JPS6346680B2 - - Google Patents

Info

Publication number
JPS6346680B2
JPS6346680B2 JP54167704A JP16770479A JPS6346680B2 JP S6346680 B2 JPS6346680 B2 JP S6346680B2 JP 54167704 A JP54167704 A JP 54167704A JP 16770479 A JP16770479 A JP 16770479A JP S6346680 B2 JPS6346680 B2 JP S6346680B2
Authority
JP
Japan
Prior art keywords
generator
current
current deviation
deviation phenomenon
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167704A
Other languages
Japanese (ja)
Other versions
JPS5691700A (en
Inventor
Shizuo Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16770479A priority Critical patent/JPS5691700A/en
Publication of JPS5691700A publication Critical patent/JPS5691700A/en
Publication of JPS6346680B2 publication Critical patent/JPS6346680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は、発電機の制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a generator.

水中域は火力、原子力発電所等の主回路系統
は、近年図示しない起動変圧器等の省略を意図し
て、第1図に示す如く発電機1と昇圧用の主変圧
器4との間の相分離母線2の回路に直接大電流容
量の発電機遮断器3及び所内変圧器5を設置する
回路方式を採用する発電所が建設されている。
In recent years, the main circuit systems of underwater areas such as thermal power plants and nuclear power plants have been constructed between the generator 1 and the main transformer 4 for step-up, as shown in Figure 1, with the intention of omitting the starting transformer (not shown). A power plant is being constructed that employs a circuit system in which a generator circuit breaker 3 with a large current capacity and an in-station transformer 5 are directly installed in the circuit of a phase-separated bus 2.

この主回路構成の場合、発電機遮断器3は、主
変圧器4の低圧側つまり発電機主回路および主変
圧器4の高圧側の何れの事故に対しても事故電流
を遮断する責務を負わねならない。
In the case of this main circuit configuration, the generator breaker 3 is responsible for interrupting fault current in the event of an accident on either the low voltage side of the main transformer 4, that is, the generator main circuit or the high voltage side of the main transformer 4. Don't sleep.

一方電力系統に短絡、地絡などの事故が発生し
た場合、系統の各相の故障電流は、一般に交流分
電流の他に直流分電流の重畳した波形となり、更
に発電機、送電系統その他の運転状態や事故の様
相如何によつては、第2図に示す如く事故直後の
電流波形が電流零点に達することなく片極性に偏
したまま数サイクル程度継続することがありう
る。図に於て破線dで示す曲線が直流分を示し、
t0は事故発生時点を示す。このように電流波形が
片極性(負のこともある)に偏する現象を電流偏
移現象と称する。
On the other hand, when an accident such as a short circuit or ground fault occurs in a power system, the fault current in each phase of the system generally has a waveform that is a superimposition of AC and DC currents, and further Depending on the state and the aspect of the accident, the current waveform immediately after the accident may continue to be unipolar for several cycles without reaching the current zero point, as shown in FIG. In the figure, the curve indicated by the broken line d indicates the DC component,
t 0 indicates the time when the accident occurred. This phenomenon in which the current waveform becomes unipolar (sometimes negative) is called a current shift phenomenon.

従つて第1図の回路方式では、発電機遮断器3
は、前述の第2図に示すような電流偏移現象を伴
う事故電流を遮断しなけれならない場合があるこ
とになる。
Therefore, in the circuit system shown in Fig. 1, the generator circuit breaker 3
In this case, it may be necessary to interrupt a fault current accompanied by a current deviation phenomenon as shown in FIG. 2 described above.

