KR100205912B1 - Process for preparing soluble electrical conductive polyaniline - Google Patents

Process for preparing soluble electrical conductive polyaniline Download PDF

Info

Publication number
KR100205912B1
KR100205912B1 KR1019960030273A KR19960030273A KR100205912B1 KR 100205912 B1 KR100205912 B1 KR 100205912B1 KR 1019960030273 A KR1019960030273 A KR 1019960030273A KR 19960030273 A KR19960030273 A KR 19960030273A KR 100205912 B1 KR100205912 B1 KR 100205912B1
Authority
KR
South Korea
Prior art keywords
polyaniline
aniline
dbsa
polymerization
soluble
Prior art date
Application number
KR1019960030273A
Other languages
Korean (ko)
Other versions
KR980009325A (en
Inventor
곽태훈
이영대
문두경
주용락
양유찬
서정덕
김정엽
김동영
조현남
김영철
이준영
Original Assignee
이종학
한화종합화학주식회사
박원훈
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종학, 한화종합화학주식회사, 박원훈, 한국과학기술연구원 filed Critical 이종학
Priority to KR1019960030273A priority Critical patent/KR100205912B1/en
Publication of KR980009325A publication Critical patent/KR980009325A/en
Application granted granted Critical
Publication of KR100205912B1 publication Critical patent/KR100205912B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • C08K5/3725Sulfides, e.g. R-(S)x-R' containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 가용 전기전도성 폴리아닐린의 제조방법에 관한 것으로, 좀 더 상세하게는 수용액 상태에서 방향족 아민 화합물인 아닐린과 도판트로 도데실벤젠설폰산 및 산화제로 암모니움퍼설페이트를 반응시키는 가용 전기전도성 폴리아닐린의 제조방법에 관한 것이다. 본 발명에 따라 제조된 가용 전기전도성 폴리아닐린은 유기 용매에 쉽게 용해되므로 가공성이 뛰어나서 전기전도성 코팅재료 및 도료, 밧데리의 전극재료, 반도체 부품, 고체전해질, 축전기의 전해질 등에 쉽게 응용될 수 있다.The present invention relates to a method for preparing a soluble electrically conductive polyaniline, and more particularly, to a soluble electrically conductive polyaniline for reacting ammoniapersulfate with an adoline, an aromatic amine compound, a dodecylbenzenesulfonic acid and an oxidant in an aqueous solution. It is about a method. The soluble electroconductive polyaniline prepared according to the present invention is easily dissolved in an organic solvent and thus has excellent processability, and thus can be easily applied to electroconductive coating materials and paints, battery electrode materials, semiconductor parts, solid electrolytes, electrolytes of capacitors, and the like.

Description

가용 전기전도성 폴리아닐린의 제조방법Method for preparing soluble electrically conductive polyaniline

제1도는 본 발명의 중합법에 따라 제조된 중합체를 클로로포름에 용해시켜 캐스팅한 필름의 FT-라만(Ramann) 스펙트럼.1 is an FT-Ramann spectrum of a film produced by dissolving a polymer prepared according to the polymerization method of the present invention in chloroform.

제2도는 발명에 따른 중합체를 클로로포름에 용해시켜 유리기관에 스핀코팅(spin coating)시킨 필름의 UV-VIS-NIR 스펙트럼.2 is a UV-VIS-NIR spectrum of a film in which the polymer according to the invention is dissolved in chloroform and spin coated onto a glass tube.

제3도는 본 발명에 따라 폴리아닐린을 제조후, 세척전의 폴리아닐린 입자의 모폴로지(morphology)(제3a도)와 증류수와 메탄올로 세척한 후의 모폴로지(제3b도)차이를 광학 현미경으로 찍은 사진.FIG. 3 is an optical microscope photograph of the morphology of polyaniline particles (FIG. 3a) and the morphology (FIG. 3b) difference after washing with distilled water and methanol after preparing polyaniline according to the present invention.

제4도는 본 발명에 따라 아닐린 단량cp와 암모니움퍼설페이트의 혼합비 변화에 따른 폴리아닐린의 전기전도도 변화를 나타낸 그래프.4 is a graph showing the change in the electrical conductivity of polyaniline according to the change in the mixing ratio of the aniline short amount cp and ammonium persulfate according to the present invention.

제5도는 본 발명에 따라 아닐린 단량체와 암모니움퍼설페이트의 혼합비 변화에 따른 폴리아닐린의 수율 변화를 나타낸 그래프.5 is a graph showing a change in yield of polyaniline according to the mixing ratio of the aniline monomer and ammonium persulfate according to the present invention.

