JPS6346853Y2 - - Google Patents

Info

Publication number
JPS6346853Y2
JPS6346853Y2 JP4421183U JP4421183U JPS6346853Y2 JP S6346853 Y2 JPS6346853 Y2 JP S6346853Y2 JP 4421183 U JP4421183 U JP 4421183U JP 4421183 U JP4421183 U JP 4421183U JP S6346853 Y2 JPS6346853 Y2 JP S6346853Y2
Authority
JP
Japan
Prior art keywords
holder
fixed metal
probe
metal rod
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4421183U
Other languages
Japanese (ja)
Other versions
JPS59151170U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4421183U priority Critical patent/JPS59151170U/en
Publication of JPS59151170U publication Critical patent/JPS59151170U/en
Application granted granted Critical
Publication of JPS6346853Y2 publication Critical patent/JPS6346853Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【考案の詳細な説明】 本考案は、大規模集積回路、集積回路又は一般
の半導体素子等の静電気放電試験装置に関するも
のである。
[Detailed Description of the Invention] The present invention relates to an electrostatic discharge testing device for large-scale integrated circuits, integrated circuits, general semiconductor devices, etc.

第1図は、従来における静電気放電試験装置の
一例を示す図で、HEは直流高圧発生器、Rcは充
電用直列抵抗、Rytはリレーの切換接点、Cはコ
ンデンサ、Rdは放電用直列抵抗、Toは出力端
子、l1及びl2は接続導線、PBは放電棒、ICは被試
験回路、GPは接地板である。
Fig. 1 is a diagram showing an example of a conventional electrostatic discharge test device, where HE is a DC high voltage generator, Rc is a series resistor for charging, Ryt is a relay switching contact, C is a capacitor, Rd is a series resistor for discharging, To is the output terminal, l1 and l2 are the connecting conductors, PB is the discharge rod, IC is the circuit under test, and GP is the ground plate.

直流高圧発生装置HEにより充電用直列抵抗Rc
及びリレー切換接点Rytを介してコンデンサCを
充電した後、リレー切換接点Rytを切換えると、
コンデンサCに蓄積された一定電荷がリレー切換
接点Ryt、放電用直列抵抗Rd、出力端子To、接
続導線l1及び放電棒PBを介して被試験回路ICに
おける所望の端子に印加される。
Series resistance Rc for charging by DC high voltage generator HE
After charging the capacitor C through the relay switching contact Ryt and switching the relay switching contact Ryt,
A constant charge accumulated in the capacitor C is applied to a desired terminal in the circuit under test IC via the relay switching contact Ryt, the series discharge resistor Rd, the output terminal To, the connecting conductor l1 , and the discharge rod PB.

然るに集積回路等の端子間隔は、例えばデイツ
プ型の場合2.54mmピツチに規格統一されて居り、
又、フラツトパツケージの中、最近における高集
積度の集積回路等においては0.7mmピツチの多端
子型のものが実用されるに到つているので、放電
棒PBの先端を端子間隔以下に細くして所望の端
子にのみ接触し得るように形成する必要がある
が、放電棒PBの先端を被試験回路における所望
の端子に接触せしめるに先立つてリレー切換接点
Rytを切換え、コンデンサCの蓄積電荷を放電用
直列抵抗Rdを介して放電棒PBの先端に導くよう
にするときは、曲率半径の小なる放電棒PBの先
端の周囲における電界密度が極めて高くなつて空
気の絶縁破壊を生じ、コロナ放電が発生して電荷
の一部が失われ、又、放電棒PBの先端を所望の
端子に近付ける過程で他の端子との間に放電路が
形成されて蓄積電荷が失われるおそれも多いた
め、定められた電荷量を所望の端子に加えること
が不可能となる。
However, the terminal spacing of integrated circuits, etc., is standardized to 2.54mm pitch for dip type circuits, for example.
In addition, among flat packages, multi-terminal types with a pitch of 0.7 mm have come into practical use in recent high-density integrated circuits, so the tip of the discharge rod PB should be made thinner than the terminal spacing. However, before the tip of the discharge rod PB contacts the desired terminal in the circuit under test, the relay switching contact must be formed so that it can contact only the desired terminal.
When switching Ryt to guide the accumulated charge in the capacitor C to the tip of the discharge rod PB via the series discharge resistor Rd, the electric field density around the tip of the discharge rod PB, which has a small radius of curvature, becomes extremely high. This causes dielectric breakdown in the air, corona discharge occurs, and part of the charge is lost.Also, in the process of bringing the tip of the discharge rod PB close to a desired terminal, a discharge path is formed between it and other terminals. There is also a high risk that the stored charge will be lost, making it impossible to apply a defined amount of charge to a desired terminal.

