JPS6347618A - Fluid machine rotor by uneven tooth type spur gear - Google Patents

Fluid machine rotor by uneven tooth type spur gear

Info

Publication number
JPS6347618A
JPS6347618A JP19100686A JP19100686A JPS6347618A JP S6347618 A JPS6347618 A JP S6347618A JP 19100686 A JP19100686 A JP 19100686A JP 19100686 A JP19100686 A JP 19100686A JP S6347618 A JPS6347618 A JP S6347618A
Authority
JP
Japan
Prior art keywords
tooth profile
dedendum
addendum
fluid machine
spur gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19100686A
Other languages
Japanese (ja)
Other versions
JPH076817B2 (en
Inventor
Shigeyoshi Osada
重慶 長田
Koji Hotta
堀田 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP19100686A priority Critical patent/JPH076817B2/en
Publication of JPS6347618A publication Critical patent/JPS6347618A/en
Publication of JPH076817B2 publication Critical patent/JPH076817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate phase alignment by dispensing with a pilot gear and to improve workability, by providing a small tooth form between a large addendum tooth form and a dedendum tooth form and setting a simultaneous intermeshing rate to 1 or more. CONSTITUTION:An addendum 10 having a large tooth form of a curve A-B of rotors 1, 2 is set to a cycloid curve wherein a pitch circle is a rolling circle and a dedendum 11 is set to a trochoid curve of a curve H-J to bring point other than a point H to a non-contact state and an intermediate part is set to a small tooth form 12 and a simultaneous contact rate is set to 1 or more. Since seal points are set to C1-P-C2', C2-P-C1' and b1-P-b2', b2-P-b1', the variation of rotary torque due to fluid pressure difference P1-P2 is made min. to smooth rotation. Since discharge quantity is made large, miniaturization is achieved and, since an intermeshing rate is enlarged, a pilot gear is made unnecessary and a structure can be made simple and assembling can be made easy.

Description

【発明の詳細な説明】 肢生光互 本発明は、不等歯形平歯車による流体機械回転子、例え
ば送風機、圧縮機又は流量計等の流体機械用の回転子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid machine rotor using an unequal toothed spur gear, for example a rotor for a fluid machine such as a blower, a compressor or a flow meter.

従】U支4 第14図は、送風機、圧縮機又は流量計等に一般的に用
いられているルーツ形回転子の代表例を示す図で、歯形
曲線がサイクロイドの一点連続接触歯形の場合を示し、
21及び22は回転子、23及び24はパイロット歯車
、25はケーシング、以下流量計の場合を例にとって説
明する1周知のように流入側の圧力P□と流出側の圧力
P2との圧力差P、−P、が、回転子1及び2に印加さ
れ、これが回転子1及び2に回転トルクを与え、パイロ
ット歯車3および4を介して矢印方向に回転し、この回
転に伴ってケーシング25との空間により定められた量
の流体が移送されるので、この回転子の回転数を計測す
ることにより流量を計測するものである。第14図に示
したかみあい位置においては、回転子22は軸02に対
して差圧の受圧面積は等しくなるので回転トルクは零と
なる。即ち、回転トルクは発生せず回転子21のみの回
転トルクによって回転する1図の位置から90°矢印方
向に回転した位置では回転子21の回転トルクは零とな
り1回転子22の回転トルクのみによって回転する。第
15図は上述のごとき回転子21及び22の回転トルク
を示すものであり、また、第16図は、このときの回転
子の不等速回転率即ち脈動率を示すもので回転角に対し
正弦関数的に変化している。
[Sub] U support 4 Figure 14 is a diagram showing a typical example of a roots-type rotor commonly used in blowers, compressors, flow meters, etc., and shows a case where the tooth profile curve is a cycloid one-point continuous contact tooth profile. show,
21 and 22 are rotors, 23 and 24 are pilot gears, and 25 is a casing.The following will explain the case of a flow meter as an example.1 As is well known, the pressure difference P between the pressure P on the inflow side and the pressure P2 on the outflow side. , -P is applied to the rotors 1 and 2, which gives rotational torque to the rotors 1 and 2, causing them to rotate in the direction of the arrow via the pilot gears 3 and 4, and with this rotation, the rotation with the casing 25. Since a predetermined amount of fluid is transferred through the space, the flow rate is measured by measuring the number of rotations of this rotor. In the meshing position shown in FIG. 14, the differential pressure receiving area of the rotor 22 is equal to that of the shaft 02, so the rotational torque becomes zero. That is, at a position rotated by 90° in the direction of the arrow from the position shown in Fig. 1, where no rotational torque is generated and the rotation is caused only by the rotational torque of the rotor 21, the rotational torque of the rotor 21 becomes zero, and the rotational torque of the rotor 21 becomes zero. Rotate. Fig. 15 shows the rotational torque of the rotors 21 and 22 as described above, and Fig. 16 shows the inconstant rotation rate, that is, the pulsation rate of the rotor at this time, which is expressed as a function of the rotation angle. It changes like a sine function.