본 발명은 가용 전기전도성 폴리아닐fls의 제조방법에 관한 것으로, 좀 더 상세하게는 수용액 상태에서 방향족 아민 화합물인 아닐린을 단량체로 사용하고 도판트( dopant)로 도데실벤젠설폰산 및 산화제로 암모니움퍼설페이트를 사용하여 반응시키는 가용 전기전도성 폴리아닐린의 제조방법에 관한 것이다. 일반적으로 피롤, 티오펜, 아닐린 등의 헤테로 원자를 포함하는 복소환 또는 방향족 화합물을 중합시켜 얻어지는 중합체는 대기중에서 안정하고 높은 전기전도성을 나타내기 때문에 전도성 재료로서 적합하여 이들에 대한 많은 연구가 이루어지고 있다. 이들 중합체는 일반적으로 도핑량의 변화에 따라 전기 전도도 조절이 가능하여 다양한 분야에 응용될 수 있다. 특히, 본 발명에 따라 제조된 전기전도성 중합체인 폴리아닐린은 유기 용매에 쉽게 용해되는 특성으로 용액 블렌드가 가능하며 가공성이 뛰어나다. 이러한 특성은 범용 플라스틱의 대전방지용이나 전자파차폐용 코팅재료, 도료, 이차전지 및 콘덴서의 전극재료, 반도체 부품, 액정 표시소자, 일렉트로루미네센스 디스플레이어 등 다양한 분야에 적용이 가능하다. 전기전도성 고분자(예를 들어, 폴리피롤, 폴리티오펜, 폴리아닐린)는 주쇄를 따라 발달된 Π-공액성을 나타내는 구조로서, 이들 화합물들은 그 자체로서는 전도성을 나타내지 않으며, 도판트로 도핑시켰을 때 전기 전도성을 나타낸다. 전기 전도성 고분자는 전기화학적 중합방법에 의해 필름 형태, 화학적 산화 중합방법에 의해 분말형태의 전기전도성 고분자가 얻어진다. 그러나, 전기화학 중합법으로는 비교적 간단하게 전도성 고분자가 합성될 수 있으나, 필름 형성면이 전극 표면에 한정되어, 큰 면적의 필름을 얻기가 곤란 하며, 제조 비용이 높은 문제점이 있다. 또한, 화학산화 중합법으로 얻어진 전도성 고분자는 유기 용매에 난용성으로 캐스팅법으로 필름 형성이 곤란하다. 유기 용매에 용해되기 쉬운 고분자는 낮은 전도성을 나타내는 문제점 등이 있다. 한편, 폴리아닐린은 화학적 산화에 의하여 비교적 간단히 중합되어지고 높은 전도성을 뛴 상태에서 공기중에서도 안정한 특성이 있다. 특히, 산화-환원, 도핑-콸도핑된 상태에서 서로 다른 화학적 구조를 나나낸다. 이들 구조변화는 가역적으로 일어나며, 안정하고 다양한 전기 화학적 특성을 나타내기 때문에 이들의 합성, 구조 연구 및 응용 등에 관한 많은 연구가 진행되어져 오고 있다. 그러나, 다른 전도성 고분자와 같이 폴리아닐린도 π-공액계가 발달된 구조로, 벤젠 고리가 평면 구조로 결합되어 있어 분자쇄가 유연하지 않고, 분자간의 강한 인력이 작용하고, 도판트로 사용된 음이온의 영향 등으로 인하여 유기 용매에 불용이며, 가열하여도 용융하지 않는 불융의 성질을 나타내기에, 가공성이 떨어지고, 필름 형성이 되지 않는 큰 결점이 있다. 이와 같은 성질은 폴리아닐린이 여러 가지 다양한 특성과 구조 변화를 나타내는 흥미로운 물질임에도 불구하고, 실제 가공 및 응용면에서 많은 제약이 되는 요소이다. 이와 같은 이유로 폴리아닐린의 화학산화 중합 방법에 관한 많은 연구가 이루어지고 있다. 최근, 폴리아닐린의 합성법 및 구조 연구의 결과, 탈-도핑 상태의 절연체 구조인 폴리아닐린(Emeraldine base form)은 유기 용매인 NMP(N-methyl-2-pyrrolidone)에 용해되어 필름으로 형성되어 지는 것이 발표되었고, 도데실벤젠설폰산(Dodecyl benzene sulfonic acid, DBSA)를 도판트로 사용하여 크실렌(Xylene) 등 유기 용매 조건하에서 산화중합된 중합체는 도핑된 전도체로서 유기 용매에 용해되어져 필름 형성이 가능한 것으로 보고 되었다. 그러나, 절연체의 폴리아닐린은 필름 형성후 전기 전도성을 부여하기 위한 도핑 과정이 요구되며, 필름 표면에서만 도핑될 뿐만 아니라 공정의 복잡성 등의 단점이 있다. 또한, 크실렌 등의 유기 용매하에서 중합된 가용성 폴리아닐린의 경우는 중합 용매로서 유기 용매를 사용해야하고, 40% 이하의 낮은 수율로 중합되는 문제점이 있다. 따라서, 본 발명의 목적은 높은 수율로 대량생산이 가능하고, 화학적 안정성과 가역성이 뛰어나며, 높은 전도성을 나타내고, 일반 고분자와 용액 블렌딩을 통하여 전도성 복합체의 형성이 가능한 가용 전기전도성 폴리아닐린의 제조 방법을 제공하는데 있다. 상기 목적을 달성하기 위한 본 발명의 방법은 수용액 상태에서 하기 구조식(II)로 표시되는 방향족 아민 화합물인 아닐린 단량체와, 도판트로서 하기 식(III)으로 표시되는 도데실벤젠설폰산(DBSA) 및 산화제로써 암모니움퍼설페이트(Ammonium Persulfate, APS)를 반응시켜 하기 구조식(I)로 표시되는 전기전도성 폴리아닐린을 제조한다.The present invention relates to a method for preparing soluble electrically conductive polyanifls, and more particularly, to using aniline, which is an aromatic amine compound, as a monomer in an aqueous solution, and to dodecylbenzenesulfonic acid as an dopant and an ammonium oxide as an oxidant. It relates to a process for preparing soluble electrically conductive polyaniline to be reacted using sulfate. In general, polymers obtained by polymerizing heterocycles or aromatic compounds containing heteroatoms such as pyrrole, thiophene, and aniline are suitable as conductive materials because they are stable and exhibit high electrical conductivity in the air. have. These polymers are generally able to control the electrical conductivity according to the change of the doping amount can be applied to various fields. In particular, polyaniline, which is an electrically conductive polymer prepared according to the present invention, is easily dissolved in an organic solvent and can be blended in solution and has excellent processability. Such characteristics can be applied to various fields such as antistatic or electromagnetic shielding coating materials for general purpose plastics, coating materials, electrode materials for secondary batteries and capacitors, semiconductor components, liquid crystal display devices, and electroluminescent displays. Electroconductive polymers (e.g., polypyrrole, polythiophene, polyaniline) are structures exhibiting Π-conjugation developed along the main chain, and these compounds do not exhibit conductivity by themselves and do not exhibit electrical conductivity when doped with dopants. Indicates. The electrically conductive polymer is obtained in the form of a film by an electrochemical polymerization method, or an electrically conductive polymer in the form of a powder by a chemical oxidation polymerization method. However, although the conductive polymer can be synthesized relatively simply by the electrochemical polymerization method, since the film forming surface is limited to the electrode surface, it is difficult to obtain a large area film, and the manufacturing cost is high. In addition, the conductive polymer obtained by the chemical oxidation polymerization method is difficult to form a film by casting method due to poor solubility in an organic solvent. Polymers easily soluble in organic solvents have problems of low conductivity. On the other hand, polyaniline is relatively simply polymerized by chemical oxidation and has a stable property in the air under high conductivity. In particular, they exhibit different chemical structures in the redox, doped and doped states. Since these structural changes occur reversibly and exhibit stable and diverse electrochemical properties, many studies on their synthesis, structural studies, and applications have been conducted. However, like other conductive polymers, polyaniline has a π-conjugated structure, and since the benzene ring is bonded in a planar structure, the molecular chain is not flexible, strong attraction between molecules, and the influence of anions used as dopants. Due to this, it is insoluble in an organic solvent and exhibits a property of incompatibility which does not melt even when heated, resulting in poor workability and large film defects in which film is not formed. This property is a limiting factor in actual processing and application, although polyaniline is an interesting material exhibiting a variety of different properties and structural changes. For this reason, a lot of research is being conducted on the chemical oxidation polymerization method of polyaniline. Recently, as a result of the synthesis and structural studies of polyaniline, it has been reported that polyaniline (Emeraldine base form), an insulator structure in a de-doped state, is dissolved in an organic solvent, N-methyl-2-pyrrolidone (NMP), and formed into a film. It has been reported that polymers oxidized and polymerized under organic solvent conditions such as xylene using dodecyl benzene sulfonic acid (DBSA) as a dopant can be dissolved in organic solvents as doped conductors to form films. However, the polyaniline of the insulator requires a doping process for imparting electrical conductivity after film formation, and is not only doped only on the surface of the film, but also has disadvantages such as complexity of the process. In addition, in the case of soluble polyaniline polymerized under an organic solvent such as xylene, an organic solvent should be used as the polymerization solvent, and there is a problem of polymerization in a low yield of 40% or less. Accordingly, an object of the present invention is to provide a method for producing a soluble electrically conductive polyaniline capable of mass production in high yield, excellent chemical stability and reversibility, high conductivity, and the formation of a conductive composite through a blending solution with a general polymer. It is. The method of the present invention for achieving the above object is an aniline monomer which is an aromatic amine compound represented by the following structural formula (II) in an aqueous solution state, dodecylbenzenesulfonic acid (DBSA) represented by the following formula (III) as a dopant and Ammonium Persulfate (APS) is reacted with an oxidizing agent to prepare an electrically conductive polyaniline represented by the following structural formula (I).