このような放電現象を防いで所望の端子に所定
の電荷量を印加するには、予め放電棒PBの先端
を所望の端子に押圧接触せしめた後、リレー切換
接点Rytを切換えてコンデンサCの蓄積電荷を所
望の端子に加える必要があるが、このようにする
ときは一方の手によつて放電棒PBの先端と所望
の端子との押圧接触を確保し、他方の手によつて
リレー切換接点の切換えを行わなければならない
ので取扱操作が比較的困難なばかりでなく、この
ような操作によつて所望の端子に蓄積電荷を加え
た場合においても従来装置においては次のような
欠点を免れることが出来ない。
To prevent such a discharge phenomenon and apply a predetermined amount of charge to a desired terminal, first press the tip of the discharge rod PB into contact with the desired terminal, and then switch the relay switching contact Ryt to reduce the accumulation of capacitor C. It is necessary to apply an electric charge to the desired terminal, but when doing this, use one hand to ensure pressure contact between the tip of the discharge rod PB and the desired terminal, and use the other hand to press the relay switching contact. Not only is the handling operation relatively difficult because the switching has to be performed, but even when accumulated charge is added to a desired terminal by such an operation, conventional devices do not suffer from the following drawbacks: I can't.

即ち、静電気放電試験においては、一定電荷量
が瞬間的に被試験回路における所望の端子に印加
される必要があるが、従来装置においてはコンデ
ンサCの蓄積電荷が所望の端子に印加されるまで
の電荷の移動径路が、コンデンサC、リレー切換
接点Ryt、放電用直列抵抗Rd、放電棒PB及びこ
れらの接続導線より成り、この移動径路の全域に
亘つて値の不明な浮遊成分、即ち、浮遊インダク
タンス、浮遊容量、直流抵抗、磁気的誘導結合
度、電界的誘導結合度、リレー切換接点Rytにお
ける可動接片と固定接点間の接触抵抗及び放電棒
PBの先端と被試験回路の端子間の接触抵抗等が
分布し、これらの浮遊成分が静電気放電試験結果
に無視し得ない影響を与えることとなる。
That is, in an electrostatic discharge test, it is necessary to instantaneously apply a fixed amount of charge to a desired terminal in the circuit under test, but in conventional equipment, it is necessary to apply a fixed amount of charge to a desired terminal in the circuit under test. The charge transfer path consists of the capacitor C, the relay switching contact Ryt, the series discharge resistor Rd, the discharge rod PB, and the connecting conductor for these. , stray capacitance, DC resistance, degree of magnetic inductive coupling, degree of electric field inductive coupling, contact resistance between the movable contact piece and the fixed contact at the relay switching contact Ryt, and the discharge bar.
The contact resistance between the tip of the PB and the terminals of the circuit under test is distributed, and these floating components have a non-negligible effect on the electrostatic discharge test results.

したがつて正確な試験結果を得るには、コンデ
ンサC、リレー切換接点Ryt、放電用直列抵抗
Rd、放電棒PB等すべての回路素子として性能的
に良好なものを厳選使用する必要のあること勿論
であるが、それにもまして重要なことは電荷の移
動径路に分布する浮遊成分の値を出来るだけ小な
らしめることである。
Therefore, to obtain accurate test results, capacitor C, relay switching contact Ryt, and series resistor for discharge must be
Of course, it is necessary to carefully select circuit elements with good performance for all circuit elements such as Rd and discharge rod PB, but what is even more important is to be able to calculate the value of stray components distributed on the charge movement path. The only thing to do is to make it smaller.

