JPS6347206B2 - - Google Patents

Info

Publication number
JPS6347206B2
JPS6347206B2 JP21091281A JP21091281A JPS6347206B2 JP S6347206 B2 JPS6347206 B2 JP S6347206B2 JP 21091281 A JP21091281 A JP 21091281A JP 21091281 A JP21091281 A JP 21091281A JP S6347206 B2 JPS6347206 B2 JP S6347206B2
Authority
JP
Japan
Prior art keywords
hydroxyethyl methacrylate
cyanoethylated
polymer
methacrylate polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21091281A
Other languages
Japanese (ja)
Other versions
JPS58115705A (en
Inventor
Masuhiro Shoji
Teruo Sakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP21091281A priority Critical patent/JPS58115705A/en
Publication of JPS58115705A publication Critical patent/JPS58115705A/en
Publication of JPS6347206B2 publication Critical patent/JPS6347206B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は極めて高い誘電率を有する新規の高分
子誘電体材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel polymeric dielectric materials with extremely high dielectric constants.

高分子物質の性質を変化させたり、新しい機能
を賦与する目的で各種の化学反応による改質が行
なわれている。アクリロニトリルを用いるシアノ
エチル化もその一つであり、最も代表的な例とし
てはシアノエチル化セルロースがある。シアノエ
チル化セルロースは各種の溶媒に対する溶解性
と、また高い誘電率を賦与されているので、分散
型エレクトロルミネセンス(EL)素子の発光体
のバインダーとして用いられ、またコンデンサー
フイルム等への用途も考えられている。
Modification through various chemical reactions is carried out to change the properties of polymeric substances or to impart new functions. Cyanoethylation using acrylonitrile is one of them, and the most typical example is cyanoethylated cellulose. Cyanoethylated cellulose is endowed with solubility in various solvents and a high dielectric constant, so it is used as a binder for the luminescent material of dispersed electroluminescence (EL) elements, and is also considered for use in capacitor films, etc. It is being

本発明者等はハイドロオキシエチルメタクリレ
ート重合体のシアノエチル化を行ない、新規に得
られたシアノエチル化ハイドロオキシエチルメタ
クリレート重合体は、シアノエチルセルロースに
比しても極めて高い誘電率を有しており、極めて
高誘電率を有する誘電体材料となることを見出し
た。
The present inventors carried out cyanoethylation of hydroxyethyl methacrylate polymer, and the newly obtained cyanoethylated hydroxyethyl methacrylate polymer has an extremely high dielectric constant even compared to cyanoethyl cellulose. It has been found that this material can be a dielectric material with a high dielectric constant.

以下本発明を詳述する。 The present invention will be explained in detail below.

本発明で用いられるハイドロオキシエチルメタ
クリレート重合体は、通常ハイドロオキシエチル
メタクリレート単量体を、エチルアルコール中に
てアゾビスイソブチロニトリル(ABIN)等の過
酸化物を触媒として溶液重合して得られる。重合
度は連鎖移動剤を用い、任意のものが得られる
が、通常はアセトン、メルカプタン等を用い調節
する。ハイドロオキシエチルメタクリレート重合
体はエチルアルコールに可溶であるため、重合物
はエチルアルコール溶液として得られ、重合後残
モノマー、触媒残渣等を除去するために、得られ
たポリマーの再沈を数度くり返し行ない、最後
に、水、溶媒を真空乾燥で除去すると下記(A)の一
般式で示されるハイドロオキシエチルメタクリレ
ート重合体が得られる。
The hydroxyethyl methacrylate polymer used in the present invention is usually obtained by solution polymerizing hydroxyethyl methacrylate monomer in ethyl alcohol using a peroxide such as azobisisobutyronitrile (ABIN) as a catalyst. It will be done. Any degree of polymerization can be obtained using a chain transfer agent, but it is usually controlled using acetone, mercaptan, etc. Hydrooxyethyl methacrylate polymer is soluble in ethyl alcohol, so the polymer is obtained as an ethyl alcohol solution, and the obtained polymer is reprecipitated several times to remove residual monomers, catalyst residues, etc. after polymerization. The process is repeated, and finally, water and the solvent are removed by vacuum drying to obtain a hydroxyethyl methacrylate polymer represented by the general formula (A) below.

