JPH05149961A - Measurement device of mach number and the like - Google Patents

Measurement device of mach number and the like

Info

Publication number
JPH05149961A
JPH05149961A JP33931691A JP33931691A JPH05149961A JP H05149961 A JPH05149961 A JP H05149961A JP 33931691 A JP33931691 A JP 33931691A JP 33931691 A JP33931691 A JP 33931691A JP H05149961 A JPH05149961 A JP H05149961A
Authority
JP
Japan
Prior art keywords
angle
shock wave
pressure
mach number
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33931691A
Other languages
Japanese (ja)
Inventor
Fumei Fumei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33931691A priority Critical patent/JPH05149961A/en
Publication of JPH05149961A publication Critical patent/JPH05149961A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To identify the mach number by measuring the angle of a shock wave caused a cone or a gib, and deflection angle of air current determining the asymmetry of a waveform CONSTITUTION:A rod-like mechanism 3 having a cone 1 and a pressure hole 2 is provided at the fuselage edge of an aircraft or a missile. The mechanism 3 is a slender and small form, in which the turbulence for outside air current is small and piping of the pressure hole 2 to a pressure convertor is communicated. A total pressure distribution is measured from the pressure hole of the mechanism 3 and an angle 5 of a shock wave 4 is found due to the lowering of total pressure. In other words, pressure is suddenly changed at a certain place and indicates a step-like change. A place Y1 changing in the step-like form from a measurement value is found and a shock wave angle theta is obtained from the expression tantheta=(Y1-Y2)/L. The mach number M of air current is identified from the relation of the angle 5 and the mach number of the shock wave 4. In addition, an inclination angle 8 is simultaneously identified from a difference between the upside angle 6 and the lower side angle 7 of the shock wave 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機の速度及び機体姿
勢の計測、風洞の高速気流試験装置の気流特性計測等の
気流マッハ数および気流偏角の計測装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring airflow Mach number and airflow declination, such as measurement of aircraft speed and body attitude, and measurement of airflow characteristics of a high-speed airflow test device in a wind tunnel.

【0002】[0002]

【従来の技術】従来の航空機・ミサイル等の超音速飛行
体のマッハ数の計測は図4に示す通り、胴体先端に突き
出したピトー総静圧管01により圧力を計測し、マッハ
数を計算している。02は総圧孔、03は静圧孔、04
は衝撃波である。この場合、マッハ数の計算式が複雑で
あると同時に、迎角に対する補正も非常に複雑であり、
実質上不可能である。
2. Description of the Related Art As shown in FIG. 4, the measurement of the Mach number of a conventional supersonic vehicle such as an aircraft or a missile is performed by measuring the pressure with a Pitot total static pressure pipe 01 protruding from the tip of the fuselage and calculating the Mach number. There is. 02 is a total pressure hole, 03 is a static pressure hole, 04
Is a shock wave. In this case, the calculation formula of the Mach number is complicated, and at the same time, the correction for the angle of attack is also very complicated.
Practically impossible.

【0003】[0003]

【発明が解決しようとする課題】航空機・ミサイル等の
従来の飛行マッハ数の計測は次の課題を有する。 (1) 総圧及び静圧からマッハ数を計算する式が複雑であ
る。 (2) 迎角に対する補正が複雑である。
The conventional measurement of the flight Mach number of an aircraft or missile has the following problems. (1) The formula for calculating Mach number from total pressure and static pressure is complicated. (2) The correction for the angle of attack is complicated.

