JPS6346326B2 - - Google Patents

Info

Publication number
JPS6346326B2
JPS6346326B2 JP53026514A JP2651478A JPS6346326B2 JP S6346326 B2 JPS6346326 B2 JP S6346326B2 JP 53026514 A JP53026514 A JP 53026514A JP 2651478 A JP2651478 A JP 2651478A JP S6346326 B2 JPS6346326 B2 JP S6346326B2
Authority
JP
Japan
Prior art keywords
ash
air
ammonium sulfate
collected ash
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026514A
Other languages
Japanese (ja)
Other versions
JPS54119775A (en
Inventor
Yoshiki Watabe
Toshio Uemura
Yoji Masumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2651478A priority Critical patent/JPS54119775A/en
Publication of JPS54119775A publication Critical patent/JPS54119775A/en
Publication of JPS6346326B2 publication Critical patent/JPS6346326B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は発電所のボイラ等の燃焼装置排ガス
流路に設けた集塵装置で捕集した硫安含有物であ
る捕集灰(以下EP灰と称す)を焼却するために
焼却装置へ輸送供給する装置に関するものであ
る。 近時発電所の大型化に伴い、また硫黄酸化物
SOxと窒素酸化物NOxの除去のためにするアン
モニアNH3の吹き込み等よりして、捕集される
灰の量の増大と、NH3と亜硫酸ガスの結合によ
る硫安〔(NH42SO4〕の処理とから種々運転操
作上の困難な問題を生じている。 まず火力発電所のEP灰の組成の数例を文献よ
り引用し下記第1表に示す。
This invention transports collected ash (hereinafter referred to as EP ash), which is a substance containing ammonium sulfate collected by a dust collector installed in the exhaust gas flow path of a combustion device such as a boiler of a power plant, to an incinerator for incineration. It is related to the device. With the recent increase in the size of power plants, sulfur oxides
By blowing ammonia NH 3 to remove SOx and nitrogen oxides NOx, the amount of collected ash increases, and ammonium sulfate [(NH 4 ) 2 SO 4 ] increases by combining NH 3 and sulfur dioxide gas. ], various difficult problems have arisen in terms of operation. First, several examples of the composition of EP ash from thermal power plants are quoted from literature and are shown in Table 1 below.

【表】 (注) 未燃炭素が主であるが、炭素塩や酸化物等の
分解によるものもある。
[Table] (Note) Although the main source is unburned carbon, there are also sources from the decomposition of carbon salts and oxides.