且米五嵐二旦皿皇 上述の従来技術のように回転子21および22のみでは
、かみあい率が1.0であり、これでは回転子相互の回
転を伝えることができず、平歯車かハスバ歯車からなる
パイロット歯車23.24によって位相が保持されてい
る。しかし、2葉ルーツ回転子では正規の位相を正確に
合わせる作業は困難で1位相合わせをしてパイロット歯
車を装着するという組み立て時の作業性が悪かった。一
方、第15図に示したように、回転に伴う回転子21の
回転トルク子工と回転子22の回転トルクT2は大幅に
変動するので回転子間のトルクの授受をあられすT、、
−T、が大きく、それだけ回転に要するエネルギー損失
が増大する等の問題点かあった。
In addition, as in the prior art described above, the meshing ratio is 1.0 with only rotors 21 and 22, which makes it impossible to transmit the rotation of the rotors to each other. The phase is maintained by pilot gears 23, 24 consisting of gears. However, with a two-leaf Roots rotor, it is difficult to accurately match the regular phase, and the workability during assembly, which requires one phase alignment and then mounting the pilot gear, is poor. On the other hand, as shown in FIG. 15, the rotational torque of the rotor 21 and the rotational torque T2 of the rotor 22 vary considerably as they rotate, so it is difficult to transfer torque between the rotors.
-T is large, which causes problems such as an increase in energy loss required for rotation.

間 占を ゛するための 本発明は上述のごとき問題点を解決するため。for divination The purpose of the present invention is to solve the above-mentioned problems.

第1図に示すように、大なるアデンダム歯形10(A 
−B )と大なるデデンダム歯形11(H−J)の中間
部に小なる歯形部12 (B−C−D−E−F〜G−H
)を設け、歯形のかみあい率を1.0以上とし、パイロ
ット歯車がなくても回転子間の伝導を可能とし、位相合
せを不要とした組立てができる作業性のよい回転子を提
供するものである。
As shown in Fig. 1, a large addendum tooth profile 10 (A
-B) and the small tooth profile 12 (B-C-D-E-F~G-H) between the large dedendum tooth profile 11 (H-J)
), the tooth profile contact ratio is 1.0 or more, conduction between the rotors is possible even without a pilot gear, and the rotor has good workability and can be assembled without the need for phasing. be.

