JPS634666B2 - - Google Patents

Info

Publication number
JPS634666B2
JPS634666B2 JP56129264A JP12926481A JPS634666B2 JP S634666 B2 JPS634666 B2 JP S634666B2 JP 56129264 A JP56129264 A JP 56129264A JP 12926481 A JP12926481 A JP 12926481A JP S634666 B2 JPS634666 B2 JP S634666B2
Authority
JP
Japan
Prior art keywords
pressure
probe
hole
tip
truncated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56129264A
Other languages
Japanese (ja)
Other versions
JPS5830673A (en
Inventor
Teruomi Nakatani
Yoshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP12926481A priority Critical patent/JPS5830673A/en
Publication of JPS5830673A publication Critical patent/JPS5830673A/en
Publication of JPS634666B2 publication Critical patent/JPS634666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、3次元的な流れの場において、一
点における気流の方向、速度の大きさおよび静圧
を同時に測定できる多角錐台型のピトー管型プロ
ーブの改良に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a polygonal truncated pyramid-shaped pitot that can simultaneously measure the direction, velocity, and static pressure of airflow at one point in a three-dimensional flow field. Concerning improvements to tube-type probes.

(従来技術) 航空機やターボ機器等に働く空気力を知るため
には、これらの物体のまわりや後方の気流速度の
大きさ、方向および静圧などを測定しなければな
らない。この場合、計測器に要求される性能は、
小型で可動部分がなく、安定性があことである。
(Prior Art) In order to know the aerodynamic forces acting on aircraft, turbo equipment, etc., it is necessary to measure the magnitude, direction, and static pressure of airflow around and behind these objects. In this case, the performance required of the measuring instrument is
It is small, has no moving parts, and is stable.

このような要求の一部をみたすものとして、従
来、ピラミツド型の5孔ピトー管型プローブ、ま
たは回転式非対称楔型プローブ等が用いられてき
た。
Conventionally, pyramid-shaped five-hole pitot tube probes, rotary asymmetric wedge-shaped probes, and the like have been used to partially meet these demands.

ピラミツド型の5孔ピトー管型プローブは、第
8図に示すように四角錐台型の頭部の中心に総圧
孔20を、上下左右の斜面部に圧力孔21,2
1′,22,22′を有し、頭部下流部のパイプ表
面に垂直な静圧孔23を有している。このプロー
ブによつて風向、風速を測定する場合、風向の迎
角は上下の圧力孔21,21′、偏角は左右の圧
力孔22,22′にかかる圧力の差から求められ
る。しかし、風速を求めるための動圧を正確に測
定するには、プローブを気流方向に向けなければ
ならず、プローブを気流方向に自動的にむけるた
めの複雑な機構が必要とされた。
The pyramid-shaped five-hole pitot tube probe has a total pressure hole 20 in the center of the truncated square pyramid head, and pressure holes 21 and 2 in the upper, lower, left, and right slopes, as shown in Fig. 8.
1', 22, 22', and has a static pressure hole 23 perpendicular to the pipe surface downstream of the head. When measuring wind direction and wind speed with this probe, the angle of attack of the wind direction is determined from the difference in pressure applied to the upper and lower pressure holes 21, 21', and the angle of deviation is determined from the difference in pressure applied to the left and right pressure holes 22, 22'. However, in order to accurately measure dynamic pressure to determine wind speed, the probe must be oriented in the direction of the airflow, and a complicated mechanism is required to automatically orient the probe in the direction of the airflow.

その上、静圧孔23は、パイプの外径に応じて
総圧孔20から一定距離以上離す必要があるた
め、総圧孔にかかる圧力と静圧孔にかかる圧力の
差から求められる動圧は、プローブ頭部の値を示
すものではなくなつてしまう。従つて、測定され
る風速に誤差が伴うこととなる。また、プローブ
後部に前述の複雑な機構が存在し、これが測定対
象としている流れの場を乱す等、避け難い欠点を
持つている。
Furthermore, since the static pressure hole 23 needs to be separated from the total pressure hole 20 by a certain distance or more depending on the outer diameter of the pipe, the dynamic pressure is calculated from the difference between the pressure applied to the total pressure hole and the pressure applied to the static pressure hole. is no longer indicative of the value at the probe head. Therefore, there will be an error in the measured wind speed. In addition, the above-mentioned complicated mechanism exists at the rear of the probe, which has unavoidable drawbacks such as disturbing the flow field that is the object of measurement.