然るに従来装置においては、特に出力端子To
の一方と放電棒PBとの接続導線l1及び出力端子
Toの他方とアース間の接続導線l2を長くして放
電棒PBの取扱操作を容易ならしめる必要がある
ので、(1)各接続導線l1及びl2における浮遊インダ
クタンスが大となる。(2)各接続導線L1及びl2間及
び各接続導線とアース間における浮遊容量が大と
なる。(3)リレー切換接点Rytの切換開閉に伴つて
接続導線l1,l2及び放電棒PB等から高周波エネル
ギの不要放射を生ずる。(4)接続導線l1,l2及び放
電棒PBとこれらの周りにおける電界及び磁界と
の関係が不確定で、アース又はその他の導電性物
体との距離及び導電性物体の形状等によつて電磁
的環境が変化し、上記浮遊容量が変動する。又、
(5)放電棒PBを手で保持した際の放電棒PBと手の
間の浮遊容量が比較的大である等の理由によつて
被試験回路の所望の端子に加えられる放電エネル
ギが減衰すると共にその減衰量が不定となり、
又、その波形も不規則に変形するから印加エネル
ギの定量性及び定質性が失われ、正確な試験を行
うことが不可能となる。
However, in the conventional device, the output terminal To
Connecting conductor L 1 and output terminal between one side of the discharge rod PB and the output terminal
Since it is necessary to lengthen the connecting conductor l2 between the other To and the ground to facilitate handling of the discharge rod PB, (1) the stray inductance in each of the connecting conductors l1 and l2 becomes large; (2) Stray capacitance between each connecting conductor L1 and L2 and between each connecting conductor and the ground becomes large. (3) Unnecessary radiation of high frequency energy occurs from the connecting conductors l 1 and l 2 and the discharge rod PB as the relay switching contact Ryt switches open and close. (4) The relationship between the connecting conductors l 1 , l 2 and the discharge bar PB and the electric and magnetic fields around them is uncertain, depending on the distance to the ground or other conductive object, the shape of the conductive object, etc. The electromagnetic environment changes and the stray capacitance changes. or,
(5) The discharge energy applied to the desired terminal of the circuit under test is attenuated due to reasons such as the relatively large stray capacitance between the discharge rod PB and the hand when the discharge rod PB is held by the hand. With this, the amount of attenuation becomes indeterminate,
Furthermore, since the waveform is irregularly deformed, the quantitative and qualitative properties of the applied energy are lost, making it impossible to conduct an accurate test.

本考案は、蓄積電荷の移動径路の一部を電磁シ
ールド用ホルダに内装して各種浮遊成分の一部を
エネルギ変換回路及びエネルギ伝送回路外に排除
すると共に、電磁シールド用ホルダ外におけるエ
ネルギ伝送路を極めて短かく形成し、この部分に
おける各種浮遊成分を小ならしめて実用上ほとん
ど誤差を与えない程度となすことにより印加エネ
ルギの定量性及び定質性を確保し得ると共に、取
扱操作の容易な静電気放電試験装置を実現するこ
とを目的とする。
The present invention incorporates a part of the movement path of accumulated charges in an electromagnetic shielding holder to exclude some of the various stray components from the energy conversion circuit and the energy transmission circuit, and also eliminates the energy transmission path outside the electromagnetic shielding holder. By forming it extremely short and minimizing various floating components in this part to a level that causes almost no errors in practice, it is possible to ensure the quantitative and qualitative nature of the applied energy, and also to reduce static electricity that is easy to handle. The purpose is to realize a discharge test device.

