JPS6347136B2 - - Google Patents
Info
- Publication number
- JPS6347136B2 JPS6347136B2 JP56022230A JP2223081A JPS6347136B2 JP S6347136 B2 JPS6347136 B2 JP S6347136B2 JP 56022230 A JP56022230 A JP 56022230A JP 2223081 A JP2223081 A JP 2223081A JP S6347136 B2 JPS6347136 B2 JP S6347136B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- epitaxial
- layer
- electron concentration
- post
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 230000002378 acidificating effect Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 27
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000001947 vapour-phase growth Methods 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000012071 phase Substances 0.000 claims 2
- 239000007789 gas Substances 0.000 abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005406 washing Methods 0.000 abstract description 2
- 229960002050 hydrofluoric acid Drugs 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- NICDRCVJGXLKSF-UHFFFAOYSA-N nitric acid;trihydrochloride Chemical compound Cl.Cl.Cl.O[N+]([O-])=O NICDRCVJGXLKSF-UHFFFAOYSA-N 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 26
- 238000005979 thermal decomposition reaction Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical group C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
- H01L21/02661—In-situ cleaning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、基板上に前段エピタキシヤル気相
成長層が形成された砒化ガリウムGaAsエピタキ
シヤルウエハ上に有機ガリウムとアルシンAsH3
との熱分解気相成長法により不連続的に後段エピ
タキシヤル層を形成する、GaAsエピタキシヤル
ウエハの製造方法に関する。Detailed Description of the Invention This invention provides organic gallium and arsine AsH 3 on a gallium arsenide GaAs epitaxial wafer with a pre-stage epitaxial vapor growth layer formed on the substrate.
The present invention relates to a method of manufacturing a GaAs epitaxial wafer in which a subsequent epitaxial layer is formed discontinuously by a pyrolytic vapor deposition method.
一般に基板上に前段並びに後段エピタキシヤル
層を不連続に形成する型の半導体素子として、ガ
ンダイオード、可変容量ダイオード等がある。こ
れらの半導体素子ではいずれもGaAs基板上に先
に形成した前段エピタキシヤル層の電子濃度及び
厚さの制御精度が要求される。 In general, Gunn diodes, variable capacitance diodes, and the like are examples of semiconductor elements in which front and rear epitaxial layers are discontinuously formed on a substrate. All of these semiconductor devices require precision control of the electron concentration and thickness of the pre-stage epitaxial layer formed on the GaAs substrate.
従つて、まず形成した前段エピタキシヤル層の
電子濃度、厚さを測定し、所望の電子濃度、厚さ
が達成されていることを確認後、上記エピタキシ
ヤル層上に不連続的に後段エピタキシヤル層を積
み重ねる方法を繰り返すことが一般に行われてい
る。 Therefore, first, measure the electron concentration and thickness of the formed first-stage epitaxial layer, and after confirming that the desired electron concentration and thickness have been achieved, discontinuously form the second-stage epitaxial layer on the epitaxial layer. It is common practice to repeat the method of stacking layers.
例えばガンダイオード用GaAsエピタキシヤル
ウエハは、第1図に示すようにn形低比抵抗
GaAs基板11上にn-層例えば電子濃度1×
1015/cm3、厚さ10μmの能動層12が前段エピタ
キシヤル層として、又n++層例え電子濃度5×
1017/cm2、厚さ3μmの低比抵抗13が後段エピタ
キシヤル層として設けられ構成されている。ガン
ダイオードの主要な特性は前記能動層12の電子
濃度と厚さにより決定されるので、通常能動層1
2を形成したのちウエハの一部又は全面に亘り電
子濃度と厚さを測定し、所望の電子濃度と厚さが
得られている事を確認してから、不連続エピタキ
シヤル成長により後段n++層を成長させている。 For example, GaAs epitaxial wafers for Gunn diodes are n-type low resistivity wafers, as shown in Figure 1.