第9図に示すように2本の細いパイプ24,2
5を相互に接合し、先端部をプローブ軸線26に
対して45゜と60゜に、非対称楔面状に切除し、それ
ぞれのパイプ先端に圧力孔27,28を形成させ
た非対称楔型プローブも本発明者等によつて提
案、使用されている。この非対称楔型プローブ
は、その軸線26のまわりに所定の角度ずつ回転
させ、各角度位置における圧力を検出し、これら
検出圧力から気流速度の大きさ、方向および静圧
を同時に測定、処理するものであるが、プローブ
を所定の角度に回転させるための回転駆動装置が
必要である等の欠点があつた。
As shown in Figure 9, two thin pipes 24, 2
There is also an asymmetric wedge-shaped probe in which pipes 5 are joined to each other, the tips are cut into asymmetric wedge shapes at 45° and 60° with respect to the probe axis 26, and pressure holes 27 and 28 are formed at the tips of each pipe. It has been proposed and used by the present inventors. This asymmetric wedge-shaped probe rotates around its axis 26 by a predetermined angle, detects the pressure at each angular position, and simultaneously measures and processes the magnitude and direction of air velocity and static pressure from these detected pressures. However, there were drawbacks such as the need for a rotation drive device to rotate the probe at a predetermined angle.

(この発明が解決しようとする問題点) 本発明は、多角錐台形の頭部を有するピトー管
型プローブにおいて、プローブをその軸線のまわ
りに回転する必要もなく、プローブを気流方向に
むけるという複雑な操作も必要とせずに、多角錐
台の頂点に設けた遮蔽型全圧管の圧力と、多角錐
面上の孔の圧力を検出し、簡単な計算処理によつ
て三次元的な流れ場の任意の位置の風向、風速お
よび静圧を同時に測定できるプローブを得ようと
するものである。
(Problems to be Solved by the Invention) The present invention provides a Pitot tube type probe having a truncated polygonal pyramidal head, which does not require rotating the probe around its axis and is complicated in that the probe can be directed in the direction of airflow. The pressure in the shielded full-pressure pipe installed at the apex of a truncated polygonal pyramid and the pressure in the hole on the polygonal pyramid surface can be detected without the need for any manual operations, and a three-dimensional flow field can be created by simple calculation processing. The aim is to obtain a probe that can simultaneously measure wind direction, wind speed, and static pressure at any location.

(問題を解決するための手段) この発明のピトー管型プローブは、全圧管とし
て遮蔽型全圧管を用いることを特徴とする。即ち
第3図、第4図に示すように、その先端の多角錐
台型頂点に遮蔽穴7を設け、その内側に、遮蔽穴
7の先端から遮蔽穴の径Dとの関係で定まる一定
長Lだけ入つた位置に、穴径Dより小径の全圧管
3を配設固定する。遮蔽穴7の底端には遮蔽穴内
の圧力を一部分リークさせる分流孔8a,8b,
8cが設けられ、プローブ先端部ロの外周壁面上
に開口し、これによつて、遮蔽穴7の先端部は、
遮蔽穴と全圧管3との間に形成される環状の透き
間と分流管8a,8b,8cを経てプローブ先端
部ロの外周空間に連通される。
(Means for Solving the Problem) The pitot tube type probe of the present invention is characterized in that a shielded total pressure tube is used as the total pressure tube. That is, as shown in FIGS. 3 and 4, a shielding hole 7 is provided at the apex of the truncated polygonal pyramid at the tip, and a certain length determined by the relationship with the diameter D of the shielding hole from the tip of the shielding hole 7 is formed inside the hole 7. A full-pressure pipe 3 having a diameter smaller than the hole diameter D is arranged and fixed at a position where L is inserted. Diversion holes 8a, 8b, which partially leak the pressure inside the shield hole are provided at the bottom end of the shield hole 7.
8c is provided and opens on the outer circumferential wall surface of the probe tip (b), so that the tip of the shielding hole 7 is
It communicates with the outer circumferential space of the tip of the probe via an annular gap formed between the shielding hole and the full pressure tube 3 and branch tubes 8a, 8b, and 8c.

また、先端の多角錐台型部の錐面上に圧力孔が
設けられることは云うまでもない。
It goes without saying that a pressure hole is provided on the conical surface of the truncated polygonal pyramidal portion at the tip.