本発明の主構成材料たるシアノエチル化ハイド
ロオキシエチルメタクリレート重合体は(A)式の重
合体のアルコール基の水素の一部または全部をシ
アノエチル基(―CH2CH2CN)で置換したもの
である。シアノエチル化の程度は溶媒への溶解
性、誘電損失その他の性質が期待される用途によ
り異なるが、少なくともOH基の50%以上がシア
ノエチル化されたものが好ましく、特に高誘電率
の誘電材料を目的とする場合には80%以上シアノ
エチル化されたものが一層好ましい。
The cyanoethylated hydroxyethyl methacrylate polymer, which is the main constituent material of the present invention, is a polymer of formula (A) in which some or all of the hydrogen atoms in the alcohol groups have been replaced with cyanoethyl groups (-CH 2 CH 2 CN). . The degree of cyanoethylation varies depending on the intended use, such as solubility in solvents, dielectric loss, and other properties, but it is preferable that at least 50% of the OH groups are cyanoethylated, especially for dielectric materials with high dielectric constants. In this case, those with 80% or more cyanoethylation are more preferable.

シアノエチル化反応は、ハイドロオキシエチル
メタクリレート重合体に溶媒としてアセトンを、
さらに原料であるアクリロニトリルを加え、触媒
には苛性アルカリ水溶液を用い、室温から80℃、
好ましくは60℃以下の温度で行なう。特に過剰の
アクリルニトリル存在下で反応温度を過度に上昇
させると、アクリロニトリルの低重合物が生成
し、製品の熱安定性を著しくそこなうおそれがあ
るので注意を要する。
In the cyanoethylation reaction, acetone is added to the hydroxyethyl methacrylate polymer as a solvent.
Furthermore, the raw material acrylonitrile is added, and a caustic alkali aqueous solution is used as a catalyst.
It is preferably carried out at a temperature of 60°C or lower. In particular, if the reaction temperature is excessively raised in the presence of an excess of acrylonitrile, a low polymer of acrylonitrile may be produced, which may significantly impair the thermal stability of the product, so care must be taken.

この様な範囲でシアノエチル化されたハイドロ
オキシエチルメタクリレート重合体は熱可塑性で
あり、このフイルムは極めて高い誘電率を有して
いる。後の実施例でも明らかであるが、例えば溶
液粘度ηioh=0.1093dl/g、アルコール基へのシ
アノエチル化度約92.6%のものは1KHz、25℃で
の誘電率は約20を示す。
The hydroxyethyl methacrylate polymer that has been cyanoethylated in this range is thermoplastic, and the film has an extremely high dielectric constant. As is clear from the later examples, for example, a solution with a solution viscosity η ioh =0.1093 dl/g and a degree of cyanoethylation of alcohol groups of about 92.6% exhibits a dielectric constant of about 20 at 1 KHz and 25°C.

又、本発明のシアノエチル化されたハイドロオ
キシエチルメタクリレート重合体はメタクリレー
ト骨格を有するために熱溶融時の流動性にすぐ
れ、また熱安定性にもすぐれている。
Further, the cyanoethylated hydroxyethyl methacrylate polymer of the present invention has a methacrylate skeleton, so it has excellent fluidity during hot melting and also has excellent thermal stability.

さらに可とう性にもすぐれており、例えば分散
型エレクトロルミネセンス素子のバインダーとし
て用いる場合においても耐屈曲破断性はシアノエ
チルセルロースに比べてすぐれている。
Furthermore, it has excellent flexibility, and even when used as a binder for dispersed electroluminescent devices, for example, its resistance to bending and breaking is superior to that of cyanoethylcellulose.

またこのシアノエチル化ハイドロオキシエチル
メタクリレート重合体は水、メタノール、エタノ
ール等の溶媒には不溶であるが、例えばアセト
ン、メチルエチルケトン、ジメチルフオルムアミ
ド、ジメチルアセトアミド、アクリロニトリル、
クロロホルムなどの溶媒には溶解するのでこれら
の溶媒の溶液の状態でフイルム状に成型すること
も可能であり、ZnS等の無機バインダーを混合す
ることも可能である。
Furthermore, this cyanoethylated hydroxyethyl methacrylate polymer is insoluble in solvents such as water, methanol, and ethanol, but is not soluble in solvents such as acetone, methyl ethyl ketone, dimethyl formamide, dimethyl acetamide, acrylonitrile, etc.
Since it dissolves in solvents such as chloroform, it is possible to form it into a film in the form of a solution of these solvents, and it is also possible to mix it with an inorganic binder such as ZnS.

以上、本発明になるシアノエチル化樹脂はその
高誘電率、加工性等の特性を生かし、例えばエレ
クトロルミネセンス用のバインダー等に用いられ
る高誘電体材料として極めて有用である。
As described above, the cyanoethylated resin of the present invention takes advantage of its characteristics such as high dielectric constant and processability, and is extremely useful as a high dielectric material used, for example, as a binder for electroluminescence.

以下本発明をさらに詳しく説明するために実施
例をもつて説明を加える。
EXAMPLES In order to explain the present invention in more detail, an explanation will be given below using examples.