第2図は、本考案の容旨たる放電エネルギ印加
用プローブの一例を示す断面図で、1は筒状絶縁
体より成る前部ホルダ、2は筒状導体より成る後
部ホルダ、3は絶縁支持筒で、その前端部を前部
ホルダ1の前端部に固着すると共に、後端部をリ
ング状の支持体4を介して前部ホルダ1の内壁に
固着して絶縁支持筒3を前部ホルダ1と同軸状に
取付けてある。5は可動金属棒で、絶縁支持筒3
内に滑動自在に挿通し、その外端を被試験回路に
おける端子間隔よりも細く形成すると共に内端に
可動金属球6を取付けてある。7はスプリング
で、絶縁支持筒3の後端壁と可動金属棒5に設け
た突起8間に介装され、常時は可動金属棒5を押
圧して前進状態に保つ。9は固定金属棒で、絶縁
支持体10を介して前部ホルダ1の後端壁及び後
部ホルダ2の前端壁に固着し、その前端部を前部
ホルダ1内に挿入し、後端部を後部ホルダ2内に
挿入してある。11及び12はリング状の絶縁支
持体、13は固定金属球で、固定金属棒9の前端
に取付け、常時は可動金属球6と適宜間隔を隔て
て対向するように形成してある。14は放電用直
列抵抗で、図示のように前部ホルダ1内における
固定金属棒9の中間部分に介装するか、固定金属
棒9の前端と固定金属球13の間に介在せしめ
る。15は直流高圧の入力端子で、絶縁支持体1
6を介して後部ホルダ2に取付けてある。17は
充電用直列抵抗で、固定金属棒9の後端と入力端
子15間に介在せしめてある。18は接地用導線
で、後部ホルダ2に取付けてある。
FIG. 2 is a cross-sectional view showing an example of a discharge energy application probe according to the present invention, in which 1 is a front holder made of a cylindrical insulator, 2 is a rear holder made of a cylindrical conductor, and 3 is an insulating support. The front end of the tube is fixed to the front end of the front holder 1, and the rear end is fixed to the inner wall of the front holder 1 via a ring-shaped support 4, so that the insulating support tube 3 is attached to the front holder. It is installed coaxially with 1. 5 is a movable metal rod, and the insulating support tube 3
It is slidably inserted into the inner end, and its outer end is formed narrower than the terminal spacing in the circuit under test, and a movable metal ball 6 is attached to the inner end. A spring 7 is interposed between the rear end wall of the insulating support cylinder 3 and a protrusion 8 provided on the movable metal rod 5, and normally presses the movable metal rod 5 to keep it in the forward state. A fixed metal rod 9 is fixed to the rear end wall of the front holder 1 and the front end wall of the rear holder 2 via an insulating support 10. Its front end is inserted into the front holder 1, and the rear end is inserted into the front holder 1. It is inserted into the rear holder 2. 11 and 12 are ring-shaped insulating supports, and 13 is a fixed metal ball, which is attached to the front end of the fixed metal rod 9 and is normally opposed to the movable metal ball 6 at an appropriate distance. Reference numeral 14 denotes a series resistor for discharging, which is interposed in the middle portion of the fixed metal rod 9 in the front holder 1 as shown in the figure, or interposed between the front end of the fixed metal rod 9 and the fixed metal ball 13. 15 is a DC high voltage input terminal, and the insulating support 1
It is attached to the rear holder 2 via 6. Reference numeral 17 denotes a series resistor for charging, which is interposed between the rear end of the fixed metal rod 9 and the input terminal 15. Reference numeral 18 denotes a grounding conductor, which is attached to the rear holder 2.

第3図は、本案装置の全構成を示す図で、Sは
電源部、Pは第2図に示したプローブで、その電
気回路部分の等価回路を示してある。電源部Sに
おいてHEは直流高圧発生装置で、第1図に示し
た従来のものと同様の構成である。Rysは開閉接
点で、例えばリレーの開閉接点より成る。Rbは
充電電流制限及び不要放射防止用のバツフア抵
抗、Toは出力端子である。プローブPにおいて
15は入力端子、2は後部ホルダの側壁より成る
接地側入力端子、17は充電用直列抵抗で、充電
電流を制限すると共に不要放射を防止する。C9.2
は固定金属棒9と後部ホルダ2間の分布容量、1
4は放電用直列抵抗、Gは金属球6及び13間の
間隙、CEは可動金属棒5の外端部に形成された
接触電極、18は接地用導線である。l3及びl4
電源部SとプローブP間の接続導線である。
FIG. 3 is a diagram showing the entire configuration of the present device, where S is a power supply section, P is a probe shown in FIG. 2, and shows an equivalent circuit of the electric circuit portion thereof. In the power supply section S, HE is a DC high voltage generator, which has the same configuration as the conventional one shown in FIG. Rys is a switching contact, such as a switching contact of a relay. Rb is a buffer resistor for limiting charging current and preventing unnecessary radiation, and To is an output terminal. In the probe P, 15 is an input terminal, 2 is a ground side input terminal formed from the side wall of the rear holder, and 17 is a series resistor for charging, which limits the charging current and prevents unnecessary radiation. C9.2
is the distributed capacity between the fixed metal rod 9 and the rear holder 2, 1
4 is a series resistor for discharging, G is a gap between the metal balls 6 and 13, CE is a contact electrode formed at the outer end of the movable metal rod 5, and 18 is a grounding conductor. l 3 and l 4 are connection conductors between the power supply section S and the probe P.