(作用) この発明のプローブの遮蔽型全圧管3が検出し
た全圧値PHを標準ピトー管で測定した真の全圧
値PH0との比較を第6図に示す。横軸はプローブ
軸と速度ベクトルのなす角γであるが、この結果
からγが25゜程度までは全圧管3の測定値PHは真
の全圧値PH0を示すとみてよいので、動圧をqと
すれば、次の(i)式から簡単に静圧Psが求められ
る。
(Function) FIG. 6 shows a comparison between the total pressure value P H detected by the shielded total pressure tube 3 of the probe of the present invention and the true total pressure value P H0 measured with a standard Pitot tube. The horizontal axis is the angle γ between the probe axis and the velocity vector, and from this result it can be said that the measured value P H of the total pressure tube 3 indicates the true total pressure value P H0 until γ is about 25°, so the movement If the pressure is q, the static pressure Ps can be easily obtained from the following equation (i).

Ps=PH−q ……(i) (実施例) 以下、図面を参照して詳細に説明する。 Ps=P H −q (i) (Example) Hereinafter, a detailed explanation will be given with reference to the drawings.

第1図ないし第4図はこの発明の一実施例を示
し、頭部を三角錐台型とした4孔ピトー管型プロ
ーブとして構成された例を示す。
1 to 4 show an embodiment of the present invention, and show an example constructed as a four-hole pitot tube type probe with a truncated triangular pyramid-shaped head.

プローブ先端部ロは真鍮等の棒材の先端を軸1
に対して45゜の三角錐台型に削成したものであり、
頂点には遮蔽型全圧管部イが、各三角錐面上には
圧力孔2a,2b,2cが形成される。
For the tip of the probe, attach the tip of a rod such as brass to the axis 1.
It is carved into a truncated triangular pyramid shape at an angle of 45 degrees to the
A shielded full-pressure pipe portion A is formed at the apex, and pressure holes 2a, 2b, and 2c are formed on each triangular pyramid surface.

遮蔽型全圧管部イには導圧管3′が挿入固定さ
れ、各圧力孔2a,2b,2cにはそれぞれ導圧
管4a,4b,4cが接続され、プローブ先端部
ロの後端には、これと同径の外装管5が固定さ
れ、上記導圧管をその内に収納し、その他端は取
付軸6に固定される。
A impulse tube 3' is inserted and fixed into the shielded total pressure tube section A, and impulse tubes 4a, 4b, and 4c are connected to the pressure holes 2a, 2b, and 2c, respectively. An exterior tube 5 having the same diameter as is fixed, houses the pressure impulse tube therein, and the other end is fixed to a mounting shaft 6.

遮蔽型全圧管部イは第3図、第4図に示すよう
に、三角錐台型頂点に設けた遮蔽穴7の内側に、
穴径Dより小径の全圧管3を、遮蔽穴7の先端か
ら、径Dとの関係で定まる一定長Lだけ入つた位
置に配設固定する。遮蔽穴7の底端には遮蔽穴内
の圧力を一部分リークさせる分流孔8a,8b,
8cが設けられ、プローブ先端部ロの外周壁面
上、三角錐の稜線にそつた位置に開口する。これ
によつて、遮蔽穴7の先端部は、遮蔽穴と全圧管
3との間に形成される環状の透き間と分流管8
a,8b,8cを経てプローブ先端部ロの外周空
間に連通される。
As shown in FIGS. 3 and 4, the shielded full-pressure pipe part A has a shielding hole 7 provided at the apex of a truncated triangular pyramid, with a
A full pressure pipe 3 having a diameter smaller than the hole diameter D is arranged and fixed at a position a certain length L determined by the relationship with the diameter D from the tip of the shielding hole 7. Diversion holes 8a, 8b, which partially leak the pressure inside the shield hole are provided at the bottom end of the shield hole 7.
8c is provided and opens at a position along the ridgeline of the triangular pyramid on the outer peripheral wall surface of the probe tip (b). Thereby, the tip of the shielding hole 7 is connected to the annular gap formed between the shielding hole and the full pressure pipe 3 and the branch pipe 8.
It communicates with the outer circumferential space of the probe tip part B via a, 8b, and 8c.