【0004】上記2項について下記に説明する。 (1) について、従来のマッハ数計測・計算はレイリーの
公式を使用している。これによると、気流のマッハ数M
は、一様流静圧P1 とピトー管計測総圧Pt2 から Pt2 /P1 =(6M2 /5)7/2 (6/7M2 −1)5/2 で表わされ、これをMについて解いてマッハ数が求めら
れる。一様流静圧P1 もピトー管計測静圧P2 から P2 /P1 =(7M2 −1)/6 で計算しなくてはならない。上記の表式は数学で言う陰
関数となっているため、簡単には解けず、遂次近似法等
の複雑な手順を踏まなければならず、この計算を行なう
計算機に対して大きな負担となる。
The above item 2 will be described below. Regarding (1), the conventional Mach number measurement / calculation uses Rayleigh's formula. According to this, Mach number M of the air flow
Is expressed in Pt 2 / P 1 = (6M 2/5) 7/2 (6 / 7M 2 -1) 5/2 from uniform flow static pressure P 1 and the Pitot tube measured total pressure Pt 2, which Is solved for M to obtain the Mach number. The uniform flow static pressure P 1 must also be calculated from the Pitot tube measured static pressure P 2 as P 2 / P 1 = (7M 2 −1) / 6. Since the above expression is an implicit function in mathematics, it cannot be easily solved and complicated procedures such as the successive approximation method must be taken, which imposes a heavy burden on the computer that performs this calculation. ..

【0005】(2) について、ピトー総静圧管による迎角
の計測は、単体検定データに基づいて行なう。しかしピ
トー総静圧管は小さな迎角において、迎角変化に対する
特性変化が鈍感で、計測精度が極めて低い。したがっ
て、一般にはピトー総静圧管は迎角計測には使用されて
いない。
With respect to (2), the angle of attack is measured by the Pitot total static pressure tube based on simple substance verification data. However, the Pitot total static pressure pipe is insensitive to changes in the angle of attack at small angles of attack, and its measurement accuracy is extremely low. Therefore, generally, the Pitot total static pressure tube is not used for the angle of attack measurement.

【0006】[0006]

【課題を解決するための手段】本発明は前記従来の課題
を解決したもので、円錐またはくさびによる衝撃波を利
用し、その角度を計測することにより気流のマッハ数を
同定し、また前記の衝撃波形状の非対称性を計測するこ
とにより気流の偏角を同定するマッハ数等計測装置であ
る。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned conventional problems and utilizes a shock wave due to a cone or a wedge, and identifies the Mach number of the air flow by measuring its angle. It is a measuring device such as a Mach number that identifies the deviation angle of the air flow by measuring the asymmetry of the shape.

【0007】即ち、 (1) 胴体先端に、円錐またはくさびを設置し、衝撃波を
発生させ、その衝撃波形状を計測する棒状の装置を展開
し、それに圧力孔を設ける。 (2) 前記の圧力孔位置の総圧分布を計測し、円錐または
くさびによる衝撃波の角度から気流のマッハ数を同定す
る。 (3) 発生した衝撃波形状の非対称性を、前記圧力計測に
より把握し、気流偏角を同定する。
That is, (1) A cone or a wedge is installed at the tip of the body, a shock wave is generated, a rod-shaped device for measuring the shape of the shock wave is developed, and a pressure hole is provided therein. (2) The total pressure distribution at the pressure hole position is measured, and the Mach number of the air flow is identified from the angle of the shock wave generated by the cone or the wedge. (3) The asymmetry of the generated shock wave shape is grasped by the pressure measurement, and the airflow declination is identified.

【0008】[0008]

【作用】超音速気流中に物体が置かれた場合(または物
体が超音速で飛行する場合)には、衝撃波と呼ばれる強
い圧縮波が形成される。この衝撃波により気流の静圧は
大幅に上昇し、また総圧は低下する。この衝撃波前後の
圧力の変化を計測して気流のマッハ数および気流の偏角
(または機体姿勢)を同定しようとするのが本発明の主
趣である。
When an object is placed in the supersonic airflow (or when the object flies at supersonic speed), a strong compression wave called a shock wave is formed. Due to this shock wave, the static pressure of the air flow increases significantly and the total pressure decreases. The main purpose of the present invention is to measure the change in pressure before and after the shock wave to identify the Mach number of the air flow and the declination (or body attitude) of the air flow.