接地用導線18を被試験回路の接地端子等に接
続し、リレー開閉接点Rysを閉じて直流高圧発生
装置HEの出力によりバツフア抵抗Rb、接続導線
l3及びl4、充電用直列抵抗17を介して分布容量
C9.2を充電した後、リレー開閉接点Rysを開いて
プローブPを手に持ち、可動金属棒5の先端CE
を被試験回路における所望の端子に接触せしめた
後、スプリング7の弾力に抗してプローブPを押
圧前進せしめると、可動金属棒5及び可動金属球
6が相対的に後退して可動金属球6と固定金属球
13との間隙Gが短縮され、パツシエンの法則に
より定まる間隙長に達すると金属球6及び13間
に気中放電を生じ、分布容量C9.2の蓄積電荷が一
挙に被試験回路における所望の端子に放出され
る。分布容量C9.2の充電電圧がほぼ350ボルト以
下の場合には1気圧の下において金属球6及び1
3間に気中放電を生じ得ないが、この場合にはプ
ローブPを更に押圧前進せしめて金属球6を金属
球13に圧着せしめ、完全に導通状態に到らしめ
ると接触放電が行われ、分布容量C9.2の蓄積電荷
が一挙に放出される。
Connect the grounding conductor 18 to the grounding terminal of the circuit under test, close the relay switching contact Rys, and use the output of the DC high voltage generator HE to connect the buffer resistor Rb and the connecting conductor.
l 3 and l 4 , distributed capacitance via charging series resistor 17
After charging C 9. 2 , open the relay switching contact Rys, hold the probe P in your hand, and touch the tip CE of the movable metal rod 5.
When the probe P is pressed and moved forward against the elasticity of the spring 7 after contacting the desired terminal in the circuit under test, the movable metal rod 5 and the movable metal ball 6 move back relatively, and the movable metal ball 6 When the gap G between the fixed metal ball 13 and the fixed metal ball 13 is shortened and reaches the gap length determined by Patsien's law, an air discharge occurs between the metal balls 6 and 13, and the accumulated charge of the distributed capacitance C 9.2 is suddenly discharged under test. released to the desired terminal in the circuit. If the charging voltage of the distributed capacitance C9.2 is approximately 350 volts or less, the metal balls 6 and 1 will be charged under 1 atm.
However, in this case, the probe P is further pushed forward to press the metal ball 6 to the metal ball 13, and when a completely conductive state is reached, a contact discharge occurs. The accumulated charge of distributed capacitance C 9.2 is released all at once.

本案装置におけるプローブにおいては、分布容
量C9.2に蓄積された電荷の放電回路が常時は金属
球6及び13間の間隙Gによつて開放されている
ため、分布容量C9.2の充電後においても可動金属
棒5の先端からコロナ放電を生ずるおそれは全く
ないから被試験回路の端子間隔が極めて小なる場
合でもこの間隔に応じて可動金属棒5の先端を細
く形成することが出来る。
In the probe of the present device, the discharge circuit for the charge accumulated in the distributed capacitance C 9.2 is normally open by the gap G between the metal balls 6 and 13, so that the distributed capacitance C 9.2 is not charged . Since there is no possibility that corona discharge will occur from the tip of the movable metal rod 5 later on, even if the terminal spacing of the circuit under test is extremely small, the tip of the movable metal rod 5 can be made thin in accordance with this spacing.

又、可動金属棒5の先端を所望の端子に接触せ
しめた後、プローブPを押圧前進せしめることに
より金属球6及び13間の間隙長を短縮せしめて
放電エネルギを放出せしめ得るから、従来装置の
ように一方の手で所望の端子と放電棒との接触を
確保し、他方の手でリレー切換接点の切換操作を
行うものに対して本案装置においては片手操作で
目的を達することが出来、取扱容量である。
Furthermore, after bringing the tip of the movable metal rod 5 into contact with a desired terminal, the probe P is pushed forward to shorten the gap length between the metal balls 6 and 13 and discharge the discharge energy, which is different from the conventional device. In contrast to devices where one hand is used to secure contact between the desired terminal and the discharge rod and the other hand is used to switch the relay switching contact, the proposed device can achieve its purpose with one-handed operation and is easy to handle. It is capacity.