先端部が圧力管3となる導圧管3′および圧力
孔2a,2b,2cに接続された導圧管4a,4
b,4cの後端は、外装管5の外へ導出されて圧
力検出管3″,10a,10b,10cを形成し、
ビニール管等の中継管9a,9b,9c等が接続
される。
A pressure pipe 3' whose tip end becomes the pressure pipe 3 and pressure pipes 4a, 4 connected to the pressure holes 2a, 2b, 2c.
The rear ends of b and 4c are led out of the exterior tube 5 to form pressure detection tubes 3″, 10a, 10b, and 10c,
Relay pipes 9a, 9b, 9c, etc. such as vinyl pipes are connected.

この発明の三角錐台型ピトー管型プローブは次
のように使用される。
The truncated pyramidal pitot tube probe of the present invention is used as follows.

プローブハは取付軸6によつて測定対象となる
三次元的流れ場の内に固定され、プローブ先端部
ロの中央部の全圧管3の圧力PH及び三角錐面上
の圧力孔2a,2b,2cの各圧力P1,P2,P3
が測定される。そしてこれらの圧力PHと差圧量
(PH−P1)、(PH−P2)、(PH−P3)とから流れの速
度ベクトルと静圧Psとを求めることができる。
The probe A is fixed in the three-dimensional flow field to be measured by the mounting shaft 6, and the pressure P H of the total pressure tube 3 in the center of the probe tip B and the pressure holes 2a, 2b on the triangular pyramid surface, 2c each pressure P 1 , P 2 , P 3
is measured. Then, the velocity vector of the flow and the static pressure Ps can be determined from these pressures P H and the differential pressure amounts (P H −P 1 ), (P H −P 2 ), and (P H −P 3 ).

第5図に示すように、プローブ軸1をX軸にと
つた直角座標系を用いれば、その原点を通る速度
ベクトルは流速V、プローブ軸1すなわちX軸
と速度ベクトルのなす角γ、速度ベクトルの
YZ面への正射影とZ軸とのなす角φ0とで表わす
ことが出来る。qを風速Vを算出するための動圧
とすれば、上記の3つの差圧量を用いて次の展開
式が成立する。
As shown in Figure 5, if we use a rectangular coordinate system with probe axis 1 as the of
It can be expressed by the angle φ 0 between the orthogonal projection onto the YZ plane and the Z axis. If q is the dynamic pressure for calculating the wind speed V, then the following expansion formula is established using the above three differential pressure amounts.

(A1 K+A2 Kγ+…)+(B1 K+B2 Kγ +…)cosφ0+(C2 K+C2 Kγ+…)sinφ0 =(PH−Pk)/q ……(i) ただしK=1、2、3は三角錐面の各圧力孔に
対応する。
(A 1 K +A 2 K γ+…) + (B 1 K +B 2 K γ +…) cosφ 0 + (C 2 K +C 2 K γ+…) sinφ 0 = (P H −P k )/q …( i) However, K=1, 2, and 3 correspond to each pressure hole of the triangular pyramid surface.

ここでA1 K、B1 K、C1 Kの各係数はあらかじめ
q、γ、φ0を変化させて実験的に求めておく。
Here, each coefficient of A 1 K , B 1 K , and C 1 K is obtained experimentally in advance by changing q, γ, and φ 0 .

測定により差圧量(PH−Pk)が測定されれば、
各係数A1 K、B1 K、C1 Kがあらかじめわかつている
ので、(i)式を解くことによりq、γ、φ0が求ま
り速度ベクトルVを決定することが出来る。
If the differential pressure amount (P H − P k ) is measured,
Since each coefficient A 1 K , B 1 K , and C 1 K is known in advance, q, γ, and φ 0 can be found by solving equation (i), and the velocity vector V can be determined.

上記の測定方法の正否を確かめるため行つた風
洞実験の結果を次に示す。
The results of a wind tunnel experiment conducted to confirm the accuracy of the above measurement method are shown below.

実験は、この発明のプローブを風洞にセツト
し、風洞気流とプローブ軸とのなす角度γを設定
し、得られた全圧値および差圧量から、上述の(i)
式(ii)式によつて風速Vm、風向γmおよび静圧
Psmを求め、これと別の標準ピトー静圧管で測
定した風速V0、静圧Ps0およびプローブ軸の設定
角γ0とを比較した。この実験結果を第7図に示
す。
In the experiment, the probe of the present invention was set in a wind tunnel, the angle γ between the wind tunnel airflow and the probe axis was set, and the above (i) was determined from the obtained total pressure value and differential pressure amount.
Wind speed Vm, wind direction γm, and static pressure are determined by equation (ii).
Psm was determined and compared with the wind speed V 0 , static pressure Ps 0 and probe axis setting angle γ 0 measured with another standard Pitot static pressure tube. The results of this experiment are shown in FIG.