【0009】前記の衝撃波は円錐またはくさび状物体先
端から発生する場合には、斜め衝撃波と呼ばれ、この衝
撃波形状(角度)は気流マッハ数に大きく依存する。
(鈍頭物体のときは垂直衝撃波と斜め衝撃波の組合せに
なり、複雑な形状となる。)この衝撃波の角度を計測す
ることにより、気流マッハ数を逆算することができる。
When the shock wave is generated from the tip of a cone or a wedge-shaped object, it is called an oblique shock wave, and the shape (angle) of this shock wave largely depends on the Mach number of the air flow.
(In the case of a blunt object, the vertical shock wave and the diagonal shock wave are combined to form a complicated shape.) By measuring the angle of this shock wave, the airflow Mach number can be calculated backward.

【0010】この角度計測は以下のように行なう。すな
わち、円錐またはくさびの下流に棒状のものを気流と直
角方向に伸ばす。この棒状のものに圧力孔を多数分布さ
せ、圧力を計測する。そして円錐またはくさびから発生
する衝撃波がこの棒状の物体に当るようにする。
This angle measurement is performed as follows. That is, a rod-shaped object is extended downstream of the cone or wedge in a direction perpendicular to the airflow. A large number of pressure holes are distributed in this rod-shaped object to measure the pressure. Then, the shock wave generated from the cone or the wedge hits the rod-shaped object.

【0011】すると、棒状物体の圧力が衝撃波の当る部
分において大きく変化する。棒と円錐(またはくさび)
の相対位置と圧力孔の位置は設計において十分に把握で
きているので、棒状物体上の圧力の変化位置を知ること
により、衝撃波の形状を知ることができる。この衝撃波
形状は気流マッハ数の関数なので、容易に気流マッハ数
を知ることができる。
Then, the pressure of the rod-shaped object changes greatly at the portion where the shock wave hits. Rod and cone (or wedge)
Since the relative position of and the position of the pressure hole are sufficiently grasped in the design, the shape of the shock wave can be known by knowing the change position of the pressure on the rod-shaped object. Since this shock wave shape is a function of the airflow Mach number, the airflow Mach number can be easily known.

【0012】円錐またはくさびを対称形状に製作してお
けば、形成される衝撃波も、気流に偏向がない場合に
は、対称となる。気流に偏向がある場合には、衝撃波形
状も非対称になる。気流に垂直な棒状物体を対称に左右
(または上下)に展開することによりこの非対称な衝撃
波の形状を把握でき、逆に気流の偏角(または機体姿
勢)を同定することができる。
If the cone or the wedge is manufactured in a symmetrical shape, the formed shock wave will also be symmetrical if the air flow is not deflected. When the air flow is deflected, the shock wave shape is also asymmetric. By symmetrically deploying a rod-shaped object perpendicular to the air flow to the left and right (or up and down), the shape of this asymmetrical shock wave can be grasped, and conversely, the declination of the air flow (or airframe attitude) can be identified.

【0013】[0013]

【実施例】本発明の一実施例を図1ないし図3を参照し
ながら説明する。航空機またはミサイルの胴体先端に円
錐1(またはくさび)と圧力孔2を有する棒状機構3を
設置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. A rod-shaped mechanism 3 having a cone 1 (or wedge) and a pressure hole 2 is installed at the tip of the fuselage of an aircraft or a missile.

【0014】棒状機構3は、 (1) 空力荷重によって変形しないこと。 (2) 外部の空気流に対して乱れが少ないような細小形状
であること。 (3) 圧力孔が穿けられ、圧力孔から圧力変換器までの配
管が可能なこと。が条件となっている。
The rod-shaped mechanism 3 should not be deformed by (1) aerodynamic load. (2) It has a small shape so that there is little turbulence with respect to the external air flow. (3) A pressure hole should be drilled and piping from the pressure hole to the pressure transducer should be possible. Is a condition.