本案装置のプローブにおいては、分布容量C9.2
を形成する固定金属棒9の一部及び充電用直列抵
抗17を筒状導体より成る後部ホルダ2に内装し
て電磁的にシールドし、放電回路を形成する前部
ホルダ1内の固定金属棒9、放電用直列抵抗1
4、金属球13及び6、可動金属棒5の総合長を
出来るだけ短かくすることによりこの放電回路に
おける各種浮遊成分を極めて小ならしめて、試験
結果に実用上ほとんど誤差を与えない程度になし
得ると共に、絶縁支持筒3、リング状絶縁支持体
11及び絶縁支持体10によつて放電回路を機械
的に保持して不規則な位置変動を生じないように
形成してあるから各種浮遊成分の変動を生ずるお
それなく、又、プローブを手で保持した際におけ
る放電回路と手の間の浮遊容量も極めて小ならし
め得ると共に、リレー開閉接点Rysの開閉時にお
ける高周波エネルギの不要放射をバツフア抵抗
Rbによつて防止し得るので、被試験回路に加え
られる放電エネルギの定量性及び定質性の確保が
可能で、更に放電発生源と被試験回路の端子間の
距離を極めて近くなし得るから、実際に被試験回
路が放電エネルギによつて障害を受ける状態に近
い条件で静電気放電試験を行い得る等の特長を有
する。
In the probe of the proposed device, the distributed capacitance C9.2
A part of the fixed metal rod 9 forming the battery and the charging series resistor 17 are placed inside the rear holder 2 made of a cylindrical conductor to electromagnetically shield the fixed metal rod 9 in the front holder 1 forming a discharge circuit. , series resistance for discharge 1
4. By making the total length of the metal balls 13 and 6 and the movable metal rod 5 as short as possible, various floating components in this discharge circuit can be minimized to the extent that practically no errors are caused in the test results. In addition, since the discharge circuit is mechanically held by the insulating support tube 3, the ring-shaped insulating support 11, and the insulating support 10 to prevent irregular positional fluctuations, fluctuations in various floating components can be prevented. In addition, the stray capacitance between the discharge circuit and the hand when the probe is held in the hand can be made extremely small, and the buffer resistor prevents unnecessary radiation of high frequency energy when the relay switching contact Rys is opened and closed.
Since this can be prevented by Rb, it is possible to ensure the quantitative and qualitative nature of the discharge energy applied to the circuit under test, and furthermore, the distance between the discharge source and the terminals of the circuit under test can be kept extremely close. It has the advantage of being able to perform electrostatic discharge tests under conditions similar to those in which the circuit under test actually suffers from damage due to discharge energy.

尚、例えば金属球6及び13を可動金属棒5及
び固定金属棒9の各端部にねじ止めによつて取付
け、各金属球を回転せしめて両金属球間の間隙長
を変化せしめ得るように形成することにより放電
電圧を自在に選択することが出来、又、固定金属
棒9と後部ホルダ2間に適当な誘電体を充てんす
ることにより分布容量C9.2を大ならしめ得ると共
に、固定金属棒9の機械的支持強度を高めること
が出来る。
For example, the metal balls 6 and 13 are attached to each end of the movable metal rod 5 and the fixed metal rod 9 by screws, and each metal ball is rotated to change the gap length between the two metal balls. By forming this structure, the discharge voltage can be freely selected, and by filling a suitable dielectric material between the fixed metal rod 9 and the rear holder 2, the distributed capacitance C9.2 can be increased, and the fixed metal rod 9 and the rear holder 2 can be The mechanical support strength of the metal rod 9 can be increased.

更に前部ホルダ1の後端壁から適宜軸長、例え
ば固定金属球13までの軸長に対応する前部ホル
ダ1の側壁の外表面又は内表面に電磁シールド用
筒体を設けることによつてプローブを手で保持し
た際における手と放電回路との間の浮遊容量を減
少せしめることが出来る。
Furthermore, by providing an electromagnetic shielding cylinder on the outer surface or inner surface of the side wall of the front holder 1 corresponding to an appropriate axial length from the rear end wall of the front holder 1, for example, to the fixed metal ball 13. Stray capacitance between the hand and the discharge circuit when the probe is held by hand can be reduced.