ところで、このような電流偏移現象を伴なう事
故が発生すると、系統に設けられた保護継電装置
により事故を検出して、遮断器3に引外し指令を
発し、事故電流を遮断することになるが、通常遮
断器3による電流遮断は、その接点開離後、電流
が零点に達したところで遮断を完了する。しかし
遮断器には、その種類によつて定まる所定の有効
消弧時間があるので、電流を遮断するためには、
前記電流零点が有効消弧時間の間に少なくとも1
回は存在する必要がある。従つて前述の第2図に
示す様な電流偏移現象を伴なう場合、この状態で
は遮断不能となる。そのため電流零点に達する直
前まで遮断器3への引外し指令を引延すことも必
要であるが、場合によつては零点近傍に達するま
で可成の時間のかかることもあり、系統安定度の
面およ機器耐量面から一方的な遮断引延しも問題
がある。
By the way, when a fault accompanied by such a current deviation phenomenon occurs, a protective relay device installed in the system detects the fault, issues a trip command to the circuit breaker 3, and interrupts the fault current. However, the current interruption by the circuit breaker 3 is normally completed when the current reaches zero point after the contact is opened. However, each type of circuit breaker has a predetermined effective extinguishing time determined by its type, so in order to interrupt the current,
the current zero point is at least once during the effective arc extinguishing time;
times must exist. Therefore, in the case where a current deviation phenomenon as shown in FIG. 2 described above occurs, it becomes impossible to shut off in this state. Therefore, it is necessary to postpone the tripping command to circuit breaker 3 until just before the current reaches the zero point, but in some cases it may take a considerable amount of time to reach near the zero point, which may affect system stability. Unilateral extension of the shutdown also poses problems in terms of surface area and equipment capacity.

電流偏移現象は、最近の発電機の大容量化及び
運転の特殊条件等によりクローズアツプされるよ
うになつたもので、従来技術としてはその対策
は、あまり知られていない。
The current deviation phenomenon has recently come into focus due to the increased capacity of generators and special operating conditions, and there are not many known countermeasures for this phenomenon in the prior art.

本発明は、電流偏移現象による上述の様な不具
合を解決し、発電機遮断器による事故電流の遮断
動作を確実にするために、発電機の運転状態と電
流偏移現象の発生領域とを比較し、極力電流偏移
現象の生じない領域に発電機の運転状態を予め強
制的に移行制御するための発電機の制御装置を提
供することを目的とするものである。
The present invention solves the above-mentioned problems caused by the current deviation phenomenon, and in order to ensure that the generator circuit breaker can cut off the fault current, the present invention is designed to identify the operating state of the generator and the area in which the current deviation phenomenon occurs. In comparison, it is an object of the present invention to provide a generator control device for forcibly shifting the operating state of the generator to a region where the current deviation phenomenon does not occur as much as possible.

以下第3図に示す一実施例について本発明を説
明する。発電機1の出力回路の相分離母線2に接
続された計器用変圧器(以下PTと記す)11に
より発電機1の端子電圧を検出し、この電圧を発
電機1の界磁巻線16に励磁電流を供給する励磁
装置15を予め設定された発電機端子電圧に保つ
様制御する自動電圧調整装置(以下AVRと記す)
12を有する通常の励磁制御回路に加え、更に発
電機1もしくは相分離母線2に変流器13を設
け、発電機1の電流を検出し、前記PT11の電
圧と共に電流偏移制限装置(以下ZMLと記す)
14に加える。このZML14の出力信号は、
AVR12内部の加算回路または、電圧設定器9
0Rの駆動回路に与えられる様構成されている。
The present invention will be described below with reference to an embodiment shown in FIG. The terminal voltage of the generator 1 is detected by a potential transformer (hereinafter referred to as PT) 11 connected to the phase-separated bus 2 of the output circuit of the generator 1, and this voltage is applied to the field winding 16 of the generator 1. Automatic voltage regulator (hereinafter referred to as AVR) that controls the excitation device 15 that supplies excitation current to maintain it at a preset generator terminal voltage.
In addition to the normal excitation control circuit having PT 12, a current transformer 13 is further provided in the generator 1 or the phase separation bus 2 to detect the current of the generator 1, and to detect the voltage of the PT 11 as well as a current deviation limiter (hereinafter referred to as ZML). )
Add to 14. The output signal of this ZML14 is
Adder circuit inside AVR12 or voltage setting device 9
It is configured to be applied to an 0R drive circuit.

次に第3図の如く構成した本発明の電流偏移現
象を抑制する発電機の制御方式について説明す
る。
Next, a control method for the generator configured as shown in FIG. 3 for suppressing the current deviation phenomenon of the present invention will be explained.