大−斑一勇 第1図は、本発明に係る流体機械回転子の一実施例を示
す図で、同図は、流れる方向に沿った断面図をあられし
ている。回転子1および回転子2は各々の軸0□、02
を中心として噛合し、ケーシング3と微小隙間をもって
、組込まれ流入側圧力P工と流出側圧力P2との差圧に
よって発生するトルクにより回転する。本実施例の回転
子は各々の直交軸に関して対称であるから、回転子の形
状即ち歯形曲線は第1、第2図に示すように、象現に関
して説明すれば十分である。まず、大なる歯形のアデン
ダム10は曲、mA−Bであられされ、歯高率を最高に
する目的で歯形をピッチ円を転がり円とするサイクロイ
ド曲線とし曲線H−Jであられされるデデンダム11は
回転子外径より大きな位置にある、例えば、アデンダム
歯形1oの交点A′の画くトロコイド曲線として、デデ
ンダム歯形はピッチ点H以外は非接触となるようにする
Kazuyoshi Ohmadara FIG. 1 is a diagram showing an embodiment of a fluid mechanical rotor according to the present invention, and this figure shows a cross-sectional view along the flow direction. Rotor 1 and rotor 2 have their respective axes 0□, 02
It is assembled with the casing 3 with a small gap therebetween, and is rotated by the torque generated by the differential pressure between the inflow side pressure P and the outflow side pressure P2. Since the rotor of this embodiment is symmetrical about the respective orthogonal axes, it is sufficient to describe the shape of the rotor, or the tooth profile, in terms of quadrants, as shown in FIGS. First, the addendum 10 with a large tooth profile is curved with a curve mA-B, and the dedendum 11 is curved with a curve H-J whose tooth profile is a cycloid curve whose pitch circle is a rolling circle in order to maximize the tooth height ratio. For example, the dedendum tooth profile is set to be a trochoid curve drawn by the intersection point A' of the addendum tooth profile 1o, which is located at a position larger than the outer diameter of the rotor, so that the dedendum tooth profile is non-contact except for the pitch point H.

一方、大なる歯形のアデンダム10と大なる歯形のデデ
ンダム11の中間部に曲線B−C−D−E〜F−G−H
であられされる小なる歯形12を設け、同時かみあい率
が1.0以上で円滑な回転運動を得られるように構成す
る。このとき、小なる歯形12は周知のようにインボリ
ュート歯形またはサイクロイド歯形等でよいが、本実施
例では、転がり円がピッチ円の半分であるサイクロイド
歯形とし、デデンダムB−CおよびE−Dは直線となる
ようにした0以上のように構成された一対の回転子の接
触点の軌跡は、大なる歯形ではQ□〜P 、、、 Q 
/2およびQ2〜P −Q 1’であり、小なる歯形で
はa、〜P”a’、およびa 、 〜P = a 1’
となる。
On the other hand, a curve B-C-D-E to F-G-H is formed in the middle part of the addendum 10 with a large tooth profile and the dedendum 11 with a large tooth profile.
A small tooth profile 12 is provided to provide a simultaneous contact ratio of 1.0 or more and smooth rotational movement can be obtained. At this time, the small tooth profile 12 may be an involute tooth profile or a cycloid tooth profile as is well known, but in this embodiment, it is a cycloid tooth profile in which the rolling circle is half the pitch circle, and the dedendum B-C and E-D are straight lines. The trajectory of the contact point of a pair of rotors configured as 0 or more is Q□~P for a large tooth profile, , Q
/2 and Q2~P −Q 1', and for small tooth profile a, ~P"a', and a, ~P = a 1'
becomes.

以上述べた実施例の歯形曲線を一層明確にするため第2
図に歯形曲線を再度掲げ、その方程式を下記に示す、た
だし、R=ピッチ円、r0=小なる歯形の有効外径、R
0=外径、 R,’ =アデンダム歯形のX軸との交点
、φ=回転角、田=含み角である。
In order to further clarify the tooth profile curve of the embodiment described above, the second
The tooth profile curve is shown again in the figure, and its equation is shown below, where R = pitch circle, r0 = effective outer diameter of the small tooth profile, R
0=outer diameter, R,'=intersection of the addendum tooth profile with the X axis, φ=rotation angle, and t=included angle.

(1)大なる歯形のアデンダム曲線A−Bx=R(2c
os(φ−田) −cos (2φ−aり)y=R(s
in(2φ−aa)−2sin(φ−aり)(2)大な
る歯形のデデンダム曲線H−JO≦φ≦田 (3)小なる歯形の曲線E−F y”  (3cos(上−φ)−cos(上−3φ))
(4)小なる歯形の曲線G−H x= ” (3sin(a=+φ)−sin(a= +
 3 φ))y=   (3cos(田+φ)−cos
(田+3φ))(5)小なる歯形のBCおよびDEは直
線なお、第1図に示した実施例の場合。
(1) Addendum curve of large tooth profile A-Bx=R(2c
os(φ−田) −cos(2φ−ari)y=R(s
in(2φ-aa)-2sin(φ-ari) (2) Dedendum curve of large tooth profile H-JO≦φ≦ta (3) Curve of small tooth profile E-F y” (3cos (upper-φ) -cos (upper -3φ))
(4) Small tooth profile curve G-H x=” (3sin(a=+φ)-sin(a=+
3 φ))y= (3cos(田+φ)−cos
(+3φ)) (5) BC and DE of the small tooth profile are straight lines. In the case of the embodiment shown in FIG.