以上は固定金属棒9の後端部と後部ホルダ2間
の浮遊容量の充電電荷を放電回路を介して放電せ
しめるように構成した場合を例示したが、貫通型
コンデンサ(中心軸電極とその外周に設けた筒状
電極との間に誘電体を介在せしめて成るコンデン
サ)の中心軸電極を後部ホルダ2内における固定
金属棒9の全長又は一部と置き換え、筒状電極の
外表面に後部ホルダ2の側壁を密着せしめるか、
筒状電極と後部ホルダ2とを接続導線によつて接
続するように構成しても本考案を実施することが
出来る。
The above is an example of a configuration in which the charge in the stray capacitance between the rear end of the fixed metal rod 9 and the rear holder 2 is discharged via the discharge circuit. The central axis electrode of a capacitor (with a dielectric interposed between it and the provided cylindrical electrode) is replaced with the entire length or part of the fixed metal rod 9 in the rear holder 2, and the rear holder 2 is attached to the outer surface of the cylindrical electrode. The side walls of the
The present invention can also be implemented by configuring the cylindrical electrode and the rear holder 2 to be connected by a connecting conductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来装置を示す図、第2図は、本考
案の一実施例におけるプローブを示す図、第3図
は、本考案の一実施例を示す結線図で、HE:直
流高圧発生装置、Rc,Rb及び17:充電用直列
抵抗、Ryt:リレー切換接点、C:コンデンサ、
Rd及び14:放電用直列抵抗、To:出力端子、
PB:放電棒、GP:接地板、IC:被試験回路、l1
ないしl4:接続導線、1:前部ホルダ、2:後部
ホルダ、3:絶縁支持筒、4,10,11,12
及び16:支持体、5:可動金属棒、6:可動金
属球、7:スプリング、8:突起、9:固定金属
棒、13:固定金属球、15:入力端子、18:
接地用導線、Rys:開閉接点、G:間隙、CE:
接触電極、C9.2:分布容量である。
Fig. 1 is a diagram showing a conventional device, Fig. 2 is a diagram showing a probe in an embodiment of the present invention, and Fig. 3 is a wiring diagram showing an embodiment of the present invention. Device, Rc, Rb and 17: Series resistance for charging, Ryt: Relay switching contact, C: Capacitor,
Rd and 14: series resistance for discharge, To: output terminal,
PB: discharge rod, GP: ground plate, IC: circuit under test, l 1
or l 4 : Connection conductor, 1: Front holder, 2: Rear holder, 3: Insulated support tube, 4, 10, 11, 12
and 16: support body, 5: movable metal rod, 6: movable metal ball, 7: spring, 8: protrusion, 9: fixed metal rod, 13: fixed metal ball, 15: input terminal, 18:
Grounding conductor, Rys: Switching contact, G: Gap, CE:
Contact electrode, C9.2 : Distributed capacitance .

Claims (1)

【実用新案登録請求の範囲】 (1) 筒状絶縁体より成る前部ホルダと、この前部
ホルダの後端に一体に結合せしめられた筒状導
体より成る後部ホルダと、前端部が前記前部ホ
ルダ内に挿入され、後端部が前記後部ホルダ内
に挿入されると共に、絶縁支持体を介して前記
後部ホルダの前端壁に固定された固定金属棒
と、この固定金属棒の前端に取付けた固定金属
球と、前記前部ホルダ内における前記固定金属
棒に直列に挿入された放電用直列抵抗と、前記
前部ホルダ内に前後に滑動自在に挿入され、前
端を前記前部ホルダの前端から外部に突出せし
められると共に、後端に可動金属球を取付けた
可動金属棒と、前記前部ホルダに内装され、常
時は前記可動金属棒を前進せしめて前記固定金
属球と前記可動金属球間に適宜長の間隙を保持
せしめるスプリングと、絶縁支持体を介して前
記後部ホルダに取付けられた直流高圧の入力端
子と、前記固定金属棒の後端と前記直流高圧の
入力端子間に挿入された充電用直列抵抗と、前
記後部ホルダに取付けられた接地用導線とより
成るプローブと、直流高圧発生器の出力を開閉
接点を介して前記プローブの直流高圧の入力端
子に印加する電源部とを備えたことを特徴とす
る静電気放電試験装置。 (2) プローブの前部ホルダに内装された可動金属
球と固定金属球間の常時間隙長を可変ならしめ
た実用新案登録請求の範囲第1項記載の静電気
放電試験装置。 (3) プローブの前部ホルダに内装された放電用直
列抵抗が固定金属棒の中間個所に割込み挿入さ
れた実用新案登録請求の範囲第1項記載の静電
気放電試験装置。 (4) プローブの前部ホルダに内装された放電用直
列抵抗が固定金属棒の前端と固定金属球間に挿
入された実用新案登録請求の範囲第1項記載の
静電気放電試験装置。 (5) プローブの後部ホルダ内における固定金属棒
と後部ホルダの側壁間に誘電体を介在せしめた
実用新案登録請求の範囲第1項記載の静電気放
電試験装置。 (6) プローブの後部ホルダ内における固定金属棒
の全長又は一部を貫通型コンデンサの中心軸電
極を以て置き換えると共に前記貫通型コンデン
サの筒状電極を後部ホルダに接続した実用新案
登録請求の範囲第1項記載の静電気放電試験装
置。
[Claims for Utility Model Registration] (1) A front holder made of a cylindrical insulator, a rear holder made of a cylindrical conductor integrally connected to the rear end of this front holder, and a front end portion of which is connected to the front holder. a fixed metal rod inserted into the rear holder, the rear end of which is inserted into the rear holder and fixed to the front end wall of the rear holder via an insulating support; a fixed metal ball inserted in series with the fixed metal rod in the front holder; a series resistor for discharging inserted in the front holder so as to be slidable back and forth; A movable metal rod is provided inside the front holder, and is normally moved forward to move the movable metal ball between the fixed metal ball and the movable metal ball. a DC high voltage input terminal attached to the rear holder via an insulating support, and a spring inserted between the rear end of the fixed metal rod and the DC high voltage input terminal. A probe consisting of a series resistance for charging and a grounding conductor attached to the rear holder, and a power supply unit that applies the output of a DC high voltage generator to the DC high voltage input terminal of the probe via a switching contact. An electrostatic discharge test device characterized by: (2) The electrostatic discharge test device according to claim 1, which is a utility model and has a variable constant gap length between a movable metal ball and a fixed metal ball housed in the front holder of the probe. (3) The electrostatic discharge test device according to claim 1, wherein a series resistor for discharging built into the front holder of the probe is inserted into the middle of the fixed metal rod. (4) The electrostatic discharge test device according to claim 1, wherein a series resistor for discharge built into the front holder of the probe is inserted between the front end of the fixed metal rod and the fixed metal sphere. (5) The electrostatic discharge testing device according to claim 1, wherein a dielectric material is interposed between the fixed metal rod in the rear holder of the probe and the side wall of the rear holder. (6) Utility model registration claim 1, in which the entire length or part of the fixed metal rod in the rear holder of the probe is replaced with a central axis electrode of a feedthrough capacitor, and the cylindrical electrode of the feedthrough capacitor is connected to the rear holder. The electrostatic discharge test device described in Section 1.
JP4421183U 1983-03-29 1983-03-29 Electrostatic discharge test equipment Granted JPS59151170U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4421183U JPS59151170U (en) 1983-03-29 1983-03-29 Electrostatic discharge test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4421183U JPS59151170U (en) 1983-03-29 1983-03-29 Electrostatic discharge test equipment