前述第2図に示す電流偏移現象は、交流分の減
衰速度と直流分の減衰速度にも関係するが、故障
発生直後の両者の大小関係から偏移の度合がほぼ
決定されると言える。従つていま例えば主変圧器
4の高圧側で1線接地故障が発生し、電流偏移現
象が発生する場合を考えると、第4図に示す様な
故障発生前の有効電力P、無効電力Qを座標とし
た、電流偏移現象発生領域のパターンが得られ
る。ここで上記P,Qは事故点の値であり、発電
機の端子からみた有効電力P0、無効電力Q0とは
異なるため、その分を修正すればよい。第4図
は、発電機遮断器3の設置されている主変圧器4
の低圧側でみた、前記主変圧器4の高圧側の1線
接地事故直後の直流分が交流分より大きくなる領
域をP,Q座標上で示した例である。同図におい
て円17は、故障相の直流分が交流分より大とな
る範囲、円18は、故障相より遅れ相側の直流分
が交流分より大となる範囲である。各円17,1
8の内部が直流分が交流分より大となる範囲で、
円の中心に近づく程、直流分と交流分の差が大き
くなり、荷酷な電流偏移現象を生じることを示し
ている。
The current deviation phenomenon shown in FIG. 2 is also related to the attenuation rate of the AC component and the attenuation rate of the DC component, but it can be said that the degree of deviation is almost determined from the magnitude relationship between the two immediately after a failure occurs. Therefore, for example, if we consider the case where a one-wire grounding fault occurs on the high voltage side of the main transformer 4 and a current deviation phenomenon occurs, the active power P and reactive power Q before the fault occur as shown in Figure 4. A pattern of the region where the current shift phenomenon occurs is obtained with the coordinates as . Here, the above P and Q are the values at the fault point, and are different from the active power P 0 and reactive power Q 0 seen from the terminals of the generator, so they can be corrected accordingly. Figure 4 shows the main transformer 4 where the generator circuit breaker 3 is installed.
This is an example showing on the P and Q coordinates a region where the DC component is larger than the AC component immediately after a one-wire grounding accident on the high voltage side of the main transformer 4, as seen from the low voltage side of the main transformer 4. In the figure, a circle 17 indicates a range in which the DC component of the faulty phase is larger than the AC component, and a circle 18 indicates a range in which the DC component of the phase lagging behind the faulty phase is larger than the AC component. Each yen 17,1
In the range where the DC component is larger than the AC component inside 8,
The closer you get to the center of the circle, the larger the difference between the DC and AC components becomes, indicating that a severe current deviation phenomenon occurs.

従つて、上述の如き事故時において、電流偏移
現象を制限するためには、故障発生前の運転点
P,Qを第4図に示す各円17,18の外部にな
る様に予め強制的に移行させるよう制御すればよ
い。
Therefore, in order to limit the current deviation phenomenon at the time of the above-mentioned accident, it is necessary to forcibly set the operating points P and Q before the failure to be outside the circles 17 and 18 shown in FIG. It is only necessary to control the transition to .

故に、発電機1の運転状態をPT11及びCT1
3の入力により、ZML14で識別し、これと、
予め記憶させた前述第4図の電流偏移現象発生パ
ターンとを比較し、運転点が各円17,18の内
部にあればその度合に応じて、出力信号を増減
し、AVR12の加算回路または、電圧設定器の
駆動回路に出力することにより、予め強制的に運
転点が各円17,18の外部になる様に、発電機
1の端子電圧を変化させ、無効電力を制御する。
Therefore, the operating status of generator 1 is set to PT11 and CT1.
By inputting 3, it is identified with ZML14, and this and
Compare the current deviation phenomenon occurrence pattern stored in advance as shown in FIG. , by outputting to the drive circuit of the voltage setting device, the terminal voltage of the generator 1 is changed so that the operating point is forced to be outside each circle 17, 18 in advance, and the reactive power is controlled.

尚、電流偏移現象発生パターンは、主変圧器4
の高圧側及び低圧側の各種故障に対応するパター
ンを、系統構成から予め計算し、記憶しておく。
また、発電機1の端子からみた有効電力、無効電
力P0,Q0と、上記事故点の有効電力、無効電力
P,Qは、ZML14で修正される。
Note that the current deviation phenomenon occurrence pattern is based on the main transformer 4.
Patterns corresponding to various failures on the high-voltage side and low-voltage side of the system are calculated in advance from the system configuration and stored.
In addition, the active power and reactive power P 0 and Q 0 seen from the terminals of the generator 1 and the active power and reactive power P and Q at the fault point are corrected by ZML14.