On the GaAs substrate 11 is an n - layer, for example, an electron concentration of 1×
The active layer 12 with a thickness of 10 15 /cm 3 and a thickness of 10 μm is used as a pre-stage epitaxial layer, and an n ++ layer with an electron concentration of 5×
A low resistivity 13 having a resistivity of 10 17 /cm 2 and a thickness of 3 μm is provided as a subsequent epitaxial layer. Since the main characteristics of Gunn diode are determined by the electron concentration and thickness of the active layer 12, the active layer 12 is usually
After forming n + Growing layers.
この構造のウエハを形成する方法としては、従
来三塩化砒素AsCl3法と称する気相成長法の他、
液相成長法が公知であるが、これらの成長法で電
子濃度、厚さともに均一なエピタキシヤルウエハ
を制御性よく得るには、一回毎の成長で得られる
ウエハ面積がたかだか10cm3であるにすぎず、量産
性に乏しい欠点がある。これに対して熱分解法と
称する有機ガリウムとAsH3の熱分解を利用する
GaAs気相成長方法は、原料を全てガス状で反応
容器内に導入できることと、この容器内の成長領
域が単一の温度領域のみで良いことから、エピタ
キシヤル層の電子濃度、厚さ等の制御性、再現性
が良く、前記二方法と比較してより量産性に富む
方法として注目されている。例えば1976年3月発
行の電子通信学会半導体トランジスタ研究会資料
SSD―75―83、27〜36頁にはトリメチルガリウム
(CH3)3GaとAsH3との熱分解を利用して形成し
たホール素子用エピタキシヤル層は、30cm2の広さ
にわたつて電子濃度、厚さ共に均一であつたと記
載されている。 As a method for forming a wafer with this structure, in addition to the conventional vapor phase growth method called the arsenic trichloride AsCl 3 method,
Liquid phase growth methods are well known, but in order to obtain epitaxial wafers with uniform electron concentration and thickness with good control using these growth methods, the wafer area that can be obtained in each growth process is at most 10 cm3 . However, the disadvantage is that it is not suitable for mass production. For this purpose, thermal decomposition of organic gallium and AsH 3 is used, which is called the pyrolysis method.
In the GaAs vapor phase growth method, all of the raw materials can be introduced into the reaction vessel in a gaseous state, and the growth region within this vessel only needs to be at a single temperature range, so it is possible to control the electron concentration, thickness, etc. of the epitaxial layer. This method is attracting attention as a method that has good controllability and reproducibility, and is more suitable for mass production than the above two methods. For example, materials from the Semiconductor Transistor Study Group of the Institute of Electronics and Communication Engineers, published in March 1976.
SSD-75-83, pp. 27-36 describes an epitaxial layer for a Hall element formed using the thermal decomposition of trimethylgallium (CH 3 ) 3 Ga and AsH 3 , which emits electrons over an area of 30 cm 2 . It is stated that the concentration and thickness were uniform.
従つて、熱分解法を用いて後段n++を形成する
と、前記AsCl3法や液相成長法に比べて量産性を
向上させることができる筈である。しかし熱分解
法を用いてn++を形成し、このエピタキシヤルウ
エハを用いてガンダイオードを試作すると、前記
n-層、n++層の電子濃度や厚さがそれぞれ5%以
下のばらつきであるにも拘らず、ガンダイオード
諸特性の中で最もn-層の厚さのばらつきを反映
すると考えられる発振の閾値電圧が、第2図のヒ
ストグラムに示すように非常にばらつく。このエ
ピタキシヤルウエハでは第3図の電子濃度プロフ
アイル曲線に示すようにn++層とn-層との境界に
低電子濃度領域ができており、しかもこの領域の
幅や電子濃度の低下量は同一ウエハ内で、又成長
回数を重ねる毎にばらついていることが明らかで
ある。このように低電子濃度領域を存在させるた
めに、ガンダイオードの発振の閾値電圧をばらつ
かせるのである。 Therefore, if the latter stage n ++ is formed using the thermal decomposition method, it should be possible to improve mass productivity compared to the above-mentioned AsCl 3 method or liquid phase growth method. However, when n ++ is formed using a thermal decomposition method and a Gunn diode is prototyped using this epitaxial wafer, the above-mentioned result is obtained.