【表】 この含有成分中の未燃の成分たる炭素を完全に
焼却し熱エネルギーを回収し、また灰分中に含有
するバナジウムは有害でありかつ合金用原料とし
て使用するため回収する必要がある。 第1表からも判るようにEP灰中に占める硫安
の量は一般に相当大きいものとなつている。まず
硫安の性質から考察するに硫安の分解は示差熱分
析実験結果からも判るように吸熱分解反応を示す
2つのピークが見られ、その一連の反応は下記の
ように2段階に変化するものである。 第1段階:270〜380℃ (NH42SO4→2NH3+SO3+H2O (NH42SO4→NH4HSO4+H2O (酸性硫安) 第2段階:380〜490℃ NH4HSO4→NH3+SO3+H2O 2NH4HSO4→(NH42S2O7+H2O (NH42SO4→2NH3+2SO3+H2O ここで第2段階で生成した(NH42S2O7はすぐ
にNH3、SO3およびH2Oに分解してしまう。この
ように硫安は500℃で全部NH3、SO3、H2Oに分
解ガス化することより重油灰中の硫酸アンモニウ
ム塩を全部分解させるには重油灰を500℃以上に
加熱すればよいことがわかる。 前記の反応における生成した酸性硫安
(NH4HSO4)は146.9℃で融解する性質をもつて
いる。この融解したものが流動媒体や通路壁に付
着すると種々の支障を生ずることとなる。従つて
硫安を搬送するにはまず酸性硫安の生ずるような
温度条件で行なわず急速に490℃以上の炉中に供
給する必要がある。 また実験の結果ではNH3注入によるNOx、
SOx除去対策をした排ガスの露点はそのNH3
より変化し最高は110℃であることが実験により
確められた。 これらの実測、実験よりこの発明は発明者等が
さきに提案している旋回噴流層炉でEP灰を焼却
するときEP灰の搬送、供給に際し採用すべき閉
塞のない安定した装置を提案することを目的とす
る。 要するにこの発明はEP灰をほぼ110℃〜270℃
好ましくはほぼ130℃〜250℃に保持して焼却炉に
供給する方法であることを特徴とし、さらに気流
輸送の手段による供給装置であることを特徴とす
る。 また排出口にはエアーシールの手段を用い、そ
のエアーシール用空気量をEP灰供給停止のとき
は大にしてEP灰流路の閉塞を防止している装置
であることを特徴とする。 この発明の実施にかかる装置を以下図面により
説明する。焼却炉として発明者等がさきに提案し
た旋回噴流層炉を例にとると、燃焼炉たる旋回噴
流層炉1内には流動媒体2が収容され、媒体の旋
回流と上昇噴流は管路3a,3bより供給される
圧力空気により形成される。起動用バーナ4によ
り流動媒体が加熱されほぼ500℃以上好ましくは
ほぼ650℃に達すると、EP灰は貯槽5,5′から
ノズル6,6′を経由して流動している媒体の層
中に供給され焼却される。この場合、汚泥等をあ
わせ処理する必要あるときは助燃バーナ7より燃
料の供給を受け層内を必要温度に保つものであ
る。 この発明はこのようなEP灰の焼却に際しEP灰
の露点が最高で110℃であり、また酸性硫安
(NH4HSO4)の融点が146.9℃、硫安から酸性硫
安への分解生成が270〜380℃であることより、
EP灰搬送用の気体たる空気及び空気輸送に際し
てはEP灰の温度が即時昇温することから空気と
そのEP灰の輸送通路内の温度をほぼ110℃以上ほ
ぼ270℃以下好ましくはほぼ130℃以上ほぼ250℃
以下にすることを提案するものである。 またEP灰輸送用の空気を除湿することは露点
にたいする考慮、輸送空気の温度の変動量を少く
せねばならぬという制御上の条件を容易にするも
のである。しかしこの場合においてはいづれにし
ても硫安の分解の点よりほぼ110℃〜270℃の範囲
の保持を必要とするものである。 このようなEP灰輸送用空気の昇温をさせる装
置として第1図に示す装置を提案する。空気輸送
用の送風機8からEP灰の燃却炉への排出用ノズ
ル6までの空気の通路9のうち貯槽5のEP灰排
出口10からノズル6迄がEP灰輸送通路9aと
なる。EP灰の他の貯槽5′からのEP灰の排出は
主としてEP灰輸送通路たるシユート11を利用
するものであるが貯槽5の場合と同、空気輸送手
段を同時に使用することができる。EP灰輸送通
路9aを使用するときは送風機8から供給される
空気は管路12より要すれば除湿器13を通し空
気予熱機14により約130℃まで加熱される。ま
た弁15a,15bの切替えにより送風機8より
直接空気予熱機14に送気してもよい。貯槽5か
らロータリバルブ16を経由しベンチユリ構造等
をもつEP灰排出口10を通しEP灰は供給され
EP灰輸送通路(硫安含有物輸送通路)9a内を
流れる。この場合蒸気、電熱等を使用するEP灰
通路加熱装置たる加熱器17aにより空気とEP
灰は共にほぼ160℃まで加熱されノズル6から旋
回流動層内に排出され、EP灰は層内で焼却され
る。図示の加熱器17aに供給する蒸気は管路1
8より弁19a経由供給される。ノズル6′への
EP灰通路加熱装置たる加熱器17bへの蒸気は
弁19b経由供給される。加熱の手段は蒸気のみ
でなく電気ヒータ等他の手段によることができ
る。貯槽5′からのEP灰はロータリバルブ16′
管路11′を経由しノズル6′より層内に供給す
る。貯槽5′は微粉状のEP灰、貯槽5は加湿粒状
のEP灰と区別して使用することができる。 ノズル6,6′の構造については第2図に示す
ごとくエアーシール構造のものにする。ノズル6
はやゝ拡大してその断面を示すものである。ノズ
ル6,6′には流動媒体2からの輻射熱による硫
安の分解を防止するため遮蔽板19,19′を設
けてもよい。またノズル6,6′が昇温すること
を防止し、かつEP灰供給停止時に熱ガスの流入
を防止し、ノズルの閉塞を防止するためシールエ
アーボツクス20,20′を設けノズル出口に向
けて斜め方向に噴出方向をもつ複数個のシールエ
アーノズル21を設ける。シールエアーは通路9
から分岐する管路22、弁23を経由してされ
る。管路9に設けた空気弁24が開のときは弁2
3は微開としてシールエアーをシールエアーノズ
ル21に小量送り、空気弁24を全閉としEP灰
をノズル6に供給しないときは弁23の開度を大
にし、ノズル6のエアーシールを効果あるものと
する。この制御指令は制御箱25より出される。
EP灰のシユート11へのEP灰供給用ロータリバ
ルブ16′の起動停止が空気弁24に対応するも
ので、この起動停止により弁23′が開、微開に
される。 この発明を実施することによりEP灰輸送通路
及びその排出口ノズルの閉塞がなく、輸送用空気
温度範囲を規定の値に制御することはその閉塞防
止の効果を高めるものであるノズルのエアーシー
ル効果とあいまつて焼却炉の連続運転を可能とす
る等種々の効果を奏するものである。
[Table] Carbon, which is an unburnt component in this content, must be completely incinerated to recover thermal energy, and vanadium contained in the ash is harmful and needs to be recovered because it is used as a raw material for alloys. As can be seen from Table 1, the amount of ammonium sulfate in EP ash is generally quite large. First, considering the properties of ammonium sulfate, the decomposition of ammonium sulfate shows two peaks indicating an endothermic decomposition reaction, as can be seen from the experimental results of differential thermal analysis, and the series of reactions changes in two stages as shown below. be. 1st stage: 270~380℃ (NH 4 ) 2 SO 4 →2NH 3 +SO 3 +H 2 O (NH 4 ) 2 SO 4 →NH 4 HSO 4 +H 2 O (acidic ammonium sulfate) 2nd stage: 380~490℃ NH 4 HSO 4 →NH 3 +SO 3 +H 2 O 2NH 4 HSO 4 → (NH 4 ) 2 S 2 O 7 +H 2 O (NH 4 ) 2 SO 4 →2NH 3 +2SO 3 +H 2 O Here in the second step The generated (NH 4 ) 2 S 2 O 7 immediately decomposes into NH 3 , SO 3 and H 2 O. In this way, ammonium sulfate is completely decomposed and gasified into NH 3 , SO 3 , and H 2 O at 