実施例 1 Aldrich社製ハイドロオキシエチルメタクリレ
ート単量体(以下HEMAと略称)50g、エチル
アルコール200g、アゾビスイソブチロニトリル
(以下ABINと略称)1g、n―ドデシルメルカ
プタン2gをよく溶解混合し、300mlガラスアン
プル中にて強く撹拌混合しながら50℃、16時間重
合した。次に飽和食塩水中に重合溶液を投入し、
HEMA重合物を析出させる。析出物をメタノー
ルに再溶解し、食塩水中での再沈を数度くり返
し、析出物を充分水洗したのち乾燥し、重合物を
40g得た。得られたHEMA重合物40g、アクリ
ロニトリル150g、アセトン50g,NaOH0.8g、
H2O10gを50℃にて撹拌反応させた。
Example 1 50 g of hydroxyethyl methacrylate monomer (hereinafter abbreviated as HEMA) manufactured by Aldrich, 200 g of ethyl alcohol, 1 g of azobisisobutyronitrile (hereinafter abbreviated as ABIN), and 2 g of n-dodecyl mercaptan were thoroughly dissolved and mixed. Polymerization was carried out at 50° C. for 16 hours while vigorously stirring and mixing in a 300 ml glass ampoule. Next, pour the polymerization solution into saturated saline solution,
Precipitate HEMA polymer. The precipitate was redissolved in methanol and reprecipitated in saline several times, and the precipitate was thoroughly washed with water and dried to remove the polymer.
I got 40g. 40 g of the obtained HEMA polymer, 150 g of acrylonitrile, 50 g of acetone, 0.8 g of NaOH,
10 g of H 2 O was stirred and reacted at 50°C.

メタノール中に重合溶液を投入撹拌し、シアノ
エチル化樹脂を析出させる。
The polymerization solution is poured into methanol and stirred to precipitate the cyanoethylated resin.

次にこの析出物のアセトン溶液を水中に投入撹
拌して再沈を行ない、再沈物を乾燥し、シアノエ
チル化ハイドロオキシエチルメタクリレート樹脂
38gを得た。得られたシアノエチル化ハイドロオ
キシエチルメタクリレート樹脂の溶液粘度はジメ
チルホルムアミドを溶媒とし、4g/の樹脂濃
度でηioh=0.1093dl/gであつた。
Next, an acetone solution of this precipitate was poured into water and stirred to perform reprecipitation, and the reprecipitate was dried, and the cyanoethylated hydroxyethyl methacrylate resin was
Obtained 38g. The solution viscosity of the obtained cyanoethylated hydroxyethyl methacrylate resin was η ioh =0.1093 dl/g at a resin concentration of 4 g/g using dimethylformamide as a solvent.

次に、元素分析をしたところ窒素の含有量は
7.24wt%であり、これよりシアノエチル化度を推
定すると92.6%であつた。シアノエチル化ハイド
ロオキシエチルメタクリレートの赤外吸光線図を
図1に示す。
Next, elemental analysis revealed that the nitrogen content was
It was 7.24wt%, and the degree of cyanoethylation was estimated from this to be 92.6%. The infrared absorption diagram of cyanoethylated hydroxyethyl methacrylate is shown in FIG.

実施例 2 実施例1で合成したシアノエチル化ハイドロオ
キシエチルメタクリレート樹脂を150℃、5Kg/
cm2(ゲージ圧)の条件で2分間Al箔上に加圧プ
レスして樹脂の片面にAl箔を接着して一方の電
極とし、樹脂面の露出部にはAlを蒸着してもう
一方の電極とした。樹脂の厚さは50μであつた。
Example 2 The cyanoethylated hydroxyethyl methacrylate resin synthesized in Example 1 was heated at 150°C, 5 kg/
Pressure-press the Al foil onto one side of the resin for 2 minutes at cm 2 (gauge pressure) to form one electrode, and deposit Al on the exposed part of the resin surface to form the other electrode. It was used as an electrode. The thickness of the resin was 50μ.

この試料の誘電率εおよび誘電損tanδは1KHz
25℃で夫々20.1および10.5%であつた。
The dielectric constant ε and dielectric loss tan δ of this sample are 1KHz
At 25°C, they were 20.1 and 10.5%, respectively.

上述の通り、このシアノエチル化ハイドロオキ
シエチルメタクリレート重合体は、シアノエチル
セルロースの誘電率が通常16程度であることを比
較すると極めて大きな誘電率を有することがわか
る。
As mentioned above, it can be seen that this cyanoethylated hydroxyethyl methacrylate polymer has an extremely large dielectric constant when compared with the dielectric constant of cyanoethyl cellulose, which is usually about 16.

また150℃、2分間のプレスによつても変色等
がないことから、熱安定性も良好なものである。
It also has good thermal stability, as there is no discoloration even when pressed at 150°C for 2 minutes.