よつて、本発明によればZML14を設置する
ことにより、運転点が予め強制的に故障発生前の
P−Q座標で示された電流偏移現象発生領域の外
部となる様に制御されるため、たとえ系統事故が
生じても、電流偏移現象を発生するような発電機
1の運転状態が避けられるので、未然に電流偏移
現象の発生が防止され、発電機遮断器3にとつて
事故電流を無理なく遮断することができる。
Therefore, according to the present invention, by installing the ZML 14, the operating point is forcibly controlled in advance to be outside the current deviation phenomenon occurrence area indicated by the P-Q coordinates before the failure occurs. Even if a system fault occurs, the operating state of the generator 1 that would cause a current deviation phenomenon can be avoided, so the occurrence of the current deviation phenomenon can be prevented, and the generator circuit breaker 3 can prevent the accident from occurring. The current can be cut off easily.

尚、上記実施例では、AVR12による無効電
力制御により運転点を制御したが、図示はしない
が、発電機1の駆動装置(例えば蒸気タービン)
の調速装置を用いて、有効電力を制御することも
可能である。また、図示はしないが、主変圧器4
の高圧側にPT及CTを設置すれば、主変圧器4の
高圧側の有効電力、無効電力P,Qを、より正確
に識別することも可能である。更に、前述第4図
に示した電流偏移現象の発生パターンと運転点と
の比較についても、各円17,18の円周部近傍
では大きな電流偏移現象を生じないことから、各
円に適切な設定幅をもたせてZML14の過大な
出力を防止することも可能である。
In the above embodiment, the operating point was controlled by reactive power control by the AVR 12, but although not shown, the drive device of the generator 1 (for example, a steam turbine)
It is also possible to control the active power using a speed governor. Although not shown, the main transformer 4
If PT and CT are installed on the high voltage side of the main transformer 4, it is also possible to more accurately identify the active power and reactive power P and Q on the high voltage side of the main transformer 4. Furthermore, regarding the comparison between the occurrence pattern of the current deviation phenomenon shown in Fig. 4 and the operating point, since no large current deviation phenomenon occurs near the circumference of each circle 17 and 18, It is also possible to prevent excessive output of ZML 14 by providing an appropriate setting width.

以上述べた様に、本発明による発電機の制御装
置は、電流偏移現象による発電機遮断器の遮断不
能や荷酷な使用条件を未然に防止するもので、
AVRに補助信号を与えると言う簡単な構成です
む為、極めて安価かつコンパクトでその効果も大
きいと言う利点を有する。
As described above, the generator control device according to the present invention prevents the generator circuit breaker from being unable to shut off due to current deviation phenomena and from harsh operating conditions.
Since it requires only a simple configuration of providing an auxiliary signal to the AVR, it has the advantage of being extremely inexpensive, compact, and highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水力、火力、原子力発電所等で採用
されている主回路構成を示す図、第2図は電流偏
移現象を伴なう故障電流の一例を示す波形図、第
3図は本発明による発電機の制御装置の一実施例
を示すブロツク構成図、第4図は直流分が交流分
より大となる範囲を示す図である。 1……発電機、2……相分離母線、3……発電
機遮断器、4……主変圧器、5……所内変圧器、
11……計器用変圧器(PT)、12……自動電圧
調整装置(AVR)、13……変流器(CT)、14
……電流偏移制限装置(ZML)、15……励磁装
置、16……界磁巻線。
Figure 1 is a diagram showing the main circuit configuration adopted in hydro, thermal, and nuclear power plants, etc. Figure 2 is a waveform diagram showing an example of a fault current accompanied by a current deviation phenomenon, and Figure 3 is a diagram showing an example of a fault current accompanied by a current deviation phenomenon. FIG. 4 is a block diagram showing an embodiment of the generator control device according to the present invention, and is a diagram showing a range in which the DC component is larger than the AC component. 1... Generator, 2... Phase separation bus, 3... Generator circuit breaker, 4... Main transformer, 5... Station transformer,
11... Potential transformer (PT), 12... Automatic voltage regulator (AVR), 13... Current transformer (CT), 14
... Current deviation limiter (ZML), 15 ... Excitation device, 16 ... Field winding.