500°C, so in order to completely decompose the ammonium sulfate salts in heavy oil ash, it is necessary to heat the heavy oil ash above 500°C. Recognize. The acidic ammonium sulfate (NH 4 HSO 4 ) produced in the above reaction has the property of melting at 146.9°C. If this molten material adheres to the fluid medium or the passage walls, various problems will occur. Therefore, in order to transport ammonium sulfate, it is necessary to first feed it rapidly into a furnace at a temperature of 490°C or higher, without carrying out the process under temperature conditions that would produce acidic ammonium sulfate. Experimental results also show that NOx due to NH 3 injection,
Experiments have confirmed that the dew point of exhaust gas after SOx removal measures changes depending on its NH 3 and reaches a maximum of 110°C. Based on these actual measurements and experiments, the present invention proposes a stable device free from blockage that should be adopted when transporting and supplying EP ash when incinerating EP ash in the swirling spouted bed furnace proposed earlier by the inventors. With the goal. In short, this invention allows EP ash to be heated to approximately 110°C to 270°C.
It is preferably maintained at approximately 130° C. to 250° C. and fed to the incinerator, and is further characterized by a feeding device using air flow transportation. Further, the device is characterized in that an air seal is used at the discharge port, and the amount of air for the air seal is increased when the EP ash supply is stopped to prevent clogging of the EP ash flow path. An apparatus according to the present invention will be explained below with reference to the drawings. Taking as an example the swirling spouted bed furnace that the inventors previously proposed as an incinerator, a fluidized medium 2 is accommodated in the swirling spouted bed furnace 1, which is a combustion furnace, and the swirling flow and rising jet of the medium are transmitted through a pipe 3a. , 3b. When the fluidized medium is heated by the starting burner 4 and reaches a temperature of approximately 500°C or more, preferably approximately 650°C, the EP ash is transferred from the storage tanks 5, 5' via the nozzles 6, 6' into the bed of the flowing medium. supplied and incinerated. In this case, when it is necessary to treat sludge and the like, fuel is supplied from the auxiliary combustion burner 7 to maintain the inside of the bed at the required temperature. When incinerating such EP ash, this invention has a maximum dew point of 110°C, a melting point of acidic ammonium sulfate (NH 4 HSO 4 ) of 146.9°C, and a decomposition value of ammonium sulfate to acidic ammonium sulfate of 270 to 380°C. Since it is ℃,
Air is the gas for transporting EP ash, and the temperature of the EP ash immediately rises during pneumatic transport, so the temperature in the transport passage for the air and EP ash should be set at approximately 110°C or higher and approximately 270°C or lower, preferably approximately 130°C or higher. Almost 250℃
We propose the following. Also, dehumidifying the air used for transporting EP ash facilitates control requirements such as dew point consideration and the need to reduce the amount of fluctuation in the temperature of the transport air. However, in this case, it is necessary to maintain the temperature in the range of about 110°C to 270°C in order to decompose the ammonium sulfate. We propose the device shown in Figure 1 as a device to raise the temperature of the air for transporting EP ash. Of the air passage 9 from the blower 8 for air transport to the nozzle 6 for discharging EP ash to the incinerator, the part from the EP ash discharge port 10 of the storage tank 5 to the nozzle 6 becomes an EP ash transport passage 9a. EP ash is discharged from the other EP ash storage tank 5' mainly by using the chute 11 which is an EP ash transport passage, but as in the case of the storage tank 5, pneumatic transport means can be used at the same time. When the EP ash transport passage 9a is used, the air supplied from the blower 8 is passed through the conduit 12, if necessary, through the dehumidifier 13, and heated to about 130° C. by the air preheater 14. Alternatively, air may be sent directly from the blower 8 to the air preheater 14 by switching the valves 15a and 15b. EP ash is supplied from the storage tank 5 via the rotary valve 16 and through the EP ash outlet 10 having a bench lily structure or the like.