이하 본 발명의 방법을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

본 발명은 상기 구조식(II)로 표시되는 방향족 아민 화합물인 아닐린을 단량체로 하고, 도데실벤젠설폰산을 도판트로, 암모니움퍼설페이트를 산화제로 사용하여, 수용액상에서 화학적으로 산화 중합 시켜, 도핑된 상태에서 유기 용매에 용해되는 특성을 갖는 상기 구조식(I)로 표시되는 전기전도성 폴리아닐린의 제조방법에 관한 것이다. 여기서, 상기 구조식(III)으로 표시되는 이온은 반응조내에서 도판트로 사용된 도데실벤젠설폰산(DBSA) 이 해리되어 생성된 음이온으로서 고분자내에 도핑되어 전도성을 띄게 하는 도판트로 작용하게 된다. 본 발명의 방법에 따르면, -5℃에서 30℃ 로 온도 조절이 가능한 항온 조속에 위치한 반응조속에, 증류수와 상기 구조식(III)으로 표시되는 DBSA를 가하고 단량체로서 방향족 아민 화합물인 아닐린을 첨가한 다음, 서서히 교반하면서, 산화제인 APS 수용액을 서서히 적가하면서 반응시킨다. 일정 시간 중합 반응시킨 후 메탄올을 첨가하여 반응을 종료시키고, 합성된 분말상의 중합체를 여과하고 증류수, 메탄올, 아세톤 등으로 여러번 세척한후, 다시 여과하여 얻어진 분말을 진공 건조시켜 가용성 전기전도성 폴리아닐린 분말을 얻는다.The present invention is a doped state by chemically oxidizing in an aqueous solution using aniline, which is an aromatic amine compound represented by the above formula (II), as a monomer, dodecylbenzenesulfonic acid as a dopant, and ammonium persulfate as an oxidizing agent. It relates to a method for producing an electrically conductive polyaniline represented by the above formula (I) having the property of dissolving in an organic solvent. Here, the ions represented by the structural formula (III) act as a dopant which is doped in the polymer as an anion generated by dissociation of dodecylbenzenesulfonic acid (DBSA) used as a dopant in the reaction tank to make conductivity. According to the method of the present invention, distilled water and DBSA represented by the above formula (III) are added to a reaction vessel located in a constant temperature vessel capable of temperature control from -5 ° C to 30 ° C, and aniline, an aromatic amine compound, is added as a monomer. While slowly stirring, the APS aqueous solution, which is an oxidizing agent, is reacted gradually dropwise. After the polymerization reaction was performed for a certain time, methanol was added to terminate the reaction. The synthesized powdery polymer was filtered and washed several times with distilled water, methanol, acetone, and the like. The powder obtained by filtration was then dried under vacuum to obtain a soluble electrically conductive polyaniline powder. Get

본 발명에서 중합 조건중 산화제의 농도를 변화시키면서 중합반응시킨 결과, 아닐린 단량체에 대하여 0.05 내지 2몰배, 바람직하게는 0.5몰배 내지 1.25몰배로 산화제의 양이 증가될수록 중합수율과 전기전도도는 증가되었다. 중합 수율은 첨부된 하기 표1에서 알 수 있는 바와 같이, 중량비로 100%이상이 되는 경우도 있었으며, 도판트를 제외한 아닐린 단위만을 기준으로 90% 이상의 높은 수율을 나타내었다. 또한, DBSA 첨가량과 중합 온도는 중합 결과에 큰 영향을 미치지는 않지만, 최적의 반응을 위해서는 DBSA는 아닐린 모노머 몰수에 대해 0.1에서 2.0몰배가 바람직하며, 반응온도는 -5℃에서 30℃가 바람직하다.As a result of the polymerization reaction while changing the concentration of the oxidizing agent in the polymerization conditions in the present invention, the polymerization yield and the electrical conductivity increased as the amount of the oxidizing agent was increased to 0.05 to 2 mol times, preferably 0.5 to 1.25 mol times with respect to the aniline monomer. As can be seen in the attached Table 1, the polymerization yield was sometimes 100% or more by weight ratio, and showed a high yield of 90% or more based on aniline units except for the dopant. In addition, the amount of DBSA added and the polymerization temperature do not significantly affect the polymerization results, but for optimum reaction, the DBSA is preferably 0.1 to 2.0 mole times based on the number of moles of aniline monomers, and the reaction temperature is preferably -5 ° C to 30 ° C. .