【0015】また、「棒状」と表現しているが、気流に
対して乱れが小さい「板状」(気流ベクトルが板面とほ
ぼ平行になるようにする)でもよい。棒状機構3の設置
位置(気流に平行な方向の棒の長さ)に対する制限もな
い。
Further, although expressed as "rod-shaped", it may be "plate-shaped" (so that the air flow vector is substantially parallel to the plate surface) with little disturbance to the air flow. There is no limitation on the installation position of the rod-shaped mechanism 3 (the length of the rod in the direction parallel to the air flow).

【0016】垂直な棒を後方に置くと、衝撃波角度の計
測精度は向上する。(圧力孔2の大きさが有限であるた
め、隣り合った圧力孔2間の距離の最小値が限られる。
下流に行く程、この最小値に原因する衝撃波角度の計算
誤差が小さくなる。)その反面、本機構の形状が大きく
なり、コンパクト性が犠牲になる。
If the vertical rod is placed rearward, the accuracy of shock wave angle measurement is improved. (Since the size of the pressure holes 2 is finite, the minimum value of the distance between the adjacent pressure holes 2 is limited.
As it goes downstream, the calculation error of the shock wave angle due to this minimum value becomes smaller. ) On the other hand, the size of this mechanism becomes large and the compactness is sacrificed.

【0017】次に棒状機構3の圧力孔2により総圧分布
を計測し、総圧の低下より衝撃波4の角度5を求める。
Next, the total pressure distribution is measured by the pressure hole 2 of the rod-shaped mechanism 3, and the angle 5 of the shock wave 4 is obtained from the decrease in the total pressure.

【0018】衝撃波4の角度5は幾何学的に計算する。
図1(a) において、円錐1から発生する衝撃波4の外側
と内側で総圧が変化する。外側および内側ではそれぞれ
一定の値となる。
The angle 5 of the shock wave 4 is calculated geometrically.
In Fig. 1 (a), the total pressure changes outside and inside the shock wave 4 generated from the cone 1. The outside and inside have constant values.

【0019】即ち、図2に示すように、ある所で急激に
圧力が変化し、ステップ状の変化となる。そして計測値
よりステップ状に変化する場所Y1 を探し、式 tanθ=(Y1 −Y0 )/L から衝撃波角度θを求める。
That is, as shown in FIG. 2, the pressure changes abruptly at a certain place and changes stepwise. Then, a place Y 1 that changes stepwise from the measured value is searched for, and the shock wave angle θ is obtained from the equation tan θ = (Y 1 −Y 0 ) / L.

【0020】衝撃波角度θの計算精度は、圧力孔2の分
布の度合い(図2でΔY)に依存する。風洞試験模型の
例では加工上 ΔY=1.0mm は十分に可能なので、L=200mm,θ=30°(気流
マッハ数3.0、円錐半頂角約20度のとき)とする
と、 {tan30°=115.47/200 tanθe=115.47+1.0/200) ∴θe=30.2° となり、角度計測誤差は0.2度となる。前述のよう
に、Lを大きくしたり、ΔYを小さくすれば(両者共に
容易である)この誤差は小さくすることができる。
The accuracy of calculation of the shock wave angle θ depends on the degree of distribution of the pressure holes 2 (ΔY in FIG. 2). In the example of the wind tunnel test model, ΔY = 1.0 mm is sufficiently possible in processing, so if L = 200 mm and θ = 30 ° (when the airflow Mach number is 3.0 and the cone half apex angle is about 20 degrees), {tan30 ° = 115.47 / 200 tan θe = 115.47 + 1.0 / 200) ∴θe = 30.2 °, and the angle measurement error is 0.2 degrees. As described above, this error can be reduced by increasing L or decreasing ΔY (both are easy).

【0021】衝撃波4の角度5とマッハ数の関係から気
流マッハ数Mを同定する。
The airflow Mach number M is identified from the relationship between the angle 5 of the shock wave 4 and the Mach number.