It flows through the EP ash transport passage (ammonium sulfate-containing material transport passage) 9a. In this case, air and EP are heated by a heater 17a, which is an EP ash passage heating device using steam, electric heat, etc.
Both ashes are heated to approximately 160°C and discharged from the nozzle 6 into the swirling fluidized bed, and the EP ash is incinerated within the bed. Steam supplied to the heater 17a shown in the figure is supplied to the pipe 1
8 via valve 19a. to nozzle 6'
Steam to heater 17b, which is an EP ash passage heating device, is supplied via valve 19b. The means for heating may be not only steam, but also other means such as an electric heater. EP ash from storage tank 5' is transferred to rotary valve 16'.
It is supplied into the layer from a nozzle 6' via a conduit 11'. The storage tank 5' can be used for finely powdered EP ash, and the storage tank 5 can be used separately for humidified granular EP ash. The structure of the nozzles 6, 6' is an air seal structure as shown in FIG. Nozzle 6
It is enlarged to show its cross section. The nozzles 6, 6' may be provided with shielding plates 19, 19' to prevent decomposition of ammonium sulfate due to radiant heat from the fluidized medium 2. In addition, seal air boxes 20 and 20' are provided to prevent the nozzles 6 and 6' from rising in temperature, and to prevent hot gas from flowing in when the EP ash supply is stopped, and to prevent the nozzles from clogging. A plurality of seal air nozzles 21 having oblique jetting directions are provided. Seal air is in passage 9
It is carried out via a pipe line 22 and a valve 23 that branch out from there. When the air valve 24 provided in the pipe line 9 is open, the valve 2
3 is slightly opened to send a small amount of seal air to the seal air nozzle 21, and when the air valve 24 is fully closed and EP ash is not being supplied to the nozzle 6, the opening of the valve 23 is increased to effectively seal the air in the nozzle 6. Assume that there is. This control command is issued from the control box 25.
The activation/stopping of the rotary valve 16' for supplying EP ash to the EP ash chute 11 corresponds to the air valve 24, and this activation/stopping causes the valve 23' to open or slightly open. By carrying out this invention, there is no clogging of the EP ash transport passage and its discharge port nozzle, and controlling the transport air temperature range to a specified value increases the effect of preventing clogging. Air sealing effect of the nozzle Together with this, it provides various effects such as enabling continuous operation of the incinerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施にかかる装置の配管と
断面を示す図面、第2図はノズルエアーシール装
置の構造を示す断面図である。 1…旋回噴流層炉(焼却炉)、2…流動媒体、
5,5′…EP灰の貯槽、6,6′…ノズル、8…
送風機、9…空気の通路、9a…EP灰輸送通路、
11…シユート、13…除湿器、14…空気予熱
器、15a,15b…弁、16,16′…ロータ
リバルブ、17a,17b…加熱器(EP灰通路
加熱装置)、18…管路、20,20′…シールエ
アーボツクス、21…シールエアーノズル、2
3,23′…弁、24…空気弁、25…制御箱。
FIG. 1 is a drawing showing piping and a cross-section of a device according to the present invention, and FIG. 2 is a cross-sectional view showing the structure of a nozzle air seal device. 1... Swirling spouted bed furnace (incinerator), 2... Fluidized medium,
5,5'...EP ash storage tank, 6,6'...nozzle, 8...
Blower, 9...Air passage, 9a...EP ash transport passage,
11... Chute, 13... Dehumidifier, 14... Air preheater, 15a, 15b... Valve, 16, 16'... Rotary valve, 17a, 17b... Heater (EP ash passage heating device), 18... Pipeline, 20, 20'...Seal air box, 21...Seal air nozzle, 2
3, 23'...Valve, 24...Air valve, 25...Control box.

