JPS6346821Y2 - - Google Patents

Info

Publication number
JPS6346821Y2
JPS6346821Y2 JP12714781U JP12714781U JPS6346821Y2 JP S6346821 Y2 JPS6346821 Y2 JP S6346821Y2 JP 12714781 U JP12714781 U JP 12714781U JP 12714781 U JP12714781 U JP 12714781U JP S6346821 Y2 JPS6346821 Y2 JP S6346821Y2
Authority
JP
Japan
Prior art keywords
flow rate
rate signal
flow
output
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12714781U
Other languages
Japanese (ja)
Other versions
JPS5832427U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12714781U priority Critical patent/JPS5832427U/en
Publication of JPS5832427U publication Critical patent/JPS5832427U/en
Application granted granted Critical
Publication of JPS6346821Y2 publication Critical patent/JPS6346821Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 この考案は被測定流体の流れ方向に対応して基
準値より大きい又は小さい流量に応じた流量信号
を出力する流量計に関し、特に小さい流量におけ
る流れ方向の変動にもとずく誤りを除去しようと
するものである。
[Detailed description of the invention] This invention relates to a flowmeter that outputs a flow rate signal according to a flow rate larger or smaller than a reference value in accordance with the flow direction of a fluid to be measured. This is an attempt to eliminate many errors.

例えば超音波流量計においては第1図に示すよ
うに被測定流体が満管状態で流されている配管1
1に対し、その配管を介して送受波器12及び1
3が対向して設けられる。配管11の直径をD、
配管と直角な面と送受波器12及び13間の超音
波の伝播路14とのなす角度をθ、超音波の被測
定流体中での音速をC、被測定流体の流速をvと
すると、超音波の伝播方向が被測定流体の流速と
順方向である場合の送受波器12より送受波器1
3迄の超音波の伝播時間Tは T1=D/cosθ/C+vsinθ …(1) となる。被測定流体の流れに逆方向に伝播される
場合の超音波の伝播時間、即ち送受波器13より
送受波器12への伝播時間T2は T2=D/cosθ/C−vsinθ …(2) となる。これら両式から流速vは v=D/sin2θ(1/T1−1/T2) …(3) で求まる。第1図に示す状態に対し流体が逆方向
に流れると流速vの符号が変る。従つてこの(3)式
を求める流量計においては流速のみならず流れ方
向も知ることができる。つまりこの流量計によれ
ば正逆両方向の流量を測定することができる。
For example, in an ultrasonic flowmeter, as shown in Figure 1, a pipe 1 in which the fluid to be measured is flowing in a full state.
1, the transducer 12 and 1 are connected via the piping.
3 are provided facing each other. The diameter of the pipe 11 is D,
If the angle between the plane perpendicular to the piping and the propagation path 14 of the ultrasonic wave between the transducers 12 and 13 is θ, the sound speed of the ultrasonic wave in the fluid to be measured is C, and the flow velocity of the fluid to be measured is v, then From the transducer 12 to the transducer 1 when the propagation direction of the ultrasonic wave is in the forward direction of the flow velocity of the fluid to be measured.
The propagation time T of the ultrasonic waves up to 3 is T 1 =D/cosθ/C+vsinθ (1). The propagation time of the ultrasonic wave when it is propagated in the opposite direction to the flow of the fluid to be measured, that is, the propagation time T 2 from the transducer 13 to the transducer 12 is T 2 =D/cosθ/C−vsinθ...(2 ) becomes. From these two equations, the flow velocity v can be found as v=D/sin2θ(1/T 1 -1/T 2 ) (3). When the fluid flows in the opposite direction to the state shown in FIG. 1, the sign of the flow velocity v changes. Therefore, in a flowmeter that calculates equation (3), not only the flow velocity but also the flow direction can be determined. In other words, this flowmeter can measure flow rates in both forward and reverse directions.