한편, 얻어진 중합체의 유기 용매에 대한 용해성의 결과(실시예 참조)를 하기 표2에 나타내었다. 하기 표2에서와 같이 약극성의 유기 용매인 m-크레졸(cresol)에는 매우 용해성이 우수하나, 극성 용매인 NMP(N-methy1-2-pyrrolidone), DMF(dimethylformamide), 또는 THF(tetrahydrofurane)에는 잘 녹지 않았다. 또한 클로로포름을 용매로 사용한 경우에도 잘 용해되지 않으나, 도판트로 사용한 DBSA를 적당량 첨가시키면 용해성이 급격히 증가되어 녹색의 용액을 얻을 수 있었다. 따라서, 폴리아닐린 100중량부에 대해 10 내지 200중량부의 도데실벤젠설폰산을 유기용매에 첨가하면 폴리아닐린의 용해성을 증가시킬 수 있는데, 이때 10중량부 미만이면 충분히 용해되지 않고, 200중량부를 초과하면 전도도는 증가하지 않으며 필름제막이나 코팅 등의 2차 가공후의 표면에 DBSA가 용출되어 나오는 단점이 있다. 전도성 구조를 가진 상태에서 용매에 대해 폴리아닐린이 용해성을 가진다는 것은 전기 전도도를 가진 필름 형성을 가능하게 하고, 어떤 크기나 두께의 필름을 자유자재로 조절할 수 있고, 지금까지 알려진 전기전도성 고분자 필름의 유일한 제조 방법인 전기화학적 방법보다 대량생산을 가능하게 하고 평활한 표면을 가진 필름 제조가 가능한 장점 등이 있다. 전도성 물질의 표면이 평활하면 할수록 이 물질을 전극재료로 사용하였을 때 전기전자 기능이 균일하여 재현성이 높은 장치를 만들 수 있다. 또한, 접착성이나 강도를 향상시키기 위해 다른 고분자 물질과 용액 블렌딩을 하여 유리판이나 고분자 필름에 코팅시킴으로써 훌륭한 전극재료를 쉽게 제조할 수 있으며, 폴리아닐린 필름의 두께를 조절하면 투명 전극판의 제조도 가능하며 투명 ITO(Indium Tin Oxide) 유리판의 성능을 갖게 할 수 있는 큰 장점이 있다.On the other hand, the results of the solubility of the polymer obtained in an organic solvent (see Examples) are shown in Table 2 below. As shown in Table 2, it is very soluble in m-cresol, a weak polar organic solvent, but NMP (N-methy1-2-pyrrolidone), DMF (dimethylformamide), or THF (tetrahydrofurane) is a polar solvent. It did not melt well. In addition, even when chloroform was used as a solvent, the solvent was hardly dissolved. However, when a suitable amount of DBSA used as a dopant was added, the solubility rapidly increased to obtain a green solution. Therefore, the addition of 10 to 200 parts by weight of dodecylbenzenesulfonic acid to the organic solvent with respect to 100 parts by weight of polyaniline can increase the solubility of the polyaniline, if less than 10 parts by weight is not sufficiently dissolved, if more than 200 parts by weight conductivity There is a disadvantage that DBSA is eluted on the surface after the secondary processing such as film forming or coating. The solubility of polyaniline in solvents in the presence of a conductive structure enables the formation of films with electrical conductivity, freely control films of any size or thickness, and the only known Compared to the electrochemical method, which is a manufacturing method, mass production is possible and a film having a smooth surface may be produced. The smoother the surface of the conductive material, the more uniform the electrical and electronic functions can be made when the material is used as an electrode material. In addition, excellent electrode materials can be easily manufactured by coating a glass plate or a polymer film with a solution blended with another polymer material in order to improve adhesion or strength, and by controlling the thickness of the polyaniline film, a transparent electrode plate can be manufactured. There is a big advantage that can have the performance of a transparent ITO (Indium Tin Oxide) glass plate.

본 발명에서 얻어진 가용성 전도성 폴리아닐린의 구조는 FT-라만 스펙트로스코피(Raman Spectroscopy)와 UV-VIS-NIR 스펙트로스코피에 의하여 확인되었다. 제1도에 본 발명의 방법에 따라 제조된 중합체를 클로로포름에 용해시켜 캐스팅한 필름의 FT-라만 스펙트럼을 나타내었다. 본 발명에 따른 중합체의 특성 피크(peak)는 문헌에 보고된 폴리아닐린의 특성 피크와, 1615cm-1부근에서 키노이드 구조에 기인하는 흡수대 및 1570cm-1부근에서 벤조노이드 구조에 기인되는 흡수대의 출현이 일치하는 것으로 보아 폴리아닐린과 같은 화학 구조를 가지는 것으로 확인되었다. 제2도에서는 본 발명에 따른 중합체를 클로로포름에 용해시켜 유리기판에 스핀코팅한 필름의 UV-VIS-NIR 스펙트럼을 나타내었다. 상기 스펙트럼에서 알 수 있는 바와 같이, 80nm에서 편재(localized)된 폴라론 피크(polaron peak)가 나타나며, 섬광찌꺼기(free carrier tailing)가 그다지 크지 않게 나타나고 있다. 이 역시 이미 보고된 DBSA로 도핑된 폴리아닐린의 UV-VIS-NIR 스펙트럼과 일치하는 것으로, 본 중합법에 의하여 제조된 중합체는 폴리아닐린과 같은 화학구조를 가지고 있는 것으로 확인할 수 있었다.The structure of the soluble conductive polyaniline obtained in the present invention was confirmed by FT-Raman Spectroscopy and UV-VIS-NIR spectroscopy. 1 shows the FT-Raman spectrum of a film cast by dissolving a polymer prepared according to the method of the present invention in chloroform. Characteristic peaks (peak) of the polymer according to the present invention, the appearance of the absorption band is due to the absorption band and benzo cannabinoid structure in the vicinity of 1570cm -1 due to the characteristic peaks and a key cannabinoid structure in the vicinity of 1615cm -1 of the polyaniline reported in the literature Concordance was confirmed to have the same chemical structure as polyaniline. 2 shows the UV-VIS-NIR spectrum of the film spin-coated on a glass substrate by dissolving the polymer according to the present invention in chloroform. As can be seen from the spectrum, a localized polaron peak appears at 80 nm, and free carrier tailing is not so large. This also coincides with the previously reported UV-VIS-NIR spectrum of polyaniline doped with DBSA, and it was confirmed that the polymer prepared by the polymerization method has the same chemical structure as polyaniline.