Although the electron concentration and thickness of the n - layer and n ++ layer each vary by less than 5%, the oscillation is thought to reflect the variation in the thickness of the n - layer the most among Gunn diode characteristics. As shown in the histogram of FIG. 2, the threshold voltage of . In this epitaxial wafer, as shown in the electron concentration profile curve in Figure 3, a low electron concentration region is formed at the boundary between the n ++ layer and the n - layer, and the width of this region and the amount of decrease in electron concentration are It is clear that the values vary within the same wafer and each time the growth is repeated. In order to create such a low electron concentration region, the threshold voltage for oscillation of the Gunn diode is varied.
この発明はこのような点を除き所望しない境界
領域を介在させることなしにGaAsエピタキシヤ
ルウエハを得させる製造方法を提供するものであ
る。即ちこの発明は基板上に前段エピタキシヤル
気相成長層が成長されたGaAsエピタキシヤルウ
エハの、前段エピタキシヤル気相成長層表面に有
機ガリウムとAsH3の熱分解気相成長法により不
連続的に後段エピタキシヤル気相成長層を形成す
るに際し、前記GaAsエピタキシヤルウエハの配
置に先立つて反応容器内を酸性の洗滌液で洗滌す
る洗滌工程と、洗滌後容器内に高純度水素又は不
活性ガスを流しながら気相成長温度より高温に熱
処理する加熱工程を施すGaAsエピタキシヤルウ
エハ製造方法にある。 The present invention provides a manufacturing method that allows GaAs epitaxial wafers to be obtained without intervening undesired boundary regions except for these points. That is, this invention is a GaAs epitaxial wafer on which a pre-stage epitaxial vapor-phase grown layer is grown, and organic gallium and AsH 3 are discontinuously grown on the surface of the pre-stage epitaxial vapor-phase grown layer by a pyrolytic vapor-phase growth method. When forming the subsequent epitaxial vapor phase growth layer, a cleaning step is performed in which the inside of the reaction container is cleaned with an acidic cleaning solution prior to placing the GaAs epitaxial wafer, and after cleaning, high-purity hydrogen or an inert gas is introduced into the container. The present invention relates to a method for manufacturing GaAs epitaxial wafers in which a heating process is performed at a temperature higher than the vapor phase growth temperature while flowing.
このようなこの発明で後段エピタキシヤル気相
成長層の不連続的形成の意味は、前段エピタキシ
ヤル気相成長層とは質を相違させるために作業を
一旦停止し、停止している間に前段エピタキシヤ
ル気相成長層の測定を施す時間をおいていること
をさす。 In this invention, the meaning of the discontinuous formation of the second-stage epitaxial vapor-phase grown layer is that the operation is temporarily stopped in order to make the second-stage epitaxial vapor-grown layer different in quality from the first-stage epitaxial vapor-phase grown layer, and while the operation is stopped, the second-stage epitaxial vapor-phase grown layer is formed in a discontinuous manner. This refers to the time required to measure the epitaxially grown layer.