しかしながらこのような流量計は必然的に流量
ゼロの点を含んでいるため流速が非常に小さいと
きには流体の振動等によつて流れの方向が変動す
ることがあり、流量が不安定になり指示が見にく
くなるという欠点があつた。この欠点を避けるた
めに従来では下記に示す原理でこの変動を除去し
ていた。即ち第2図に示すように正帰還によりヒ
ステリシス特性が与えられた比較器15において
端子16からの流量信号Viと電源17よりの流量
ゼロの電圧とが比較され、その比較器15の出力
端子18より流れの方向を示す信号を検出してい
る。この比較器15の入出力特性、つまり流量v
に対する比較器出力Voutは第3図に示すように
流量vが正のV0よりも大きい状態では出力Vout
は低レベルであり、これよりvが小さくなりゼロ
となつても低レベルのまゝであり、流れ方向が逆
転し流量vが−V0より更に小さくなつて初めて
Voutは高レベルになり逆に流量vが増加する場
合はV0を越えて初めて高レベルになる。このよ
うに流量vが±V0以上に変化しないと流れの方
向を示す出力は変化せず、従つて流量ゼロ付近の
流れ方向指示のふらつきを除去することができ
る。
However, such flowmeters necessarily include a point where the flow rate is zero, so when the flow velocity is very low, the direction of the flow may fluctuate due to fluid vibrations, etc., making the flow rate unstable and causing the reading to become inaccurate. The drawback was that it was difficult to see. In order to avoid this drawback, this variation has conventionally been removed using the principle shown below. That is, as shown in FIG. 2, the flow rate signal V i from the terminal 16 is compared with the zero flow rate voltage from the power supply 17 in the comparator 15 which is given hysteresis characteristics by positive feedback, and the output terminal of the comparator 15 is 18, a signal indicating the direction of flow is detected. The input/output characteristics of this comparator 15, that is, the flow rate v
As shown in Figure 3, the comparator output Vout for
is a low level, and it remains at a low level even when v becomes smaller than this and reaches zero, and only when the flow direction is reversed and the flow rate v becomes even smaller than -V 0 .
Vout becomes a high level, and conversely, when the flow rate v increases, it becomes a high level only when it exceeds V0 . In this way, unless the flow rate v changes by more than ±V 0 , the output indicating the flow direction will not change, and therefore, it is possible to eliminate fluctuations in the flow direction indication near the zero flow rate.

しかし例えば第4図Aに示すように流量vが
V0よりも大きい状態から減少し、時刻t0に流れ方
向が逆転してもそれが−V0より小さくならない
状態を継続する場合は第2図に示した流れ方向検
出器では時刻t0より前の流れ方向を示したまゝと
なる。また第4図Bに示すように定常流量が小さ
く、時刻t0〜t1の短時間だけ逆方向に比較的大き
な流量が流れる場合には定常流の流れ方向と逆方
向の指示をすることになり、大きな流量誤差とな
る。
However, for example, as shown in Figure 4A, the flow rate v is
If the flow direction continues to decrease from a state larger than V 0 and does not become smaller than -V 0 even if the flow direction is reversed at time t 0 , the flow direction detector shown in FIG. It remains pointing to the previous flow direction. Also, as shown in Figure 4B, if the steady flow rate is small and a relatively large flow rate flows in the opposite direction for a short period of time from time t 0 to t 1 , an instruction is given in the opposite direction to the steady flow direction. This results in a large flow rate error.

この考案の目的は小さい流量で流れ方向が振動
しても正しい流れ方向を安定に示す流量信号を発
生し、また小さい流量で流れ方向が変化してもそ
の変化した状態を正しく示す流量信号を出力する
流量計を提供することにある。
The purpose of this device is to generate a flow rate signal that stably indicates the correct flow direction even if the flow direction oscillates at a small flow rate, and to output a flow rate signal that correctly indicates the changed state even if the flow direction changes at a small flow rate. Our objective is to provide a flowmeter that