제3도에서는 본 발명에 따라 폴리아닐린을 제조후, 세척전의 폴리아닐린 입자의 모폴로지(morphology)와 증류수와 메탄올로 세척한 후의 모폴로지 차이를 광학현미경으로 나타내었다. 제3a도에서와 같이 세척 전에 나타나는 입자들은 서로 분리되어 있는데 반하여, 세척이 행하여진 후에는 제3b 도와 같이 서로 뭉치는 것을 보여주고 있다. 이는 세척전에는 여분의 DBSA가 존재하여 폴리아닐린의 분자간 인력을 약하게하여 입자들을 서로 분리하게 하지만, 세척에 의하여 DBSA가 제거되면, 폴리아닐린 입자들간에 강한 인력이 작용하여 입자들이 서로 뭉쳐지는 것으로 판단된다.In FIG. 3, the morphology of the polyaniline particles after the preparation of polyaniline and the morphology after washing with distilled water and methanol are shown by optical microscope. As shown in FIG. 3a, the particles appearing before washing are separated from each other, whereas after washing is performed, they show agglomeration with each other as shown in FIG. 3b. It is believed that extra DBSA is present before washing to weaken the intermolecular attraction of polyaniline to separate particles from each other. However, when DBSA is removed by washing, strong attraction force between the polyaniline particles acts to cause the particles to aggregate together.

본 발명에 의해 얻어진 폴리아닐린은 도데실벤젠설폰산 음이온을 도판트로 함유하므로 이 도판트가 폴리아닐린의 분자사이에 삽입되어 있으며, 아닐린 단량체보다 분자량이 3.4배가 크므로 폴리아닐린 분자들이 직접 접촉하는 것을 방해하여 분자간의 인력을 크게 저하시키고 결과적으로 폴리아닐린의 용해성을 향상시킨다. 산화제의 양을 증가시키면 분자량이 증가하고 따라서 분자간 인력도 증가하므로 용해성이 떨어지며 중합도가 커지면서 가교결합의 기회도 많아질 수 있으므로 용해성이 떨어지는 원인이 된다.Since the polyaniline obtained by the present invention contains dodecylbenzenesulfonic acid anion as a dopant, the dopant is intercalated between molecules of the polyaniline, and the molecular weight is 3.4 times larger than that of the aniline monomer, thus preventing the polyaniline molecules from directly contacting each other. Greatly reduce the attraction of the product and consequently improve the solubility of the polyaniline. Increasing the amount of the oxidizing agent increases the molecular weight and thus increases the intermolecular attraction, so that the solubility is lowered and the degree of polymerization may be increased, thereby increasing the chance of crosslinking, which causes the solubility.

본 발명의 방법에 따라 제조된 용해성 폴리아닐린의 유기 용매에 대한 용해도 및 전도도는 반응온도, DBSA, APS의 농도 등의 반응 조건의 변화에 의하여 조절될 수 있다. 그러나, 중합결과는 제4도 및 제5도에 나타난 바와 같이, 주로 산화제의 농도에 의하여 결정되는 것을 알 수 있다. 아닐린 단량체에 대해 산화제인 APS의 농도를 0.5몰배에서 1.25몰배 범위까지는 농도가 증가할수록 전도도 및 수율은 증가한다. 그러나, 산화제의 농도가 더욱 증가하여 아닐린 단량체의 2몰배 이상이 되면, 분말 상태로 압축한 시료의 전도도는 증가하지만 용해성은 많이 저하된다. 이와 같이 반응조건에서 산화제의 농도를 조절하면 전도도와 용해성을 필요에 따라 임의로 조절할 수 있다. 또한, 본 발명에 따르면, 중합시 유기용매를 사용하지 않고 물을 사용함으로서 중합계가 균일계상은 아니었으나, 유기 용매를 사용하였을 때 보다 훨씬 높은 중합수율을 나타내었다. 중합수율은 실시예에도 나타내었으나, 하기 표3에 기재한 바와 같이, 유기용매를 사용한 기존의 발명에 비해 2배 이상의 수율증가를 나타내었다. 따라서, 본 발명에서는 용해도, 전도도의 조절 뿐만 아니라 중합수율도 적절하게 조절할 수 있는 특징을 가진다.The solubility and conductivity of the soluble polyaniline prepared according to the method of the present invention in the organic solvent can be adjusted by changing the reaction conditions such as the reaction temperature, the concentration of DBSA, APS. However, it can be seen that the polymerization result is mainly determined by the concentration of the oxidizing agent, as shown in FIGS. 4 and 5. The conductivity and yield increase as the concentration increases from 0.5 mole times to 1.25 mole times for the concentration of oxidant APS for the aniline monomer. However, when the concentration of the oxidant is further increased to be 2 moles or more of the aniline monomer, the conductivity of the sample compressed into the powder state is increased, but the solubility is much lowered. As such, by controlling the concentration of the oxidizing agent under the reaction conditions, the conductivity and solubility may be arbitrarily adjusted as necessary. In addition, according to the present invention, the polymerization system was not homogeneous by using water without using an organic solvent during polymerization, but showed a much higher polymerization yield than when an organic solvent was used. The polymerization yield was also shown in the examples, but as shown in Table 3 below, the yield was increased more than two times compared to the existing invention using an organic solvent. Therefore, in the present invention, not only the solubility and the conductivity, but also the polymerization yield can be appropriately controlled.

이하 실시예를 통하여 본 발명의 방법을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the method of the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples.