以下この発明の一実施例について図面を参照し
て説明する。この実施例で使用したエピタキシヤ
ル装置の模式図を第4図に示す。希釈用水素H2
ガスは精製装置41を通して使用し、その一部を
(CH3)3Gaを充填してあるステンレス容器42に
導き、一定量の(CH3)3Gaガスを含せて反応容
器49に供給する。又AsH3へH2ガスで10%に希
釈して充填してある高圧容器43から直接供給す
る。同様にn形不純物添加層形成時にn形不純物
を添加する為に用いる硫化水素ガスH2Sも、H2
ガスで所定の濃度に希釈して充填してある電圧容
器44から直接供給する。以上のガスを各流量計
45,46,47,48でそれぞれ所定の流量に
制御し、反応容器49に導く。これらのガスは高
周波コイル410によつて加熱された加熱台41
1の近くで加熱分解し、加熱台411上に載置し
ておいたGaAs基板412上に前段GaAsエピタ
キシヤル層として堆積する。 An embodiment of the present invention will be described below with reference to the drawings. A schematic diagram of the epitaxial apparatus used in this example is shown in FIG. Hydrogen H2 for dilution
The gas is used through a purification device 41, a part of which is introduced into a stainless steel container 42 filled with (CH 3 ) 3 Ga, and supplied to a reaction container 49 containing a certain amount of (CH 3 ) 3 Ga gas. . In addition, AsH 3 is directly supplied from a high-pressure container 43 filled with H 2 gas diluted to 10%. Similarly, the hydrogen sulfide gas H 2 S used to add n-type impurities when forming the n-type impurity doped layer is also H 2
It is diluted with gas to a predetermined concentration and supplied directly from the voltage container 44 filled with the gas. The above gases are controlled at predetermined flow rates by the flow meters 45, 46, 47, and 48, respectively, and guided to the reaction vessel 49. These gases are heated by a heating table 41 heated by a high frequency coil 410.
1, and deposited as a pre-stage GaAs epitaxial layer on a GaAs substrate 412 placed on a heating table 411.
ガンダイオード用n++層を後段エピタキシヤル
層として形成するためにウエハを容器外にとり出
す。そしてまずエピタキシヤル装置から反応容器
49を取外し、これを王水に浸して器内に付着し
ている砒素化合物、GaAs等の堆積物を溶除す
る。この後王水を脱イオン水で置換してから、1
〜10vol.%の弗酸水溶液中に1〜2分間浸す。再
び脱イオン水で充分置換した後反応容器49を取
出し、フイルタを通した清浄な空気中で乾燥す
る。次にこの反応容器49を再びエピタキシヤル
装置に設置し、器内に精製装置41を通した高純
度のH2ガスを流しながら850℃で40分間加熱台4
11を加熱する。加熱台411が室温近く迄冷え
てから、n-層を形成してあるエピタキシヤルウ
エハ412を加熱台411上に載置する。このウ
エハはn-の電子濃度と厚さがそれぞれ1×1015/
cm3、10μmでウエハ内のばらつきはそれぞれ10%
以内である。面積は5cm2のウエハ5枚で計25cm2で
ある。n-エピタキシヤルの温度は660℃にしてあ
る。総H2ガス流量9.5l/min、(CH3)3Gaを充填
して0℃に保持された容器42中を通るH2ガス
流量33ml/min、H2ガスで10%に希釈したAsH3
流量200ml/min、n形不純物を添加する為にH2
ガスで150ppmに希釈したH2S流量300ml/minを
反応容器49内に導き厚さ3μmのn++層を形成す
る。n++層の電子濃度は5×1017/cm3である。n++
層の表面電子濃度と厚さはウエハの極く周辺部を
除き25cm2にわたつて10%以内である。第5図はこ
の実施例で得たn++・n-両層の境界付近の電子濃
度プロフアル曲線である。第3図に於いて出現し
たn++・n-両層境界面の低電子濃度層は消失して
いる。しかもこのような効果は常に再現できるこ
とが10回の同様な成長を繰返した結果、明らかで
ある。上述の方法によるエピタキシヤルウエハを
用いて試作したGaAsガンダイオードの特性ばら
つきは著しく改善され、例えばガンダイオードの
発振閾値電圧のばらつきは第6図に示すごとく非
常に少く、第2図に比べ半分以下に低減してい
る。以上述べたようにこの発明によると、熱分解
法の特徴である量産性を維持しながら、前段エピ
タキシヤルn-層界面付近の電子濃度に変化を与
えることなしに後段エピタキシヤルn++層の成長
を行うことができ、良好なガンダイオードの特性
が得られるようなエピタキシヤルウエハを提供で
きる。 The wafer is taken out of the container in order to form the n ++ layer for the Gunn diode as a subsequent epitaxial layer. First, the reaction vessel 49 is removed from the epitaxial apparatus, and is immersed in aqua regia to dissolve deposits of arsenic compounds, GaAs, etc. adhering to the interior of the vessel. After this, the aqua regia was replaced with deionized water, and then
Immerse in ~10 vol.% hydrofluoric acid aqueous solution for 1 to 2 minutes. After sufficiently purging with deionized water again, the reaction vessel 49 is taken out and dried in clean air passed through a filter. Next, this reaction vessel 49 was placed in the epitaxial apparatus again, and heated on the heating table 4 at 850°C for 40 minutes while flowing high-purity H 2 gas that had passed through the purification device 41 into the vessel.