【0022】即ち、図1(a) において衝撃波の角度5
(θとおく)と円錐1の半頂角(δとおく)とマッハ数
Mの関係は次式で与えられる。 sin6 θ+bsin4 θ+csin2 θ=0 ここに、 b=−M2 +2/M2 −1.4 sin2 δ c=(2M2 +1)/M4 +[2.42 /4+0.4/M2 ]sin2 δ d=−coo2 δ/M である。従って、円錐1の形状と衝撃波の角度5(θ)
が解れば、上式をマッハ数Mについて解けばマッハ数が
解る。
That is, in FIG. 1 (a), the shock wave angle 5
The relationship between (must be θ), half-vertical angle of cone 1 (must be δ) and Mach number M is given by the following equation. sin 6 θ + bsin 4 θ + c sin 2 θ = 0 where b = −M 2 + 2 / M 2 −1.4 sin 2 δ c = (2M 2 +1) / M 4 + [2.4 2 /4+0.4/M 2 ] sin 2 δd = −coo 2 δ / M. Therefore, the shape of the cone 1 and the shock wave angle 5 (θ)
If the above is solved, the Mach number can be found by solving the above formula for the Mach number M.

【0023】図1(b) にて衝撃波4の上側の角度6と下
側の角度7との差より迎角8を同時に同定することがで
きる。
In FIG. 1B, the angle of attack 8 can be identified at the same time from the difference between the upper angle 6 and the lower angle 7 of the shock wave 4.

【0024】円錐1により衝撃波4が形成される。円錐
が迎角αを持つときには、衝撃波の角度θ1 とθ2 が異
なる。逆に、α=0°のときは、θ1 =θ2 である。そ
こで、θ1 とθ2 との差θ1 −θ2 を調べれば、迎角α
がわかる。
A shock wave 4 is formed by the cone 1. When the cone has an attack angle α, the shock wave angles θ 1 and θ 2 are different. On the contrary, when α = 0 °, θ 1 = θ 2 . Therefore, by examining the difference θ 1 −θ 2 between θ 1 and θ 2 , the angle of attack α
I understand.

【0025】θ1 −θ2 とαの関係は前もって検定して
グラフを作成すると図3のようになる。このグラフを利
用すれば、上記の方法でθ1 とθ2 を出し、この差から
α対θ1 −θ2 のグラフによって迎角αが計算できる。
The relation between θ 12 and α is shown in FIG. 3 when a graph is prepared by previously testing. If this graph is used, θ 1 and θ 2 are obtained by the above method, and the angle of attack α can be calculated from the difference by a graph of α vs. θ 1 −θ 2 .

【0026】データ処理に関する圧力変換器と計算機は
図示していない。
Pressure transducers and calculators for data processing are not shown.

【0027】[0027]

【発明の効果】本発明は前記装置であるので、 (1) マッハ数の計算が簡単になる。 (2) 迎角も同時に計測することができる。等の効果を有
する。
EFFECTS OF THE INVENTION Since the present invention is the above apparatus, (1) the calculation of the Mach number is simplified. (2) The angle of attack can also be measured at the same time. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る説明図で、(a) は迎角
が0、(b)は迎角がαの場合である。
FIG. 1 is an explanatory diagram according to an embodiment of the present invention, in which (a) shows an attack angle of 0 and (b) shows an attack angle of α.

【図2】総圧が階段状に変化する状態図である。FIG. 2 is a state diagram in which the total pressure changes stepwise.

【図3】迎角αと衝撃波θ1 −θ2 の関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between an attack angle α and a shock wave θ 1 −θ 2 .

【図4】従来のマッハ数計測装置の断面図である。FIG. 4 is a sectional view of a conventional Mach number measuring device.