図において、横軸にはプローブの設定角γ0を、
縦軸にはそれぞれ速度比(Vm/V0)、角度差
(γm−γ0)および静圧差(Psm−Ps0)をとつ
た。いずれも、γが20゜程度までは測定に何の問
題もないことが示されている。
In the figure, the horizontal axis represents the probe setting angle γ 0 ,
The velocity ratio (Vm/V 0 ), the angle difference (γm−γ 0 ), and the static pressure difference (Psm−Ps 0 ) are plotted on the vertical axes, respectively. In either case, it has been shown that there is no problem in measurement up to γ of about 20°.

なお、遮蔽穴7の口径Dに対し、全圧管3の凹
設距離Lを変化させることにより、真の全圧値の
捕促範囲が変化するので、真の全圧値を捕捉でき
る角度γの範囲を広くするには凹設距離Lを適切
に選ぶことが重要である。
Note that by changing the concave distance L of the total pressure pipe 3 with respect to the diameter D of the shielding hole 7, the capture range of the true total pressure value changes, so the angle γ that can capture the true total pressure value is changed. In order to widen the range, it is important to appropriately select the recess distance L.

また、三角錐台のプローブ軸1に対する角度に
よつて風向の測定範囲が変化するので、上記の全
圧値の捕促範囲γに応じて、三角錐面の角度を選
ぶことが必要となる。
Furthermore, since the measurement range of the wind direction changes depending on the angle of the truncated triangular pyramid with respect to the probe axis 1, it is necessary to select the angle of the triangular pyramid surface depending on the capture range γ of the total pressure value.

上記実施例においては、多角錐台型プローブは
三角錐型の4孔ピトー管とされているが、四角錐
型の5孔ピトー管とする等、適宜の型とすること
が出来る。この場合は、式(i)は圧力管の数だけの
連立方程式となる。従つて、プローブの構成、解
を得るための方程式の数が少ない点等から三角錐
型4孔ピトー管とするのが最も有利である。
In the above embodiment, the polygonal truncated pyramid probe is a triangular pyramid-shaped 4-hole pitot tube, but it can be of any other suitable shape, such as a square pyramid-shaped 5-hole pitot tube. In this case, equation (i) becomes as many simultaneous equations as there are pressure pipes. Therefore, it is most advantageous to use a triangular pyramid-shaped four-hole pitot tube in view of the configuration of the probe and the fact that the number of equations for obtaining solutions is small.

(発明の効果) この発明の多角錐台型ピトー管型プローブは、
上記の構成によつて次のような顕著な効果を有す
る。
(Effect of the invention) The polygonal truncated pyramid pitot tube type probe of the present invention has the following features:
The above configuration has the following remarkable effects.

(1) 従来のプローブのように、移動、回転等の操
作のための複雑な駆動機構が不要で、信頼性が
高い上、コストが低減する。
(1) Unlike conventional probes, there is no need for complex drive mechanisms for operations such as movement and rotation, resulting in high reliability and reduced costs.

(2) 測定が同時測定である上、プローブ先端部に
測定点が集中しているので、三次元的な流れの
場の任意の一点の速度ベクトル、静圧の情報が
瞬時に得られる。
(2) In addition to simultaneous measurements, the measurement points are concentrated at the tip of the probe, so information on the velocity vector and static pressure at any point in the three-dimensional flow field can be obtained instantaneously.