Heat 11. After the heating table 411 has cooled down to near room temperature, the epitaxial wafer 412 on which the n - layer has been formed is placed on the heating table 411 . This wafer has an n - electron concentration and a thickness of 1×10 15 /
Within-wafer variation is 10% for cm 3 and 10 μm, respectively.
within The area is 25 cm 2 in total, including 5 5 cm 2 wafers. The n -epitaxial temperature was set at 660°C. Total H 2 gas flow rate 9.5 l/min, H 2 gas flow rate 33 ml/min through the container 42 filled with (CH 3 ) 3 Ga and kept at 0° C., AsH 3 diluted to 10% with H 2 gas.
Flow rate 200ml/min, H2 to add n-type impurities
A flow rate of 300 ml/min of H 2 S diluted with gas to 150 ppm is introduced into the reaction vessel 49 to form an n ++ layer with a thickness of 3 μm. The electron concentration of the n ++ layer is 5×10 17 /cm 3 . n ++
The surface electron concentration and thickness of the layer are within 10% over 25 cm 2 except at the very periphery of the wafer. FIG. 5 shows the electron concentration profile curve near the boundary between the n ++ and n - layers obtained in this example. The low electron concentration layer at the interface between the n ++ and n - layers that appeared in Figure 3 has disappeared. Moreover, after repeating the same growth 10 times, it is clear that such an effect can always be reproduced. The variation in characteristics of GaAs Gunn diodes prototyped using epitaxial wafers produced by the method described above has been significantly improved. For example, the variation in the oscillation threshold voltage of Gunn diodes is extremely small as shown in Figure 6, less than half that of Figure 2. It has been reduced to As described above, according to the present invention, while maintaining mass productivity, which is a characteristic of the thermal decomposition method, the subsequent epitaxial n ++ layer can be grown without changing the electron concentration near the interface of the previous epitaxial n - layer. It is possible to provide an epitaxial wafer that can be grown and has good Gunn diode characteristics.
なお、この実施例ではガンダイオード用エピタ
キシヤルウエハの製造方法について説明したが、
本発明の要点は、反応容器の洗滌、加熱工程によ
り各エピタキシヤル層の電子濃度、厚さのばらつ
きが少い多層エピタキシヤルを不連続エピタキシ
ーで形成しうることにある。従つて、ガンダイオ
ードに限らず不連続エピタキシーにて形成する全
てのGaAs素子用ウエハに適用してよろしい。更
に前記実施例ではn形不純物を添加すると材料と
してH2Sを用いてあるが、固体の硫黄S、ガス体
のモノシランSiH4、ゲルマンGeH4、セレン化水
素H2Se等のn形不純物原料を用いてもよい。又、
(CH3)3Gaのかわりに(C2H5)3Gaを用いてもよ
く、エピタキシヤル装置の加熱部分に抵抗加熱方
式を用いてもよい。成長温度は600〜720℃の範囲
でよい。反応容器洗滌の酸溶液は王水のみでもよ
い。反応容器の加熱工程を行う際に器内に流すガ
スはH2ガス以外に窒素N2、アルゴンAr等の不活
性ガスでもよい。 In this example, a method for manufacturing an epitaxial wafer for Gunn diodes was explained.
