and collecting valve

Country Status (1)

Country Link
JP (1) JPS59200873A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954422B1 (en) * 2009-12-23 2018-06-22 Fluidesign BY PASS DEVICE FOR MULTI-BRANCH FLOW DIVIDER FOR HYDRAULIC USE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474523A (en) * 1977-11-28 1979-06-14 Fujikoshi Kk Distributing and current collecting valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810015U (en) * 1971-06-17 1973-02-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474523A (en) * 1977-11-28 1979-06-14 Fujikoshi Kk Distributing and current collecting valve

Also Published As

Publication number Publication date
JPS59200873A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US5097746A (en) Metering valve
US4400938A (en) Hydraulic fluid feeding device for power steering device
US20020043287A1 (en) Proportional pilot operated directional valve
US5857330A (en) Travelling control circuit for a hydraulically driven type of travelling apparatus
JP2557000B2 (en) Control valve device
US3854382A (en) Hydraulic actuator controls
CA1044112A (en) Control valves
US4204459A (en) Combination check and flow control valve for hydraulic systems
KR0134569B1 (en) Fluid controller with load sensing priority flow control capability
JP2001504196A (en) Valve assembly and method of operating the valve assembly
EP0005151B1 (en) Hydraulic system including a margin valve
US3983893A (en) Flow divider valve assembly
JPH04351384A (en) Direction selector valve with load sensing function
JPS6347922B2 (en)
JPH0448969B2 (en)
JPS6069277A (en) Tilting angle control device for rotation commanding type pump
JPH0650009Y2 (en) Flow control valve with pressure compensation
CN108953262B (en) Hydraulic valve capable of being controlled by micro motion, hydraulic control system and engineering machinery
JPS62155303A (en) Control device for hydraulic motor
JPH0650641Y2 (en) Hydraulic control device
US5140815A (en) Valve apparatus
JP2532853B2 (en) Vehicle hydraulic control device
JPS6139551B2 (en)
JPS6015030Y2 (en) Hydraulic directional valve with flow diversion mechanism
JPH0419204Y2 (en)