さらに実施例1で合成したシアノエチル化ハイ
ドロオキシエチルメタクリレート重合体の100μ
厚のフイルムを手で180゜折り曲げても破断しなか
つたが、100μ厚のシアノエチルセルローズのフ
イルムに同様の処理をしたところ破断してしまつ
た。
Furthermore, 100μ of the cyanoethylated hydroxyethyl methacrylate polymer synthesized in Example 1
Even when a thick film was bent 180 degrees by hand, it did not break, but when a 100μ thick cyanoethyl cellulose film was subjected to the same treatment, it broke.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例1で得たシアノエチル化ハイドロ
オキシエチルメタクリレートの赤外吸光線図を示
す。
FIG. 1 shows an infrared absorption diagram of cyanoethylated hydroxyethyl methacrylate obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 シアノエチル化ハイドロオキシエチルメタク
リレート重合体よりなる誘電体材料。 2 シアノエチル化ハイドロオキシエチルメタク
リレート重合体は、ハイドロオキシエチルメタク
リレート重合体のアルコール基の少なくとも50%
以上がシアノエチル化されたものであることを特
徴とする特許請求の範囲第1項記載の誘電体材
料。
[Claims] 1. A dielectric material comprising a cyanoethylated hydroxyethyl methacrylate polymer. 2. The cyanoethylated hydroxyethyl methacrylate polymer contains at least 50% of the alcohol groups of the hydroxyethyl methacrylate polymer.
The dielectric material according to claim 1, wherein the above is cyanoethylated.
JP21091281A 1981-12-29 1981-12-29 Dielectric material using cyanoethylated hydroxyethylmethacrylate polymer Granted JPS58115705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21091281A JPS58115705A (en) 1981-12-29 1981-12-29 Dielectric material using cyanoethylated hydroxyethylmethacrylate polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21091281A JPS58115705A (en) 1981-12-29 1981-12-29 Dielectric material using cyanoethylated hydroxyethylmethacrylate polymer

Publications (2)

Publication Number Publication Date
JPS58115705A JPS58115705A (en) 1983-07-09
JPS6347206B2 true JPS6347206B2 (en) 1988-09-21

Family

ID=16597121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21091281A Granted JPS58115705A (en) 1981-12-29 1981-12-29 Dielectric material using cyanoethylated hydroxyethylmethacrylate polymer

Country Status (1)

Country Link
JP (1) JPS58115705A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314507B1 (en) * 1987-10-30 1998-01-21 Nippon Kasei Chemical Co., Ltd. Pastes for forming a luminescent layer or insulator layer of a dispersion type electroluminescence element and a dispersion type electroluminescence element

Also Published As

Publication number Publication date
JPS58115705A (en) 1983-07-09

Similar Documents

Publication Publication Date Title
EP0104726B1 (en) Electrically conductive polymer composition
Shi et al. Synthesis and characterization of a water-soluble poly (p-phenylenevinylene) derivative
US6066269A (en) Electroactive inorganic hybrid materials
US4322524A (en) Cyanoethylpullulan
Subramanyam et al. Conjugated ionic polyacetylenes. 5. Spontaneous polymerization of 2-ethynylpyridine in a strong acid
US3987016A (en) Method for the preparation of polyarylene sulfides containing pendant cyano groups by polymerizing m-benzenedithiol, dibromobenzene, and 2,4-dichlorobenzonitrile
JP6154784B2 (en) Catalyst-free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
EP0146277A2 (en) Cellulosic products
JPS6347206B2 (en)
KR100205912B1 (en) Process for preparing soluble electrical conductive polyaniline
JPH0532767A (en) Preparation of polymer, preparation of molding material, preparation of inherent electrically conductive molding material and polymer and molding material
JP2728927B2 (en) Preparation method of polypyrrole latex
JPH02283722A (en) Manufacture of conductive polymer derived from 3-alkylthiophene, and conductive device containing said polymer
JPH0510364B2 (en)
KR100445287B1 (en) Novel process of polyaniline
Shimidzu et al. Synthesis of poly (3‐vinyl‐1, 4‐butyrolactone‐co‐acrylonitrile)
JPS60197704A (en) Production of highly dielectric organic compound
DE2153104C2 (en) Terpolymers with randomly distributed repeating units
CN117157331A (en) Cross-linkable xylan, method for the production and use thereof
KR820001740B1 (en) Process for the chlorination of polypropylene
Kern Vinylmercaptobenzothiazole and its polymers
JPS64961B2 (en)
JPS6166707A (en) Production of crosslinkable, thermally reversible high polymer compound
JPS58150560A (en) Bibenzyl-4-sulfonylchloride
US2416880A (en) Polyvinyl alcohol insolubilized with chlorinated polymeric ethers