田=上=30℃<、−、R,′= 5R)、 6 R,=1.65R r、=1.2R である。= Top = 30℃ <, -, R,' = 5R), 6 R,=1.65R r, = 1.2R It is.

次に、第1図に示した実施例において、ケーシング3に
穿設された溝4,4′および小なる歯形12に設けられ
た溝5は流体の歯形のとじ込み現象をさけるための逃げ
溝で、大なる歯形10及び11に対する逃げ溝は、中心
線010□に対称な大なるデデンダム歯形に沿った曲線
4および4′をケーシング3の片端面又は両端面に適当
な面積と深さをもって穿設されている。また、小なる歯
形12の逃げ溝5は、ピッチ点Pにおいて相接触する2
点のアデンダム部分を歯筋に数個所、メタルソーまたは
エンドミル等を用いて切欠いて設けられている。この逃
げ溝によって、流入圧力P1と流出圧力P2の仕切り点
即ちシール点は、大なる歯形ではC1〜p −c 2’
およびC2〜P −C、’であり、小なる歯形ではb1
〜p −b 2’およびb2〜P〜b1′で、これらは
図中に鎖線であられしたようになり、流体圧力差P□−
P2により発生する回転子の回転トルクT1およびT2
の変動を極小にすることができる。
Next, in the embodiment shown in FIG. 1, the grooves 4 and 4' formed in the casing 3 and the groove 5 formed in the small tooth profile 12 are relief grooves to avoid the trapping phenomenon of the tooth profile of the fluid. , relief grooves for the large tooth profiles 10 and 11 are formed by drilling curves 4 and 4' along the large dedendum tooth profiles symmetrical to the center line 010□ on one or both end surfaces of the casing 3 with an appropriate area and depth. has been done. In addition, the relief groove 5 of the small tooth profile 12 has two parts that come into contact with each other at the pitch point P.
The dot addendum is cut out in several places on the tooth trace using a metal saw or end mill. Due to this relief groove, the separation point, that is, the sealing point between the inflow pressure P1 and the outflow pressure P2 is set at C1 to p - c 2' in a large tooth profile.
and C2~P-C,', and b1 for small tooth profile.
〜p−b 2′ and b2〜P〜b1′, which are indicated by the dashed lines in the figure, and the fluid pressure difference P□−
Rotor rotational torques T1 and T2 generated by P2
fluctuations can be minimized.

第3図乃至第10図は、上記実施例の回転子が流れに従
って(第3図)〜(第10図)と順次回転する様子を示
す図で0点がシール点となり、第3図はT□〉T2.第
4図はT工=T、(T1≦T2)、第5図はT1<72
.第6図はT、=T、(T□≧T2)、第7図はT工〉
T2.第8図はT1=T、(T工≦T2)。
3 to 10 are diagrams showing how the rotor of the above embodiment sequentially rotates according to the flow (FIG. 3) to (FIG. 10), where 0 point is the sealing point, and FIG. □〉T2. Figure 4 shows T = T, (T1≦T2), Figure 5 shows T1<72
.. Figure 6 is T, =T, (T□≧T2), Figure 7 is T-work>
T2. In Fig. 8, T1=T, (Twork≦T2).

第9図はT2>T工、第10図はT2≧T工の場合を示
している。
FIG. 9 shows the case where T2>T-work, and FIG. 10 shows the case where T2≧T-work.