この考案によれば流量検出部からの流量信号は
積分手段により周期的に積分される。その各積分
結果に対して演算が平均流量演算手段により施さ
れてその各積分周期における平均流量信号が得ら
れ、これが流量信号として出力される。流れ方向
の変化にもとずく誤りは流量が小さい範囲におい
て発生するため、流量が所定値より大きい状態を
検出する手段を設け、この出力により流量が所定
値より大きい場合は前記平均演算した流量信号に
代えて流量検出部の流量信号を直接出力するよう
にすることもできる。
According to this invention, the flow rate signal from the flow rate detection section is periodically integrated by the integrating means. An average flow rate calculation means performs calculations on each of the integration results to obtain an average flow rate signal for each integration period, which is output as a flow rate signal. Since errors based on changes in flow direction occur in a range where the flow rate is small, a means is provided to detect when the flow rate is larger than a predetermined value, and this output indicates that if the flow rate is larger than the predetermined value, the averaged flow rate signal is detected. Instead, it is also possible to directly output the flow rate signal from the flow rate detection section.

第5図はこの考案による流量計の一例を示し、
流量検出部21は例えば超音波流量計であり、そ
の出力端子22には流量に比例し、かつ流れ方向
によつて符号(極性)が変化する電圧流量信号Vi
が現われる。この流量信号は積分回路23で積分
される。積分回路23は演算増幅器24と、入力
積分抵抗器25と、積分コンデンサ26とよりな
る。積分コンデンサ26の両端に接続された
FETスイツチ27がタイマ28の出力により一
定時間Δtごとにオンにされて、積分回路23は
リセツトされることが繰返される。
Figure 5 shows an example of a flowmeter based on this invention.
The flow rate detection unit 21 is, for example, an ultrasonic flowmeter, and its output terminal 22 receives a voltage flow rate signal V i that is proportional to the flow rate and whose sign (polarity) changes depending on the flow direction.
appears. This flow rate signal is integrated by an integrating circuit 23. The integrating circuit 23 includes an operational amplifier 24, an input integrating resistor 25, and an integrating capacitor 26. connected across the integrating capacitor 26
The FET switch 27 is turned on at regular intervals Δt by the output of the timer 28, and the integration circuit 23 is reset, which is repeated.

積分回路23の積分出力はそのリセツトの直前
にサンプルホールド回路29にサンプルホールド
される。つまり演算増幅器24の出力はスイツチ
27がオンにされる直前にFFTのアナログスイ
ツチ31を通じてコンデンサ32に標本化保持さ
れる。このコンデンサ32に保持された積分値は
演算増幅器33よりなるバツフア回路を通じて平
均演算回路34へ供給される。平均演算回路34
は△tの積分期間における端子22の流量信号積
分値の時間平均を演算するものであり、例えば演
算増幅器35と、入力抵抗器36と、負帰還抵抗
器37とよりなり、抵抗器36,37の抵抗値を
選定して利得が1/△tの増幅器として構成され
る。演算出力は流量計の流量出力信号とされる。
The integral output of the integrating circuit 23 is sampled and held in the sample and hold circuit 29 immediately before its reset. That is, the output of the operational amplifier 24 is sampled and held in the capacitor 32 through the FFT analog switch 31 immediately before the switch 27 is turned on. The integrated value held in this capacitor 32 is supplied to an average calculation circuit 34 through a buffer circuit consisting of an operational amplifier 33. Average calculation circuit 34
is used to calculate the time average of the integrated value of the flow rate signal at the terminal 22 during the integration period of Δt, and includes, for example, an operational amplifier 35, an input resistor 36, and a negative feedback resistor 37. By selecting the resistance value of , the amplifier is configured with a gain of 1/Δt. The calculated output is used as a flow rate output signal of the flow meter.