【符号の説明】[Explanation of symbols]

1 円錐またはくさび 2 圧力孔 3 棒状機構 4 衝撃波 5 角度 6 上側角度 7 下側角度 8 迎角(気流偏角) 1 cone or wedge 2 pressure hole 3 rod-like mechanism 4 shock wave 5 angle 6 upper angle 7 lower angle 8 angle of attack (air flow declination)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円錐またはくさびによる衝撃波を利用
し、その角度を計測することにより気流のマッハ数を同
定し、また、前記の衝撃波形状の非対称性を計測するこ
とにより気流の偏角を同定することを特徴とするマッハ
数等計測装置。
1. A shock wave from a cone or a wedge is used, and the angle is measured to identify the Mach number of the air flow, and the asymmetry of the shock wave shape is measured to identify the declination of the air flow. Mach number measuring device characterized by the above.
JP33931691A 1991-11-29 1991-11-29 Measurement device of mach number and the like Withdrawn JPH05149961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33931691A JPH05149961A (en) 1991-11-29 1991-11-29 Measurement device of mach number and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33931691A JPH05149961A (en) 1991-11-29 1991-11-29 Measurement device of mach number and the like

Publications (1)

Publication Number Publication Date
JPH05149961A true JPH05149961A (en) 1993-06-15

Family

ID=18326306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33931691A Withdrawn JPH05149961A (en) 1991-11-29 1991-11-29 Measurement device of mach number and the like

Country Status (1)

Country Link
JP (1) JPH05149961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112417776A (en) * 2020-11-10 2021-02-26 西北工业大学 Method and device for solving geometric construction of oblique shock wave parameters
CN114235325A (en) * 2021-11-19 2022-03-25 中国航天空气动力技术研究院 Shock plate control system and method for wind tunnel continuous variable Mach number test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112417776A (en) * 2020-11-10 2021-02-26 西北工业大学 Method and device for solving geometric construction of oblique shock wave parameters
CN114235325A (en) * 2021-11-19 2022-03-25 中国航天空气动力技术研究院 Shock plate control system and method for wind tunnel continuous variable Mach number test

Similar Documents

Publication Publication Date Title
JP2913005B2 (en) Flight velocity vector detection system using a truncated polygonal pitot tube probe and a truncated polygonal pitot tube probe
Crawford et al. A sensitive fast-response probe to measure turbulence and heat flux from any airplane
US4378697A (en) Strut mounted multiple static tube
Gillis et al. Preliminary Results for a Free-flight Investigation at Transonic and Supersonic Speeds of Longitudinal Stability and Control Characteristics of an Airplane Configuration with a Thin Straight Wing of Aspect Ratio 3
Cleary Effects of Angle of Attack and Bluntness on Laminar Heating-Rate Distributions of a 15 Cone at a Mach number of 10.6
Gracey Summary of methods of measuring angle of attack on aircraft
JPS62159023A (en) Probe for detecting air-current data
RU2615220C1 (en) Method of determination of the control signal on the corner of the roll model of the hyperpower vehicle equipment (hve) for monitoring the aerodynamic identity on the reinolds number of trajectories of the flight of the model and the nuclear article when conducting anti-state aircraft research
JP2001242190A (en) Arithmetic processing method in wide-speed range flight velocity vector measurement system using quadrangular pyramid type five-hole pitot tube, and method therefor
US9753051B2 (en) Speedometer insensitive to icy conditions and heavy rainfall
JP2884502B2 (en) Wide-velocity range flight velocity vector measurement system using quadrangular pyramid-shaped 5-hole probe
JP2005522700A (en) Sensor for wind angle measurement
US10191076B1 (en) Airflow sensing systems and methods
JPH07507144A (en) Aerodynamic pressure sensor system
CN111856072B (en) Air flow speed calculation method, system and equipment and storage medium
US4735085A (en) Flow measurement device utilizing force transducers
RU2601367C1 (en) Method of aircraft engine thrust determining at operating mode change and device for its implementation
JPH05149961A (en) Measurement device of mach number and the like
JPS634666B2 (en)
CN111498141A (en) Method and device for realizing real-time monitoring of airflow angle based on micro probe
CN111273056A (en) Attack angle observation method of high-speed aircraft without adopting altitude measurement
CN111487031B (en) Device and method for realizing real-time monitoring of three-dimensional flow field airflow angle based on miniature fan-shaped probe
US10281353B2 (en) Pneumatic air data probe with elliptical cross section
JP2807772B2 (en) Pitot tube probe
JP2001278196A (en) Ultrasonic airspeed sensor for aircraft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204