第11図は、本発明に係る流体機械回転子の他の実施例
を示す図で、この実施例は上述の実施例の歯形かみあい
上の欠点を補うものである。即ち、前述の実施例では大
なるデデンダム歯形H−JはH点で尖点となり、このH
点のみがかみあいに関与する所謂筒2のかみあい歯形で
あるため、歯形の摩耗上好ましくない(ただし、パイロ
ット歯車を併用する場合は差支えない。)従って、第1
1図に示すように、大なるデデンダム歯形のトロコイド
曲線である工〜Jと小なるアデンダム歯形H〜Gに相接
合する円弧歯形H〜工を設け、この円弧歯形と噛み合い
する大なるアデンダム歯形A〜Bを求めて全てのかみあ
いが第1かみあいどなるように構成したものである。
FIG. 11 is a diagram showing another embodiment of the fluid mechanical rotor according to the present invention, and this embodiment compensates for the defects in tooth profile meshing of the above-mentioned embodiment. That is, in the above-mentioned embodiment, the large dedendum tooth profile H-J becomes a cusp at point H;
Since only the dots are the so-called meshing tooth profile of the cylinder 2, which is involved in meshing, this is not preferable in terms of tooth profile wear (however, there is no problem if a pilot gear is also used.) Therefore, the first
As shown in Fig. 1, a circular arc tooth profile H~ is provided, which is a trochoid curve of a large dedendum tooth profile, and a circular arc tooth profile H~ is joined to a small addendum tooth profile H~G, and a large addendum tooth profile A that meshes with this circular arc tooth profile is provided. ~ B is obtained and all the meshes are configured to be the first mesh.

効   果 上述のように、本発明に係る流体機械回転子は、従来の
流体機械回転子の吐出量と比べて大きく、第1図に示し
た実施例の場合は、従来技術の1.46倍と大きく、従
って同一流量では小形計量とすることができ、同一形式
では回転数が少なく耐久性が向上する。また、同時かみ
あい率を1.0以上にすることができるため、従来技術
の0.5では不可能であった回転子自身での動力伝達が
可能となり、この結果、パイロット歯車が必ずしも必要
でなくなり、しかもパイロット歯車を用いて伝達する場
合のような位相合わせ作業もなくなり、構造も簡単とな
り組み立て作業も容易となった。また、逃げ溝を付加す
ることににより。
Effects As mentioned above, the fluid mechanical rotor according to the present invention has a larger discharge amount than the conventional fluid mechanical rotor, and in the case of the embodiment shown in FIG. 1, the discharge amount is 1.46 times that of the conventional technology. Therefore, with the same flow rate, it can be made smaller, and with the same type, the number of revolutions is lower and durability is improved. In addition, since the simultaneous meshing ratio can be increased to 1.0 or more, it becomes possible to transmit power by the rotor itself, which was impossible with the conventional technology of 0.5, and as a result, a pilot gear is no longer necessary. In addition, there is no need for phase matching, which is required when transmitting data using a pilot gear, and the structure is simplified, making assembly easier. Also, by adding relief grooves.

とじ込み現象を除去するとともに有効接触点、即ち、有
効シール点がピッチ円に近づくので圧力差による夫々の
回転子の回転トルク変動が少なくなり、従って、トルク
授受T、−T2が小さくなるため、かみあい歯面力が極
小となるので円滑な回転運動を期待できる。
Since the binding phenomenon is eliminated and the effective contact point, that is, the effective sealing point approaches the pitch circle, the rotational torque fluctuation of each rotor due to the pressure difference is reduced, and therefore the torque exchange T, -T2 is reduced, so that the meshing is improved. Since the tooth surface force is minimal, smooth rotational movement can be expected.