この実施例では何れの流れに対しても流量が所
定値以上の場合は端子22の流量信号をそのまゝ
流量計出力とするようにした場合である。このた
め端子22の流量信号Viは絶対値回路38で絶対
値|Vi|とされてる。つまり流量信号Viが正の場
合は抵抗器39を通じて演算増幅器42を含む加
算回路へ供給され、流量信号Viが負の場合は演算
増幅器41を含む極性反転回路で正極性とされて
演算増幅器42を含む加算回路へ供給される。絶
対値回路38の出力は比較器43で電源44の基
準電圧V0と比較され、絶対値出力|Vi|がV0
り大きい場合は比較器43の出力でスイツチ45
は接点a側に切替えられ、端子22の流量信号Vi
がスイツチ45を通じて出力バツフア回路46へ
出力される。絶対値出力|Vi|が基準電圧V0
り小さい場合は比較器43の出力によりスイツチ
45は接点b側に切替えられ、平均演算回路34
の出力がスイツチ45を通じて出力バツフア回路
46へ出力される。出力バツフア回路46の出力
が流量計出力となる。
In this embodiment, if the flow rate of any flow exceeds a predetermined value, the flow rate signal at the terminal 22 is directly used as the flow meter output. Therefore, the flow rate signal V i at the terminal 22 is set to an absolute value |V i | by the absolute value circuit 38 . In other words, when the flow rate signal V i is positive, it is supplied to the adding circuit including the operational amplifier 42 through the resistor 39, and when the flow rate signal V i is negative, it is made positive by the polarity reversing circuit including the operational amplifier 41, and the operational amplifier 42. The output of the absolute value circuit 38 is compared with the reference voltage V 0 of the power supply 44 by a comparator 43, and if the absolute value output |V i | is larger than V 0 , the output of the comparator 43 switches the switch 45
is switched to the contact a side, and the flow rate signal V i of the terminal 22
is output to the output buffer circuit 46 through the switch 45. When the absolute value output |V i | is smaller than the reference voltage V 0 , the switch 45 is switched to the contact b side by the output of the comparator 43, and the average calculation circuit 34
The output of the switch 45 is output to the output buffer circuit 46. The output of the output buffer circuit 46 becomes the flowmeter output.

以上述べたように第5図に示した構成によれば
1回の積分時間△tの間に流れの方向が1回以上
変化してもその△t期間における一方の方向への
流量の和と、他方の方向への流量の和との差が積
分回路23の出力として得られ、この値はその△
t時間で流れた全流量となるからその△t時間に
おける平均流量はサンプルホールド回路の出力で
ある積分値を△t割算した値となり、これが平均
演算回路34から出力される。従つて流れ方向が
振動したり、また流れ方向が変化したがその変化
後の流量が小さい場合でもその正しい流れ方向の
流量信号として得ることができ、時間△tを適当
に選定することにより流れ方向が振動せず安定し
た出力が得られる。
As described above, according to the configuration shown in FIG. 5, even if the flow direction changes more than once during one integration time Δt, the sum of the flow rates in one direction during that period Δt , the difference between the sum of the flow rates in the other direction is obtained as the output of the integrating circuit 23, and this value is equal to the sum of the flow rates in the other direction.
Since this is the total flow rate that flowed in time t, the average flow rate in that time Δt is the value obtained by dividing the integral value that is the output of the sample and hold circuit by Δt, and this is output from the average calculation circuit 34. Therefore, even if the flow direction oscillates or the flow direction changes but the flow rate after the change is small, it is possible to obtain a flow rate signal in the correct flow direction, and by appropriately selecting the time Δt, the flow direction can be determined. A stable output can be obtained without vibration.

更に第5図に示した実施例によれば流量が大き
い場合に瞬時流量信号が得られ、また時間△t中
に急に流れ方向が反転し、しかも大きな流量とな
つた場合にはその反転した時にスイツチ45が切
替えられて端子22の信号が出力され、正しい測
定が行われる。
Furthermore, according to the embodiment shown in FIG. 5, an instantaneous flow rate signal can be obtained when the flow rate is large, and if the flow direction is suddenly reversed during time Δt and the flow rate is large, the reverse signal can be obtained. When the switch 45 is switched, the signal at the terminal 22 is outputted, and a correct measurement is performed.