(3) プローブの構造自体も、三角錐台型4孔ピト
ー管型プローブとすることが出来、従来に比
し、むしろ簡単になつており、その測定値から
簡単な計算によつて速度ベクトル、静圧の情報
が得られる。
(3) The structure of the probe itself can be a truncated triangular pyramid type four-hole pitot tube type probe, which is rather simpler than before, and the velocity vector, Static pressure information can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の多角錐台型ピトー管型プロ
ーブの1実施例の一部欠損斜視図、第2図は同プ
ローブの正面図、第3図はプローブ先端部の拡大
断面図、第4図は同じく先端部の正面図、第5図
はデータ解析法の説明図、第6図、第7図はこの
発明のプローブの測定結果を示す比較特性データ
のグラフ、第8図は公知の5孔ピトー管型プロー
ブの正面図および側面図、第9図は公知の回転式
非対称楔型プローブの斜視図であり、図中の符号
はそれぞれ 1……プローブ軸、2……圧力孔、3……全圧
管、5……外装管、6……取付軸、7……遮蔽
穴、8……分流孔、3″,10……圧力検出管、
20……総圧孔、21,22,27,28……圧
力孔、26……軸線を示す。
FIG. 1 is a partially cutaway perspective view of an embodiment of the polygonal truncated pyramid pitot tube probe of the present invention, FIG. 2 is a front view of the same probe, FIG. 3 is an enlarged sectional view of the tip of the probe, and FIG. The figure is a front view of the tip, FIG. 5 is an explanatory diagram of the data analysis method, FIGS. 6 and 7 are graphs of comparative characteristic data showing the measurement results of the probe of the present invention, and FIG. 8 is a graph of the known probe. A front view and a side view of a hole pitot tube type probe, and FIG. 9 is a perspective view of a known rotary asymmetric wedge type probe, and the symbols in the figures are 1...probe axis, 2...pressure hole, 3... ...Total pressure pipe, 5...Exterior pipe, 6...Mounting shaft, 7...Shielding hole, 8...Diversion hole, 3'', 10...Pressure detection tube,
20... total pressure hole, 21, 22, 27, 28... pressure hole, 26... axis line.

Claims (1)

【特許請求の範囲】 1 先端部が多角錐台型をなし、該台型頂点部に
全圧管を設け、各角錐面上にそれぞれ圧力孔を配
設し、上記全圧管の受ける圧力と、角錐面上の圧
力孔の受ける圧力とから流れの速度ベクトルと静
圧とを決定するピトー管型プローブにおいて、 その先端の多角錐台型頂点に遮蔽穴を設け、そ
の内側に、該遮蔽穴の先端から遮蔽穴の径Dとの
関係で定まる一定長Lだけ入つた位置に、穴径D
より小径の全圧管を配設固定すると共に、該遮蔽
穴の底端には、プローブ先端部の外周壁面上に開
口し、これによつて、遮蔽穴と全圧管との間に形
成される環状の透き間をプローブ先端部の外周空
間に連通する分流孔が設けられていることを特徴
とする多角錐台型ピトー管型プローブ。 2 上記プローブの先端部は、三角錐台型をな
し、したがつて3ケの圧力孔を有することを特徴
とする特許請求の範囲第1項の三角錐台型4孔ピ
トー管型プローブ。
[Scope of Claims] 1. The tip has a polygonal truncated pyramid shape, a full pressure tube is provided at the apex of the truncated shape, and pressure holes are provided on each pyramidal surface, so that the pressure received by the full pressure tube and the pyramid In a Pitot tube type probe that determines the flow velocity vector and static pressure from the pressure received by the pressure hole on the surface, a shielding hole is provided at the truncated polygonal pyramidal apex at the tip, and a Hole diameter D
A full-pressure tube with a smaller diameter is arranged and fixed, and the bottom end of the shielding hole is opened on the outer peripheral wall surface of the probe tip, thereby forming an annular tube between the shielding hole and the total-pressure tube. A truncated polygonal pyramid pitot tube type probe, characterized in that it is provided with a flow dividing hole that communicates the gap between the two and the outer peripheral space of the tip of the probe. 2. The truncated pyramid-shaped four-hole pitot tube probe according to claim 1, wherein the tip of the probe is shaped like a truncated triangular pyramid and has three pressure holes.
JP12926481A 1981-08-18 1981-08-18 Pyramidal trapesoid shaped 4-hole pitot tube type probe Granted JPS5830673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12926481A JPS5830673A (en) 1981-08-18 1981-08-18 Pyramidal trapesoid shaped 4-hole pitot tube type probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12926481A JPS5830673A (en) 1981-08-18 1981-08-18 Pyramidal trapesoid shaped 4-hole pitot tube type probe

Publications (2)

Publication Number Publication Date
JPS5830673A JPS5830673A (en) 1983-02-23
JPS634666B2 true JPS634666B2 (en) 1988-01-29

Family

ID=15005269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12926481A Granted JPS5830673A (en) 1981-08-18 1981-08-18 Pyramidal trapesoid shaped 4-hole pitot tube type probe