Publications (2)

Publication Number Publication Date
JPS59151170U JPS59151170U (en) 1984-10-09
JPS6346853Y2 true JPS6346853Y2 (en) 1988-12-05

Family

ID=30174746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4421183U Granted JPS59151170U (en) 1983-03-29 1983-03-29 Electrostatic discharge test equipment

Country Status (1)

Country Link
JP (1) JPS59151170U (en)

Also Published As

Publication number Publication date
JPS59151170U (en) 1984-10-09

Similar Documents

Publication Publication Date Title
Pommerenke et al. ESD: waveform calculation, field and current of human and simulator ESD
KR100230628B1 (en) Apparatus for measuring quantity of charge
US4034283A (en) Compensated voltage divider
US5408236A (en) High-voltage unit comprising a measuring divider/resistor arrangement
WO1995008124A1 (en) Electrostatic discharge generator
US2468125A (en) Standing wave indicator
US2286029A (en) High frequency resistance device
JPS6346853Y2 (en)
US4935839A (en) Electrostatic discharge testing device
US4875133A (en) Simulating staticelectricity discharges
JP3315683B2 (en) Electrical property measurement device
US20010056340A1 (en) CDM simulator for testing electrical devices
US2732517A (en) Static electricity dischargers
US5977713A (en) High voltage noise filter and magnetron device using it
JP3701470B2 (en) Charge measurement device
GB2119174A (en) Generator for the production of high voltage rectangular pulses
JP2593951Y2 (en) Static electricity generator
US3295055A (en) Combined unit of impedance
US3433977A (en) Pulse line having components coaxially interconnected and confined with large surface area conductors
Smith et al. Measurement of nitrogen laser channel current, inductance, and resistance
US2786976A (en) Circuit component
US3283248A (en) Electrical probe containing a capacitor and a switch assembly for selectively short circuiting such capacitor
CN111769823B (en) Subnanosecond leading edge pulse power supply based on coaxial capacitor and generation method thereof
Anastasiya et al. Evaluating the Level of Electromagnetic Interference Generated by the ESD Source in the TEM-Cell
CN210378643U (en) Solid resistor