第12図は、第1図に示した実施例の回転トルク率を示
す図であるが、第15図に示した従来例のトルク変動に
比べて大幅に減少し均一化されていることがわかる。第
13図は、本発明による回転子の脈動率を示す図である
が、吐出量が従来例に比べて1.46倍あるのにかかわ
らず、第16図に示した従来例の脈動率よりも小さく運
動エネルギー損失も極めて少ないことがわかる。
FIG. 12 is a diagram showing the rotational torque rate of the embodiment shown in FIG. 1, and it can be seen that the torque fluctuation is significantly reduced and evened out compared to the conventional example shown in FIG. 15. . Fig. 13 is a diagram showing the pulsation rate of the rotor according to the present invention, and although the discharge amount is 1.46 times that of the conventional example, it is still higher than the pulsation rate of the conventional example shown in Fig. 16. It can be seen that the kinetic energy loss is also very small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例を説明するための図で、流
れ方向に沿った断面図、第2図は、第1図に示した実施
例の歯形曲線を説明するための詳細図、第3図乃至第1
0図は、流体機械回転子の流れに従った回転をあられす
図、第11図は、本発明の他の実施例を説明するための
図、第12図は、本発明による回転子の回転トルク変動
率を示す図、第13図は1本発明による回転子の脈動率
を示す図、第14図は、従来のサイクロイド歯形のルー
ツ回転子を示す図、第15図は、従来の回転子の回転ト
ルク変動率を示す図、第16図は。 脈動率を示す図である。 1.2・・・回転子、3・・・ケーシング、4.4’ 
、5・・・逃げ溝、10・・・大なる歯形のアデンダム
、11・・・大なる歯形のデデンダム、12・・・小な
る歯形。 特許出願人  オーバル機器工業株式会社第 I 図 第  2  図 ′1 第 3 図 第 4 図 第5図 第6図 第 7 図 第 8 図 第 9 図 第1O図 遇 11 面 第 12  図 第14図
Fig. 1 is a diagram for explaining one embodiment of the present invention, and is a sectional view along the flow direction, and Fig. 2 is a detailed diagram for explaining the tooth profile curve of the embodiment shown in Fig. 1. , Figures 3 to 1
Figure 0 shows the rotation of the fluid machine rotor according to the flow, Figure 11 is a diagram for explaining another embodiment of the present invention, and Figure 12 shows the rotation of the rotor according to the present invention. FIG. 13 is a diagram showing the pulsation rate of the rotor according to the present invention. FIG. 14 is a diagram showing a conventional cycloid tooth profile Roots rotor. FIG. 15 is a diagram showing a conventional rotor. FIG. 16 is a diagram showing the rotational torque fluctuation rate of . It is a figure showing a pulsation rate. 1.2...Rotor, 3...Casing, 4.4'
, 5... relief groove, 10... addendum with large tooth profile, 11... dedendum with large tooth profile, 12... small tooth profile. Patent Applicant Oval Equipment Industry Co., Ltd. Figure I Figure 2 '1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 1O Benefits Page 11 Figure 12 Figure 14

Claims (5)

【特許請求の範囲】[Claims] (1)、ケーシング内に回転自在に収納された一対の等
形同大の2葉ルーツ回転子において、大なるアデンダム
歯形と大なるデデンダム歯形の中間部に小なる歯形部分
を設け、同時かみあい率を1.0以上としたことを特徴
とする不等歯形平歯車による流体機械回転子。
(1) In a pair of two-lobed Roots rotors of the same size and shape that are rotatably housed in the casing, a small tooth profile portion is provided between the large addendum tooth profile and the large dedendum tooth profile, resulting in a simultaneous contact ratio. 1. A fluid machine rotor using an unequal tooth spur gear, characterized in that: 1.0 or more.
(2)、前記アデンダム歯形をピッチ円を転り円とする
サイクロイド歯形で歯形の滑り率が無限大となる第2か
みあい歯形となし、前記デデンダム歯形を外半径よりも
大きい位置にある点の画くトロコイド歯形とし、該デデ
ンダム歯形のトロコイド部分を非接触としたことを特徴
とする特許請求の範囲第(1)項記載の不等歯形平歯車
による流体機械回転子。
(2) The addendum tooth profile is a cycloid tooth profile in which the pitch circle is a rolling circle, and the sliding ratio of the tooth profile is infinite. A fluid machine rotor using an unequal tooth spur gear according to claim 1, characterized in that the dedendum tooth profile has a trochoidal tooth profile and the trochoid portion of the dedendum tooth profile is non-contact.
(3)、前記デデンダム歯形のピッチ点附近の一部を円
弧歯形で接合し、この円弧歯形と噛み合いするアデンダ
ム歯形とは第1かみあいとなるごとく構成としたことを
特徴とする特許請求の範囲第(1)項又は第(2)項記
載の不等歯形平歯車による流体機械回転子。
(3) A part of the dedendum tooth profile in the vicinity of the pitch point is joined by a circular arc tooth profile, and the addendum tooth profile that meshes with the arc tooth profile is configured to form a first mesh. A fluid machine rotor using an uneven toothed spur gear according to item (1) or item (2).
(4)、中心線に対称な大なるデデンダム歯形に沿った
逃げ溝をケーシング部分に穿設するとともに、小なる歯
形部分のアデンダム部分の歯筋の一部を斜めに切欠いた
ことを特徴とする特許請求の範囲第(1)項又は第(2
)項又は第(3)項記載の不等歯形平歯車による流体機
械回転子。
(4) A relief groove is bored in the casing part along the large dedendum tooth profile that is symmetrical about the center line, and a part of the tooth trace in the addendum part of the small tooth profile part is cut out diagonally. Claim (1) or (2)
) or (3) A fluid machine rotor using an uneven toothed spur gear.
(5)、前記回転子の各々の軸に互に噛合する等大の円
歯車からなるパイロット歯車を配設したことを特徴とす
る特許請求の範囲第(1)項乃至第(4)項のいずれか
1項に記載の不等歯形平歯車による流体機械回転子。
(5) A pilot gear consisting of circular gears of equal size that meshes with each other is disposed on each shaft of the rotor. A fluid machine rotor comprising the uneven toothed spur gear according to any one of the items.
JP19100686A 1986-08-14 1986-08-14 Hydromechanical rotor with non-uniform tooth spur gear Expired - Lifetime JPH076817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19100686A JPH076817B2 (en) 1986-08-14 1986-08-14 Hydromechanical rotor with non-uniform tooth spur gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19100686A JPH076817B2 (en) 1986-08-14 1986-08-14 Hydromechanical rotor with non-uniform tooth spur gear