第5図に示した例はマイクロコンピユータによ
り実施することもできる。例えば第6図に示すよ
うに起動されると先ずステツプS1でバツフアメモ
リMの内容をクリアし、ステツプS2で流量信号Vi
を入力し、その絶対値|Vi|がV0より小さいか
をチエツクする。|Vi|>V0の場合はステツプS2
でViを流量計出力としステツプS1に戻る。ステツ
プS2で|Vi|<V0の場合はステツプS4に移り、
ViをバツフアメモリMの内容に加算する。次にス
テツプS5でクロツクを計数するカウンタCの内容
が一定値に達したか、つまり△t経過したかがチ
エツクされ、△tになつていない場合はステツプ
S2に戻り、△tになつた場合はステツプS6に移
り、バツフアメモリMの内容を△tで割り、平均
流量を求めて流量計出力としてステツプS1に戻
る。
The example shown in FIG. 5 can also be implemented by a microcomputer. For example, when the system is started as shown in Fig. 6, the contents of the buffer memory M are first cleared in step S1 , and the flow rate signal V i is cleared in step S2 .
, and check whether its absolute value |V i | is smaller than V 0 . If |V i |>V 0 , step S 2
Set V i as the flowmeter output and return to step S1 . If |V i |<V 0 in step S2 , move to step S4 ,
Add V i to the contents of buffer memory M. Next, in step S5 , it is checked whether the contents of the counter C that counts clocks has reached a certain value, that is, whether △t has elapsed.
Returning to S2 , if the result is Δt, proceed to step S6 , divide the contents of the buffer memory M by Δt, obtain the average flow rate, and return to step S1 as the flow meter output.

検出部21にマイクロコンピユータを用いてい
る場合はこのマイクロコンピユータを用いて第6
図に示した動作を行わせればよく、特別なハード
ウエアはほとんど必要としない。
If a microcomputer is used in the detection unit 21, this microcomputer is used to
The operations shown in the figure only need to be performed, and almost no special hardware is required.

流量信号としては流れ方向に応じて極性が変化
するものに限らず、一定値VQを基準として正方
向の流れが大きくなる程VQより大きな出力とな
り、負方向の流れが大きくなる程VQより小さく
なる流量信号についてもこの考案を適用できる。
この場合は第5図において積分回路の演算増幅器
の基準入力側にVQを与え、絶対値回路の代りに
VQ±△Vの範囲外であることを検出してスイツ
チ45をb側に接続するようにすればよい。また
この考案は超音波流量計のみならず、電磁流量計
など正、逆方向の流量を検出できる流量計に適用
できる。
The flow rate signal is not limited to one whose polarity changes depending on the flow direction; with a constant value V Q as a reference, the larger the flow in the positive direction, the greater the output than V Q , and the larger the flow in the negative direction, the greater the output V Q. This idea can also be applied to smaller flow rate signals.
In this case, in Figure 5, V Q is applied to the reference input side of the operational amplifier of the integrating circuit, and instead of the absolute value circuit,
The switch 45 may be connected to the b side by detecting that it is outside the range of V Q ±△V. Furthermore, this idea can be applied not only to ultrasonic flowmeters but also to flowmeters that can detect flow in the forward and reverse directions, such as electromagnetic flowmeters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波流量計の流質量と送受波器との
関係を示す図、第2図は従来の流量計の流れ方向
検出器を示す接続図、第3図は第2図に示した検
出器の入出力特性図、第4図は従来の流量計にお
ける問題点を説明するための流量の時間経過を示
す図、第5図はこの考案による流量計の一例を示
す接続図、第6図はこの考案をマイクロコンピユ
ータを用いて構成した場合の動作例を示す流れ図
である。 21……流量検出部、23……積分回路、28
……タイマ、29……サンプルホールド回路、3
4……平均演算回路、38……絶対値回路、43
……比較器、46……出力バツフア回路。
Figure 1 is a diagram showing the relationship between the flow mass and the transducer of an ultrasonic flowmeter, Figure 2 is a connection diagram showing the flow direction detector of a conventional flowmeter, and Figure 3 is the same as shown in Figure 2. 4 is a diagram showing the flow rate over time to explain the problems with conventional flowmeters; FIG. 5 is a connection diagram showing an example of a flowmeter according to this invention; FIG. 6 is a diagram showing input/output characteristics of the detector; The figure is a flowchart showing an example of the operation when this invention is configured using a microcomputer. 21...Flow rate detection section, 23...Integrator circuit, 28
...Timer, 29...Sample hold circuit, 3
4...Average calculation circuit, 38...Absolute value circuit, 43
... Comparator, 46 ... Output buffer circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基準値を境として被測定流体の流れの方向に応
じた流量信号を検出する流量検出手段と、前記流
量信号が前記基準値を含む所定範囲の中にあるか
否かを検出する比較検出手段と、前記流量信号を
所定の周期で一定時間のあいだ積分してこの積分
電圧を出力する積分手段と、この積分電圧を一定
の時間のあいだ標本化保持するホールド手段と、
この標本化保持された積分電圧を前記一定時間で
平均して平均流量信号を出力する平均演算回路
と、前記比較検出手段の出力が入力され前記流量
信号が前記所定範囲の中にないときは前記流量信
号をそのまま出力し前記流量信号が前記所定範囲
の中にあるときは前記平均流量信号を出力する選
択手段とを具備することを特徴とする流量計。
a flow rate detection means for detecting a flow rate signal according to the flow direction of the fluid to be measured with a reference value as a boundary; and a comparison detection means for detecting whether the flow rate signal is within a predetermined range including the reference value. , an integrating means for integrating the flow rate signal for a certain period of time at a predetermined period and outputting this integrated voltage; and a holding means for sampling and holding this integrated voltage for a certain period of time;
An averaging circuit that averages the sampled and held integrated voltage over the certain period of time and outputs an average flow rate signal; and an output of the comparing and detecting means are input; A flowmeter comprising: a selection means for outputting the flow rate signal as it is and for outputting the average flow rate signal when the flow rate signal is within the predetermined range.
JP12714781U 1981-08-26 1981-08-26 Flowmeter Granted JPS5832427U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12714781U JPS5832427U (en) 1981-08-26 1981-08-26 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12714781U JPS5832427U (en) 1981-08-26 1981-08-26 Flowmeter