Claims (1)

【特許請求の範囲】[Claims] 1 水車又は蒸気タービンにより駆動される発電
機と、この発電機に発電機遮断器を介して接続さ
れ発電機の出力電圧を昇圧する主変圧器とからな
る発電所において、前記発電機の出力電圧及び出
力電流を入力として、現在の運転状態を識別し、
この運転状態を前記発電機の有効電力(P)、無
効電力(Q)で示された電流偏移現象発生領域パ
ターンと比較し、上記運転状態が電流偏移現象発
生領域内部にあつた場合、そのQ軸の侵入度合に
比例した信号を出力する電流偏移制限装置と、こ
の電流偏移制限装置の出力信号を入力し、運転点
を強制的に電流偏移現象発生領域外部になるよう
に発電機の端子電圧を制御するAVRとから成る
発電機の制御装置。
1. In a power plant consisting of a generator driven by a water wheel or a steam turbine, and a main transformer connected to the generator via a generator circuit breaker to boost the output voltage of the generator, the output voltage of the generator and output current as input to identify the current operating state,
This operating state is compared with the current deviation phenomenon occurrence region pattern indicated by the active power (P) and reactive power (Q) of the generator, and if the above operating state is within the current deviation phenomenon occurrence region, A current deviation limiting device outputs a signal proportional to the degree of penetration of the Q axis, and the output signal of this current deviation limiting device is input to force the operating point to be outside the current deviation phenomenon region. A generator control device consisting of an AVR that controls the terminal voltage of the generator.
JP16770479A 1979-12-25 1979-12-25 Controlling device of generator Granted JPS5691700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16770479A JPS5691700A (en) 1979-12-25 1979-12-25 Controlling device of generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16770479A JPS5691700A (en) 1979-12-25 1979-12-25 Controlling device of generator

Publications (2)

Publication Number Publication Date
JPS5691700A JPS5691700A (en) 1981-07-24
JPS6346680B2 true JPS6346680B2 (en) 1988-09-16

Family

ID=15854661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16770479A Granted JPS5691700A (en) 1979-12-25 1979-12-25 Controlling device of generator

Country Status (1)

Country Link
JP (1) JPS5691700A (en)

Also Published As

Publication number Publication date
JPS5691700A (en) 1981-07-24

Similar Documents

Publication Publication Date Title
KR100299260B1 (en) System linkage protection device of self-generating equipment
JP3740960B2 (en) Method for controlling disconnection of generator and control device therefor
CN112689932B (en) Method for controlling renewable power generation equipment during network ground fault
Patel et al. Performance of generator protection during major system disturbances
EP3379717B1 (en) Variable-speed pumped storage power system and variable-speed pumped storage power method
JPS6346680B2 (en)
JP3286049B2 (en) Variable speed power generation system
CN112928739A (en) Line protection starting method and system suitable for impact load
JP3302898B2 (en) Power grid connection protection device
JPS6117222B2 (en)
JP4120540B2 (en) DC feeding network protection method and DC feeding network protection system
JP3397608B2 (en) Power grid connection protection device
US2917672A (en) Loss-of-field relays
KR102152175B1 (en) Fault restoration method and system of power distribution system with distributed generation based on power conversion system
JP3140512B2 (en) Variable speed generator motor system and method for detecting load shedding of variable speed generator motor
JPS605727A (en) Defect current breaking system
JPS5939809Y2 (en) Power system stabilizer
JPS5850501B2 (en) Generator shutoff device
Simpson Protective relaying for multi-source generator buses
JPH07177743A (en) Controller for ac-dc converter
Goody Overcoming problems associated with impedance measurement in pole slipping protection for Dinorwig
Stephan During Major System Disturbances
JPS5850502B2 (en) Control method of breaker
JPH09215204A (en) Individual-operation detection method for synchronous generator
JPS6231563B2 (en)