The gist of the present invention is that a multilayer epitaxial layer with small variations in electron concentration and thickness of each epitaxial layer can be formed by discontinuous epitaxy by cleaning and heating the reaction vessel. Therefore, it may be applied not only to Gunn diodes but also to all GaAs device wafers formed by discontinuous epitaxy. Furthermore, in the above embodiment, H 2 S is used as a material to add n-type impurities, but n-type impurity raw materials such as solid sulfur S, gaseous monosilane SiH 4 , germane GeH 4 , hydrogen selenide H 2 Se, etc. may also be used. or,
(C 2 H 5 ) 3 Ga may be used instead of (CH 3 ) 3 Ga, and a resistance heating method may be used in the heating portion of the epitaxial device. Growth temperature may range from 600 to 720°C. The acid solution for washing the reaction vessel may be only aqua regia. In addition to H 2 gas, the gas flowed into the reaction vessel when performing the heating step of the reaction vessel may be an inert gas such as nitrogen N 2 or argon Ar.
第1図はガンダイオード用エピタキシヤルウエ
ハの断面図、第2図は第3図に記載したような電
子濃度プロフアイルを有するエピタキシヤルウエ
ハを用いて作つたガンダイオードの発振閾値電圧
のヒストグラム、第3図は従来の熱分解法を用い
て後段エピタキシヤルn++層を形成したときの前
段、後段両エピタキシヤル層界面近傍の電子濃度
プロフアイル曲線図、第4図は実施例方法に使用
のエピタキシヤル装置模式図、第5図はこの発明
による工程を経過させて後段エピタキシヤルn++
層を形成したときの前段、後段両エピタキシヤル
層界面近傍の電子濃度プロフアイル曲線図、第6
図はこの発明によるエピタキシヤルウエハを用い
て作つたガンダイオードの発振閾値電圧のヒスト
グラムである。
第1図:11……低比抵抗n形GaAs基板、1
2……能動層:前段エピタキシヤルn-層、13
……オーム性電極形成用低比抵抗層:後段エピタ
キシヤルn++層、
第4図:41……水素ガス精製装置、42……
トリメチルガリウム入りステンレス容器、43…
…アルシンガス入り高圧容器、44……硫化水素
ガス入り高圧容器、45〜48……流量計、49
……反応容器、410……高周波コイル、411
……加熱台、412……GaAs基板。
Figure 1 is a cross-sectional view of an epitaxial wafer for Gunn diodes, Figure 2 is a histogram of the oscillation threshold voltage of a Gunn diode made using an epitaxial wafer having an electron concentration profile as shown in Figure 3; Figure 3 shows the electron concentration profile curve near the interface between the front and rear epitaxial layers when the latter epitaxial n ++ layer is formed using the conventional thermal decomposition method. A schematic diagram of an epitaxial device, FIG. 5 shows a subsequent stage epitaxial n ++
Electron concentration profile curve diagram near the interface of both the front and rear epitaxial layers when the layers are formed, No. 6
The figure is a histogram of the oscillation threshold voltage of a Gunn diode manufactured using the epitaxial wafer according to the present invention. Figure 1: 11...Low resistivity n-type GaAs substrate, 1
2... Active layer: front stage epitaxial n - layer, 13
...Low resistivity layer for forming ohmic electrode: latter-stage epitaxial n ++ layer, Figure 4: 41...Hydrogen gas purification device, 42...
Stainless steel container containing trimethyl gallium, 43...
... High-pressure container containing arsine gas, 44 ... High-pressure container containing hydrogen sulfide gas, 45-48 ... Flowmeter, 49
...Reaction container, 410 ...High frequency coil, 411
...Heating table, 412...GaAs substrate.