Publications (2)

Publication Number Publication Date
JPS5832427U JPS5832427U (en) 1983-03-03
JPS6346821Y2 true JPS6346821Y2 (en) 1988-12-05

Family

ID=29920890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12714781U Granted JPS5832427U (en) 1981-08-26 1981-08-26 Flowmeter

Country Status (1)

Country Link
JP (1) JPS5832427U (en)

Also Published As

Publication number Publication date
JPS5832427U (en) 1983-03-03

Similar Documents

Publication Publication Date Title
KR101269284B1 (en) Method of ultrasonic flow measurement and ultrasonic flow meter
JP4976287B2 (en) Detection of ultrasonic signal reception point by pulse waveform detection
JP2007530933A (en) Zero-crossing detection of ultrasonic signals with variable threshold
US4611496A (en) Ultrasonic flow meter
JPS6346821Y2 (en)
JPS6098313A (en) Ultrasonic flowmeter
JP2018138891A (en) Ultrasonic flowmeter
WO2021177961A1 (en) Selecting a measurement correction method
US4321835A (en) Apparatus for measuring the flow velocity of a fluid
EP0020537B1 (en) A device for measuring the flow velocity of fluids
JP3335600B2 (en) Coriolis mass flowmeter
JP2000329597A (en) Ultrasonic flowmeter
JPH0447249B2 (en)
JP2000035353A (en) Method and apparatus for measurement of propagation time as well as ultrasonic flowmeter
JPH0221257B2 (en)
JP2965241B2 (en) Coriolis flow meter
JP2007155574A (en) Ultrasonic flowmeter
JP4623486B2 (en) Flow measuring device
JPS6217172B2 (en)
JPH0569365B2 (en)
JPS5833166A (en) Flow direction detector for flowmeter
JP2004354280A (en) Detector for connecting pipe clogging and differential pressure/pressure transmitter containing same
JPS5917370B2 (en) ultrasonic flow meter
JPS6262218A (en) Ultrasonic flowmeter
JPH09287984A (en) Karman&#39;s vortex type flowmeter