Claims (1)

【特許請求の範囲】[Claims] 1 硫安含有捕集灰を硫安含有捕集灰輸送通路に
供給する装置と、硫安含有捕集灰輸送通路をほぼ
110℃乃至270℃に加熱する加熱装置と、硫安含有
捕集灰を送出する排出口に設けたエアー供給装置
とよりなり、硫安含有捕集灰排出口に供給するほ
ぼ110〜270℃のエアー量を、硫安含有捕集灰を流
動層炉に供給しているときは少なく、その供給停
止時には大きくする装置を設け、該エアー供給装
置を炉内開口端に設けた遮蔽板と、開口端に設け
た複数のシールエアーノズルを囲むシールエアー
ボツクスとで構成したことを特徴とする流動層炉
への硫安含有捕集灰供給装置。
1. A device that supplies ammonium sulfate-containing collected ash to the ammonium sulfate-containing collected ash transport passage, and a device that supplies ammonium sulfate-containing collected ash transport passage
It consists of a heating device that heats to 110℃ to 270℃ and an air supply device installed at the outlet that sends out the ammonium sulfate-containing collected ash, and the amount of air at approximately 110 to 270℃ is supplied to the ammonium sulfate-containing collected ash outlet. When ammonium sulfate-containing collected ash is being supplied to the fluidized bed furnace, the air is small, and when the supply is stopped, a device is installed to increase the air supply. and a sealed air box surrounding a plurality of sealed air nozzles.
JP2651478A 1978-03-10 1978-03-10 Method and apparatus for feeding ep ash to incinerator Granted JPS54119775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2651478A JPS54119775A (en) 1978-03-10 1978-03-10 Method and apparatus for feeding ep ash to incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2651478A JPS54119775A (en) 1978-03-10 1978-03-10 Method and apparatus for feeding ep ash to incinerator