Claims (1)
成された砒化ガリウムエピタキシヤルウエハの前
段エピキタシヤル気相成長層表面に、有機ガリウ
ムとアルシンの熱分解気相成長法により不連続的
に後段エピタキシヤル気相成長層を形成するに際
し、前記砒化ガリウムエピタキシヤルウエハの配
置に先立つて反応容器内を酸性の洗滌液で洗滌す
る洗滌工程と、洗滌後容器内に高純度水素又は不
活性ガスを流しながら気相成長温度より高温に熱
処理する加熱工程を施すことを特徴とする砒化ガ
リウムエピタキシヤルウエハの製造方法。1. A post-epitaxial vapor growth layer is discontinuously formed on the surface of the pre-epitaxial vapor-phase growth layer of a gallium arsenide epitaxial wafer on which a pre-stage epitaxial vapor-phase growth layer is formed on the substrate by a pyrolytic vapor-phase growth method of organic gallium and arsine. When forming a phase growth layer, prior to placing the gallium arsenide epitaxial wafer, there is a cleaning process in which the inside of the reaction vessel is cleaned with an acidic cleaning solution, and after cleaning, air is washed while flowing high-purity hydrogen or an inert gas into the vessel. A method for manufacturing a gallium arsenide epitaxial wafer, characterized by performing a heating process at a temperature higher than the phase growth temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56022230A JPS57138127A (en) | 1981-02-19 | 1981-02-19 | Manufacture of gallium arsenide epitaxial wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56022230A JPS57138127A (en) | 1981-02-19 | 1981-02-19 | Manufacture of gallium arsenide epitaxial wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57138127A JPS57138127A (en) | 1982-08-26 |
JPS6347136B2 true JPS6347136B2 (en) | 1988-09-20 |
Family
ID=12076988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56022230A Granted JPS57138127A (en) | 1981-02-19 | 1981-02-19 | Manufacture of gallium arsenide epitaxial wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57138127A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682463B2 (en) * | 1985-10-31 | 1994-10-19 | 富士通株式会社 | Lubricant application method for disk media |
-
1981
- 1981-02-19 JP JP56022230A patent/JPS57138127A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57138127A (en) | 1982-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004533118A (en) | Low temperature loading and unloading and baking | |
JPH0513347A (en) | Formation of deposited film | |
US4204893A (en) | Process for depositing chrome doped epitaxial layers of gallium arsenide utilizing a preliminary formed chemical vapor-deposited chromium oxide dopant source | |
JPH0547665A (en) | Vapor growth method | |
JP2002539327A (en) | Method and apparatus for forming a metal oxide on a substrate surface by chemical vapor deposition | |
US5294565A (en) | Crystal growth method of III - V compound semiconductor | |
JPS6347136B2 (en) | ||
JPH05175150A (en) | Compound semiconductor and its manufacture | |
JPH0799305A (en) | Iii/v compound semiconductor device and manufacture thereof | |
JP3214505B2 (en) | Method for manufacturing semiconductor device | |
JP2577550B2 (en) | Impurity doping of III-V compound semiconductor single crystal thin films | |
JPH0754802B2 (en) | Vapor growth method of GaAs thin film | |
JP2642096B2 (en) | Method of forming compound semiconductor thin film | |
JP3242571B2 (en) | Vapor growth method | |
JPH01220432A (en) | Manufacture of compound semiconductor layer | |
JP3052399B2 (en) | Method for manufacturing compound semiconductor film | |
JPH0212814A (en) | Crystal growth method of compound semiconductor | |
JPS62283899A (en) | Production of inp single crystal thin film | |
Soman et al. | Selective Area Chemical Vapor Deposition of Si1− x Ge x Thin Film Alloys by the Alternating Cyclic Method: Experimental Data: I. Deposition Parameters | |
CN115295412A (en) | High-temperature rapid heat treatment process and device for silicon carbide device | |
JPH0529231A (en) | Vapor deposition method of iii-v group compound semiconductor | |
JPH0562914A (en) | Organic metal vapor epitaxial growth method | |
JPH0355438B2 (en) | ||
JPH0657635B2 (en) | Vapor phase growth equipment | |
JP2569141B2 (en) | Crystal formation method |