Country Status (1)

Country Link
JP (1) JPS5830673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189902A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지유플러스 Optical element blocking device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836019A (en) * 1987-08-27 1989-06-06 Rosemount Inc. Compact air data sensor
DE3923753A1 (en) * 1989-07-18 1991-01-31 Nord Micro Elektronik Feinmech PROBE AND METHOD FOR MEASURING THE RELATIVE SPEED OF A FLOWING MEDIUM
RU2135971C1 (en) * 1998-07-06 1999-08-27 Центральный аэрогидродинамический институт им.проф.Н.Е.Жуковского Air pressure transducer
FR2891368B1 (en) * 2005-09-27 2007-11-30 Airbus France Sas SYSTEM FOR MONITORING ANEMOBAROMLINOMETRIC PARAMETERS FOR AIRCRAFT
DE102009037957A1 (en) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Pressure probe
KR101093634B1 (en) * 2010-04-15 2011-12-15 한국해양연구원 3 Hole Pitot Tube
KR101240675B1 (en) * 2011-03-23 2013-03-11 한국해양과학기술원 Manufacturing Method of 3 Hole Pitot Tube
JP6460573B2 (en) * 2014-10-18 2019-01-30 シスメット株式会社 Weather information notification system
AU2018290776B2 (en) * 2017-06-26 2021-02-25 Dwyer Instruments, Inc. Pitot tube instrument
CN111856072B (en) * 2020-07-29 2021-10-15 中国汽车工程研究院股份有限公司 Air flow speed calculation method, system and equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252679A (en) * 1975-10-25 1977-04-27 Natl Aerospace Lab Rotary type nonsymmetrical wedge type probe and method of measuring ai r current using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577015Y2 (en) * 1977-11-29 1982-02-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252679A (en) * 1975-10-25 1977-04-27 Natl Aerospace Lab Rotary type nonsymmetrical wedge type probe and method of measuring ai r current using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189902A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지유플러스 Optical element blocking device

Also Published As

Publication number Publication date
JPS5830673A (en) 1983-02-23

Similar Documents

Publication Publication Date Title
JP2913005B2 (en) Flight velocity vector detection system using a truncated polygonal pitot tube probe and a truncated polygonal pitot tube probe
US4836019A (en) Compact air data sensor
EP0229534A2 (en) Combination pressure probe
CA1174485A (en) Strut mounted multiple static tube
JPH0623778B2 (en) Air data sensor device
JPS634666B2 (en)
EP0073809A4 (en) Pressure sensor for determining airspeed, altitude and angle of attack.
Georgiou et al. Fabrication and calibration of a sub-miniature 5-hole probe with embedded pressure sensors for use in extremely confined and complex flow areas in turbomachinery research facilities
CN115435930A (en) Three-dimensional full-parameter high-frequency probe for measuring interstage
Schairer et al. Measurements of tip vortices from a full-scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry
CN111498141B (en) Method and device for realizing real-time monitoring of airflow angle based on micro probe
CN218822484U (en) Three-dimensional full-parameter high-frequency probe for measuring interstage
Sellers III et al. LDV surveys over a fighter model at moderate to high angles of attack
EP1020717B1 (en) Pitot-static probe
DE102015121517B4 (en) Method and device for determining a speed vector of a wind prevailing in the surroundings of an aircraft, and aircraft
Yanta et al. Flowfield about and forces on slender bodies at high angles of attack
Winternitz Probe Measurements in Three‐Dimensional Flow: A Comparative Survey of Different Types of Instrument
KR100367555B1 (en) Integration type sensor for wind tunnel test of aircraft
REDINIOTIS et al. Multi-sensor investigation of delta wing high-alpha aerodynamics
Uselton et al. Summary of sting interference effects for cone, missile, and aircraft configurations as determined by dynamic and static measurements
US20240240978A1 (en) Multi-hole pressure probe and use of such a probe
Fox Supersonic Tunnel Investigation by Means of Inclined-Plate Technique to Determine Performance of Several Nose Inlets over Mach Number Range of 1.72 to 2.18
JPH05149961A (en) Measurement device of mach number and the like
JPS601419Y2 (en) Shape of true airspeed sensor
CHESNAKAS et al. Total velocity vector measurements in an axial-flow compressor usinga 3-component laser Doppler anemometer