Publications (2)

Publication Number Publication Date
JPS54119775A JPS54119775A (en) 1979-09-17
JPS6346326B2 true JPS6346326B2 (en) 1988-09-14

Family

ID=12195579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2651478A Granted JPS54119775A (en) 1978-03-10 1978-03-10 Method and apparatus for feeding ep ash to incinerator

Country Status (1)

Country Link
JP (1) JPS54119775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129219U (en) * 1990-04-11 1991-12-25
WO2013146597A1 (en) * 2012-03-26 2013-10-03 月島機械株式会社 Activation method for pressurized fluidized furnace system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983261A (en) * 1972-12-19 1974-08-10
JPS51111501A (en) * 1975-03-26 1976-10-01 Babcock Hitachi Kk Coal-burning boiler
JPS53860A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Rotary contacts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983261A (en) * 1972-12-19 1974-08-10
JPS51111501A (en) * 1975-03-26 1976-10-01 Babcock Hitachi Kk Coal-burning boiler
JPS53860A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Rotary contacts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129219U (en) * 1990-04-11 1991-12-25
WO2013146597A1 (en) * 2012-03-26 2013-10-03 月島機械株式会社 Activation method for pressurized fluidized furnace system
JP2013200086A (en) * 2012-03-26 2013-10-03 Tsukishima Kikai Co Ltd Start-up method of pressure fluidized bed furnace system

Also Published As

Publication number Publication date
JPS54119775A (en) 1979-09-17

Similar Documents

Publication Publication Date Title
JPH0449164Y2 (en)
CN105944564A (en) Coke oven flue gas waste heat recycling, desulfuration and denitration integrated system and method
US7588440B2 (en) Carrier air heating system for SCR
CZ297796A3 (en) Purification of gas combustion products and apparatus for making the same
PT1339479E (en) Selective catalytic reduction of nox, enabled by side stream urea decomposition
CN113864789A (en) Incineration system for treating sulfur-containing, nitrogen-containing and salt-containing waste liquid
JP2000093741A (en) Method for removing nitrogen oxide from flue gas
JPS6346326B2 (en)
SK68397A3 (en) Sponge iron production process and plant
JPS617389A (en) Powder solid fuel gasification apparatus
JPS5876136A (en) Drain and sample extracting valve assembly for fluidized bed type reactor
JP3636589B2 (en) Exhaust gas denitration method and apparatus in gasification incineration facility
TW448273B (en) Process for the thermal treatment of solids
CN112403224B (en) CO oxidation and denitration system and method
JPH11165033A (en) Coal gasification complex power plant and formed gas treatment on abnormality thereof
CN205627638U (en) Coke oven smoke waste heat recovery utilization, desulfurization and denitration integration system
JPS5834025A (en) Removal of nitrogen oxides in exhaust gas
KR102116590B1 (en) Heat recovery steam generator
WO2023223591A1 (en) Waste incineration facility
KR20170022393A (en) Melting in incineration facilities of fluidized bed pyrolysis how thermal cracking and driving conditions of the Swirling Entrained Bed Type
JPS6226404A (en) Reducing method for nitrogen oxides concentration in burnt exhaust gas
JP2719447B2 (en) Supply method of secondary combustion air to refuse incinerator in refuse incineration equipment
JPH02606B2 (en)
JPS6349603A (en) Heating furnace facility
JPS6255054B2 (en)