Publications (2)

Publication Number Publication Date
JPS6347618A true JPS6347618A (en) 1988-02-29
JPH076817B2 JPH076817B2 (en) 1995-01-30

Family

ID=16267302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19100686A Expired - Lifetime JPH076817B2 (en) 1986-08-14 1986-08-14 Hydromechanical rotor with non-uniform tooth spur gear

Country Status (1)

Country Link
JP (1) JPH076817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593052A (en) * 2020-12-04 2022-06-07 东北大学 Line-changing Roots rotor and design method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608379B2 (en) * 2010-01-22 2014-10-15 株式会社岡村製作所 Desk equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593052A (en) * 2020-12-04 2022-06-07 东北大学 Line-changing Roots rotor and design method

Also Published As

Publication number Publication date
JPH076817B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4210410A (en) Volumetric type flowmeter having circular and involute tooth shape rotors
KR101263037B1 (en) Crescent gear pump with novel rotor set
GB1597011A (en) Rotary positive displacement flow meter
US8425212B2 (en) Positive displacement flowmeter and helical gear
JP2904719B2 (en) Screw rotor, method for determining cross-sectional shape of tooth profile perpendicular to axis, and screw machine
US4155686A (en) Hydrostatic intermeshing gear machine with substantially trochoidal tooth profile and one contact zone
JPH1089443A (en) Elliptic gear
JPS6347618A (en) Fluid machine rotor by uneven tooth type spur gear
JPH0310807B2 (en)
US5135373A (en) Spur gear with epi-cycloidal and hypo-cycloidal tooth shapes
JP3310239B2 (en) Helical gear type positive displacement flowmeter
JPH05296159A (en) Rotor for positive displacement rotating machine
JPS648193B2 (en)
CN1132002C (en) Positive displacement flowmeter
JPS61153040A (en) Speed reduction gear
JP4203531B1 (en) Volumetric flow meter
CN111779674A (en) Rotor profile of multi-blade roots pump
JP3596961B2 (en) Positive displacement flow meter
JPS58155288A (en) Improved-type queen-bee pump
JPS5832649B2 (en) Positive displacement flowmeter
JPS5815046B2 (en) Positive displacement flowmeter
JPS5815047B2 (en) Positive displacement flow meter
JPH067326Y2 (en) Volumetric flow meter
JPH0781895B2 (en) Volumetric flow meter
CA2028949C (en) Spur gear with epi-cycloidal and hypo-cycloidal tooth shapes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term