[실시예 1]Example 1

800ml 증류수에 DBSA 73.9g(0.23 mole)을 녹인 용액을 0℃로 조절된 항온조 안에 장치한 반응조에 넣는다. 감압 증류한 아닐린단량체 30g(0.31 mole)을 상기 용액에 넣고 기계적 교반기로 20분간 격렬히 교반한다. 이때 아닐린 단량체와 DBSA가 착체를 형성하여 교반이 어려우므로 교반이 수월하게 될 때까지 증류수를 첨가한다. 산화제인 APS 67.7g(0.31 mole)을 증류수 200ml에 녹여 약 30분간에 걸쳐 상기 용액에 첨가하여 계속 교반하면서 24시간 동안 반응시켰다. 과량의 메탄올을 반응액에 첨가하여 반응을 종료시키고 얻어진 미세한 폴리아닐린 분말을 여과하여 얻었다. 얻어진 분말을 과량의 증류수와 메탄올로 세척하고 여과하여 DBSA가 도핑된 폴리아닐린을 얻었다. 수율은 투입된 아닐린 단량체의 무게의 105%로 매우 높았고, 압착된 분말의 전도도는 4-단자법에 의하여 2.2×10-1S/㎝로 측정하였다. 그 결과를 하기 표1에 기재하였다. 상기 폴리아닐린 분말을 m-크레졸, 클로로포름, THF, DMF등의 유기용매에 녹여 용해도를 조사한 결과, m-크레졸에는 매우 잘 녹았고, THF에는 부분적으로 용해되었으며, DMF 에는 녹지 않았다. 황산(97%)에도 우수한 용해성을 나타내었으며, 황산용액하에서 상대점도(Intrinsic viscosity, 25℃)를 측정한 결과, 0.6~0.7dL/g이었다. 또한, 클로로포름에는 잘녹지 않았는데 DBSA를 폴리아닐린 무게에 대해 50%를 첨가하면 매우 잘 녹았다. 그 결과를 하기 표2에 기재하였다.A solution of 73.9 g (0.23 mole) of DBSA dissolved in 800 ml distilled water is placed in a reactor equipped with a thermostat controlled at 0 ° C. 30 g (0.31 mole) of aniline monomer distilled under reduced pressure was added to the solution, followed by vigorous stirring for 20 minutes with a mechanical stirrer. At this time, since the aniline monomer and the DBSA form a complex and stirring is difficult, distilled water is added until the stirring becomes easy. 67.7 g (0.31 mole) of oxidizing agent was dissolved in 200 ml of distilled water, and added to the solution over about 30 minutes, and the reaction was continued for 24 hours while continuing to stir. Excess methanol was added to the reaction solution to terminate the reaction, and the obtained fine polyaniline powder was obtained by filtration. The obtained powder was washed with excess distilled water and methanol and filtered to obtain polyaniline doped with DBSA. The yield was very high as 105% of the weight of the aniline monomer added, the conductivity of the compacted powder was measured to 2.2 × 10 -1 S / cm by the four-terminal method. The results are shown in Table 1 below. The polyaniline powder was dissolved in organic solvents such as m-cresol, chloroform, THF, DMF and the like, and examined for solubility. The polyaniline powder was dissolved in m-cresol very well, partially dissolved in THF, and insoluble in DMF. It showed excellent solubility in sulfuric acid (97%) and the relative viscosity (Intrinsic viscosity, 25 ℃) in sulfuric acid solution was 0.6 ~ 0.7dL / g. In addition, it did not melt well in chloroform, but the DBSA dissolved very well when 50% of the polyaniline weight was added. The results are shown in Table 2 below.

[실시예 2]Example 2

중합방법은 상기 실시예1과 동일하나 산화제의 농도가 아닐린에 대해 0.75배인 0.23mole을 사용하여 중합하였다. 수율은 90%이었으며 m-크레졸에는 매우 용해성이 우수하였고, 클로로포름에는 거의 용해되지 않았는데, 폴리아닐린 무게에 대해 50%의 DBSA를 다시 첨가하면 용해가 잘 되었다. 압착된 분말의 전도도는 6.5×10-2S/cm 이였다(하기 표 1 및 2참조).The polymerization method was the same as that of Example 1, but polymerization was performed using 0.23 mole, which is 0.75 times based on aniline, which is not the concentration of the oxidant. The yield was 90% and was very soluble in m-cresol and hardly soluble in chloroform. It was dissolved well by adding 50% DBSA again to the polyaniline weight. The conductivity of the compacted powder was 6.5 × 10 −2 S / cm (see Tables 1 and 2 below).

[실시예 3]Example 3

중합 방법은 상기 실시예1과 같으나 산화제의 농도가 아닐린과 같은 몰인 0.15 mole을 사용하여 중합하였다. 수율은 투입된 아닐린 단량체 무게의 60% 였으며, 압착된 분말의 전도도는 3.4×10-3S/cm 였다. 그리고 유기용매에 대한 용해성도 상기 실시예 1 및 2와 동일하였다(하기 표1 및 2 참조).The polymerization method was the same as in Example 1, but the polymerization was carried out using 0.15 mole, which is the same mole as the aniline concentration. The yield was 60% of the weight of the injected aniline monomer, the conductivity of the compacted powder was 3.4 × 10 -3 S / cm. And solubility in organic solvents was the same as in Examples 1 and 2 (see Tables 1 and 2 below).

[실시예 4]Example 4

합성방법은 상기 실시예 1과 같으며, 산화제 농도를 아닐린에 대해 1.25배인 0.39mole을 사용하여 중합하였다. 수율은 아닐린 단량체 무게의 121%로 매우 높았으며, 압착시킨 분말의 전도도는 5.1×10-1S/cm 이였다. 용기용매에 대한 용해성은 m-크레졸에는 잘녹으나, 클로로포름에는 부분적으로 용해가 되고, 상기 실시예 1,2 및 3에서 부분적 용해성을 보였던 THF에는 용해가 안되었다(하기 표 1 및 2 참조).Synthesis method was the same as in Example 1, and the polymerization was carried out using 0.39 mole of 1.25 times the oxidizing agent concentration to aniline. The yield was very high, 121% of the weight of the aniline monomer, and the conductivity of the compacted powder was 5.1 × 10 −1 S / cm. The solubility in the container solvent was well soluble in m-cresol, but partially soluble in chloroform and insoluble in THF, which showed partial solubility in Examples 1, 2 and 3 (see Tables 1 and 2 below).

[실시예 5]Example 5

합성방법은 실시예1과 동일하나 DBSA를 아닐린에 대해 50% 수준인 0.15mole을 사용하였고, 그외는 실시예1과 같이 첨가하여 중합하였다. 수율은 102%로 실시예1과 유사하였으며, 폴리아닐린 분말을 압착하여 측정한 전도도는 1.3×10-1S/cm 로 나타났다. 전도도 및 수율에는 큰 차이를 보이지 않았다. 유기 용매에 대한 용해도는 실시예1,2 및 3과 동일하게 나타났다(하기표1 및 2참조)Synthesis method was the same as in Example 1, but the DBSA was used 0.15 mole of 50% to aniline, and the other was added and polymerized as in Example 1. The yield was similar to that of Example 1 at 102%, and the conductivity measured by compressing the polyaniline powder was 1.3 × 10 −1 S / cm. There was no significant difference in conductivity and yield. Solubility in organic solvents was the same as in Examples 1, 2 and 3 (see Tables 1 and 2 below).

[실시예 6]Example 6

합성방법은 실시예1과 동일하나 DBSA를 나닐린에 대해 75% 수준인 0.23mole을 사용하였고, 반응온도는 실온에 가까운 20℃로 조절하여 중합하였다. 합성 종료 후, 수율은 108%로 실시예 3가 유사하며, 분말을 압착하여 측정한 전도도는 9.8×10-1S/cm로 실시예 1보다 약 28배가 높게 나타났으며, 실시예 3보다도 4배 가량 높았다. 유기용매에 대한 용해성은 실시예 1,2,3, 및 5와 동일하게 나타났다.Synthesis method was the same as in Example 1, but the DBSA was used 0.23mole 75% level to the nanlin, and the reaction temperature was adjusted to 20 ℃ close to room temperature and polymerized. After the synthesis, the yield was 108% similar to that of Example 3, the conductivity measured by pressing the powder was 9.8 × 10 -1 S / cm appeared about 28 times higher than Example 1, 4 than Example 3 It was about twice as high. Solubility in organic solvents was the same as in Examples 1,2,3, and 5.

[비교예 1]Comparative Example 1

(국제공개특허 제92/22911호의 방법)(Method of International Publication No. 92/22911)

250ml 크실렌에 DBSA 24.48g(0.075 mole)을 녹인 용액을 25℃로 조절된 항온조 안에 장치한 반응조에 넣는다. 감압 증류한 아닐린 단량체 4.65g(0.05 mole)을 상기 용액에 넣고 교반한다. 산화제인 APS 4.68g (0.02 mole)을 증류수 20ml에 녹여 약 30분간에 걸쳐 상기 용액에 첨가하여 계속 교반하면서 24시간 동안 반응시켰다. 750ml 아세톤 속에 반응액을 첨가하여 분말상의 폴리아닐린 얻었다. 얻어진 분말을 150ml의 아세톤과 증류수 및 아세톤에 각 3회씩 세척하고 여과하여 DBSA가 도핑된 폴리아닐린을 얻었다. 얻어진 폴리아닐린 분말은 2.1g(45%)이였다. 상기 분말을 압착하여 측정한 전도도는 5×10-1S/cm였다(4-단자법으로 측정). 참고적으로, 본 발명과 국제공개특허 제92/22911호의 방법을 일반적인 반응조건별로 비교하여 하기 표3에 기재하였다.A solution of 24.48 g (0.075 mole) of DBSA dissolved in 250 ml xylene is placed in a reactor placed in a thermostat controlled at 25 ° C. 4.65 g (0.05 mole) of aniline monomer distilled under reduced pressure was added to the solution and stirred. 4.68 g (0.02 mole) of oxidant APS was dissolved in 20 ml of distilled water, and added to the solution over about 30 minutes and allowed to react for 24 hours while continuing to stir. The reaction solution was added to 750 ml of acetone to obtain a powdery polyaniline. The obtained powder was washed three times with 150 ml of acetone, distilled water and acetone, and filtered to obtain polyaniline doped with DBSA. The polyaniline powder obtained was 2.1 g (45%). The conductivity measured by pressing the powder was 5 × 10 −1 S / cm (measured by the 4-terminal method). For reference, the present invention and the method of International Patent Publication No. 92/22911 are compared in general reaction conditions and described in Table 3 below.

* 수율은 투입된 아닐린 단량체에 대해 얻어진 폴리아닐린의 중량%* Yield is the weight percent of polyaniline obtained relative to the injected aniline monomer

** 전기 전도도는 얻어진 분말을 압착하여 4-단자법으로 측정한 값** Electrical conductivity is the value measured by 4-terminal method by compressing the obtained powder

* DBSA가 용매에 첨가됨* DBSA is added to the solvent

S : 완전 용해S: completely dissolved

IS : 불용IS: Insoluble

PS : 부분적 용해PS: partially dissolved

* 수율은 투입된 아닐린 단량체에 대해 얻어진 폴리아닐린의 중량%* Yield is the weight percent of polyaniline obtained relative to the injected aniline monomer

** 전기 전도도는 얻어진 분말을 압착하여 4-단자법으로 측정한 값** Electrical conductivity is the value measured by 4-terminal method by compressing the obtained powder

Claims (4)

물 용매 존재하에서 하기 구조식(II)로 표시되는 방향족 아민 화합물인 아닐린 단량체와,도판트로서 하기 식(III)으로 표시되는 도데실벤젠설폰산(DBSA) 및 산화제로서 암모니움퍼설페이트를 -5~30℃에서 반응시키는 것을 특징으로 하는 하기 구조식(I)로 표시되는 가용 전기전도성 폴리아닐린의 제조방법.-5-30 to an aniline monomer which is an aromatic amine compound represented by the following structural formula (II) in the presence of a water solvent, dodecylbenzenesulfonic acid (DBSA) represented by the following formula (III) as a dopant, and an ammonium persulfate as an oxidizing agent: A method for producing a soluble electrically conductive polyaniline represented by the following structural formula (I), which is reacted at 占 폚. 제1항에 있어서, 상기 산화제의 양이 아닐린의 양이 아닐린 모노머 몰수에 대하여 0.05에서 2몰배임을 특징으로 하는 가용 전기전도성 폴리아닐린의 제조방법.The method according to claim 1, wherein the amount of the oxidizing agent is 0.05 to 2 molar times the molar number of the aniline monomers, not the amount of the aniline. 제1항에 있어서, 상기 도데실벤젠설폰산의 양이 아닐린 모노머 몰수에 대하여 0.1에서 2.0몰배임을 특징으로 하는 가용 전기전도성 폴리아닐린의 제조방법.The method of claim 1, wherein the amount of dodecylbenzenesulfonic acid is 0.1 to 2.0 mole times the number of moles of aniline monomers. 제1항에 따른 방법으로 제조된 폴리아닐린을 유기용매에 용해시킬 때, 폴리아닐린 100중량부에 대해 10 내지 200중량부의 도데실벤젠설폰산을 첨가하는 것을 특징으로 하는 폴리아닐린의 용해성의 증가방법.A method for increasing solubility of polyaniline when the polyaniline prepared by the method according to claim 1 is dissolved in an organic solvent, 10 to 200 parts by weight of dodecylbenzenesulfonic acid is added to 100 parts by weight of polyaniline.
KR1019960030273A 1996-07-16 1996-07-16 Process for preparing soluble electrical conductive polyaniline KR100205912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960030273A KR100205912B1 (en) 1996-07-16 1996-07-16 Process for preparing soluble electrical conductive polyaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960030273A KR100205912B1 (en) 1996-07-16 1996-07-16 Process for preparing soluble electrical conductive polyaniline

Publications (2)

Publication Number Publication Date
KR980009325A KR980009325A (en) 1998-04-30
KR100205912B1 true KR100205912B1 (en) 1999-07-01

Family

ID=19467434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960030273A KR100205912B1 (en) 1996-07-16 1996-07-16 Process for preparing soluble electrical conductive polyaniline

Country Status (1)

Country Link
KR (1) KR100205912B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056209A (en) * 1999-12-17 2001-07-04 이형도 Synthetic methods of conductive poly aniline
KR20030014004A (en) * 2001-08-10 2003-02-15 주식회사 두람하이테크 A method for manufacturing corrosion-preventing paints using polyanilin salt soluble in alcohol
KR100514643B1 (en) * 2002-05-23 2005-09-13 주식회사 유진텍 이십일 Preparation Method of Polyanilines

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109812A (en) * 2000-06-02 2001-12-12 오권오 Method of making a soluable polyaniline salt in a diversified organic polar solution
KR20020056030A (en) * 2000-12-29 2002-07-10 정종순 Polymer complex and colloidal composition comprising it
KR100490882B1 (en) * 2001-11-12 2005-05-24 서광석 Synthetic Method of Polyaniline and application for electroststic discharge and EMI Shielding
KR100475413B1 (en) * 2001-11-22 2005-03-10 김진열 Soluble polyaniline in organic solvents, process for synthesizing it and its applications
KR100445287B1 (en) * 2002-04-16 2004-08-21 주식회사 옴니켐 Novel process of polyaniline
KR20040045972A (en) * 2002-11-26 2004-06-05 주식회사 포스코 A Method for Preparing Corrosion Resistive Coating Composition Comprising Water Dispersed Polyaniline and A Steel Sheet Having Corrosion Resistive Coating Prepared From The Composition
KR100663695B1 (en) * 2004-02-11 2007-01-02 (주) 파루 Preparation Conductive Inkject Ink Using Conducting Polymer
KR101458721B1 (en) * 2013-11-20 2014-11-05 롯데케미칼 주식회사 Polyolefin/polyaniline nanofiber compound with high thermostability and high dispersibility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056209A (en) * 1999-12-17 2001-07-04 이형도 Synthetic methods of conductive poly aniline
KR20030014004A (en) * 2001-08-10 2003-02-15 주식회사 두람하이테크 A method for manufacturing corrosion-preventing paints using polyanilin salt soluble in alcohol
KR100514643B1 (en) * 2002-05-23 2005-09-13 주식회사 유진텍 이십일 Preparation Method of Polyanilines

Also Published As

Publication number Publication date
KR980009325A (en) 1998-04-30

Similar Documents

Publication Publication Date Title
KR0162864B1 (en) Process for preparing electrically conductive polypyrrole having excellent solubility
KR100225392B1 (en) Deaggregated electrically conductive polymers and precursors
US5648453A (en) Electroconductive polymer and process for producing the polymer
EP0995769B1 (en) Method for production of water-soluble conducting polyaniline
KR100283544B1 (en) Control of polymerization kinetics and rate of polymer precipitation as a means of controlling the aggregation and morphology in conductive polymers and precursors thereof
KR100205912B1 (en) Process for preparing soluble electrical conductive polyaniline
US5804649A (en) Water-soluble self acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
JP5190424B2 (en) Conductive polyaniline and synthesis method thereof
EP0673042B1 (en) Soluble and processable doped electrically conductive polymer and polymer blend thereof
US7273918B2 (en) Thermally stable self-doped functionalized polyanilines
US5688873A (en) Electroconductive polymer and process for producing the polymer
EP0545417B1 (en) Water-soluble conducting polymer and method for production thereof
KR20050108107A (en) Conductive polymers highly electrical conductivity and solubility in organic solvents and process of preparing thereof
WO2002010251A1 (en) Method for making polypyrrole
KR100490882B1 (en) Synthetic Method of Polyaniline and application for electroststic discharge and EMI Shielding
KR20020034723A (en) Method for Preparation of the Soluble Poly(3,4-ethylenedioxythiophene) Powder
KR100514643B1 (en) Preparation Method of Polyanilines
KR100445287B1 (en) Novel process of polyaniline
US9378860B2 (en) Polyvinyl copolymer, dopant having the same, and conductive polymer composite having the dopant
KR100823635B1 (en) Production Method of the Conductivity Polymer Nanoparticles Using Ionic Liquid and Manufacturing of Composite Material Using This
Della Casa et al. Characterization of poly (3-hexanoyloxyethyl-2, 5-thienylene) synthesized under different conditions: a comparative study
JP3043290B2 (en) Water-soluble conductive polyaniline and method for producing the same
KR100547285B1 (en) Process for the preparation of high glutinous conductive polyaniline blend and conductive coating solution comprising the blend
JPH07292081A (en) Soluble, processible, doped conductive polymer, and conductive polymer blend containing same
JP3536546B2 (en) Water-soluble conductive polymer and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090325

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee