JPS6346293A - Controlling method for outlet temperature of cracking furnace - Google Patents

Controlling method for outlet temperature of cracking furnace

Info

Publication number
JPS6346293A
JPS6346293A JP18994986A JP18994986A JPS6346293A JP S6346293 A JPS6346293 A JP S6346293A JP 18994986 A JP18994986 A JP 18994986A JP 18994986 A JP18994986 A JP 18994986A JP S6346293 A JPS6346293 A JP S6346293A
Authority
JP
Japan
Prior art keywords
raw material
outlet temperature
value
feed rate
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18994986A
Other languages
Japanese (ja)
Inventor
Atsushi Mito
水戸 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP18994986A priority Critical patent/JPS6346293A/en
Publication of JPS6346293A publication Critical patent/JPS6346293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To automatically correct outlet temperature, by obtaining the present theoretical value of fuel feed rate from the relationship between the raw material feed rate and the fuel feed rate in assuming that there is no coking and estimating the coking amount from the difference between the theoretical value and the observed value of the present fuel. CONSTITUTION:In a cracking furnace for thermally cracking raw material naphtha and delivering the resultant cracked gas to a purification system, the theoretical value of the fuel feed rate at the present feed rate of the raw material is obtained on the basis of the relationship between the raw material feed rate and the fuel feed rate in assuming that there is no coking. The coking amount is estimated from the difference between the theoretical value and the observed value to correct the set value of the above-mentioned outlet temperature by a correction factor based on the estimated value. Thereby the fluctuation of thermal conductivity is automatically corrected to carry out control of the outlet temperature of the thermal cracking furnace.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はエチレンプラント中の分解炉の操業にとって最
も重要な出口温度の1−制御方法の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in the control method of the outlet temperature, which is most important for the operation of a cracking furnace in an ethylene plant.

〈従来技術〉 エチレンプラントの最初の工程である分解炉から抽出さ
れる複数の生成物の割合は、分解炉の温度によって変動
する。従って、目的とする成分の収率を最大にする操業
のためには分解炉の出口温度管理は極めて11要である
<Prior Art> The ratio of multiple products extracted from the cracking furnace, which is the first step in an ethylene plant, varies depending on the temperature of the cracking furnace. Therefore, in order to operate to maximize the yield of the target components, it is extremely important to control the temperature at the outlet of the cracking furnace.

第2図は、分解炉の出口温度のill Ill装置の従
来構成図である。1は分解炉であり、201は分解炉上
部に配置された第1分解管路、202は下部に配置され
た第2分解管路、203は第1.第2分解管路の接続管
路であり、分解炉の外部において蒸気の入力を受ける。
FIG. 2 is a conventional configuration diagram of an ill device for controlling the exit temperature of a cracking furnace. 1 is a cracking furnace, 201 is a first cracking pipe line arranged at the upper part of the cracking furnace, 202 is a second cracking pipe line arranged at the lower part, 203 is a first cracking pipe line arranged at the lower part. This is a connecting pipe for the second cracking pipe and receives steam input outside the cracking furnace.

3は前段のプロセスよりの原料ナフナNの供給管路であ
り、第1分解管路201の入力部に接続される。4は蒸
気Sの供給管路であり、接続管路203の部分において
上記を原料に混合される。
3 is a supply pipe for the raw material Nafuna N from the previous process, and is connected to the input part of the first decomposition pipe 201. 4 is a supply pipe for steam S, and the above is mixed with the raw material in the connecting pipe 203.

5は燃料Fの供給管路であり、第2分解管路を加熱する
ためのバーナー6に接続される。
5 is a fuel F supply pipe, which is connected to a burner 6 for heating the second decomposition pipe.

7は出力管路であり、第2分解管路を経た分解ガスを次
の冷却工程に移送する。本発明は、この出力管路に於け
る出口温度の制クリに関する。
Reference numeral 7 denotes an output pipe, which transports the cracked gas that has passed through the second cracking pipe to the next cooling step. The present invention relates to controlling the outlet temperature in this output line.

8は出口温1真センサーでPV+はその測定値、9は燃
料Fの供給量制御弁、10は出口温度調節計テアリ、m
 定’m P V + トm 11[gfJ定[ISV
+のI差を制御噴口して操作出力M V +を供給量制
御弁9に与えて、出口温度が設定値に追従するように燃
料Fの供給量をυIIXIする。
8 is the outlet temperature 1 true sensor, PV+ is its measured value, 9 is the fuel F supply amount control valve, 10 is the outlet temperature controller, m
constant'm PV + tom 11[gfJ constant[ISV
The +I difference is controlled by the nozzle and the operating output M V + is given to the supply amount control valve 9, and the supply amount of the fuel F is υIIIXI so that the outlet temperature follows the set value.

11は原料Nの供給量センサーでPV2はその測定値、
12は原料Nの供給量制御弁、13は原料供給量調節計
であり、測定値PV2と供給同設定W1S V 2の偏
差を制御演算して操作出力M V 2を供給ffi制御
弁12に供給して、供給原料が設定値に追従するように
供給ffi制御弁を操作する。
11 is a sensor for the supply amount of raw material N, and PV2 is its measured value,
12 is a feed rate control valve for raw material N, and 13 is a raw material feed rate regulator, which controls and calculates the deviation between the measured value PV2 and the supply setting W1S V2, and supplies the manipulated output M V 2 to the supply ffi control valve 12. Then, the feed ffi control valve is operated so that the feedstock follows the set value.

14は原料の密度センサーであり、その測定値P V 
3は指示計15に導かれると共に、原料供給ffl調節
計13に導かれて供給ffi測定値P V 2の密度補
正が実行される。
14 is a raw material density sensor, and its measured value P V
3 is led to the indicator 15 and also to the raw material supply ffl controller 13, where density correction of the supply ffi measured value P V 2 is executed.

16は蒸気Sの供給量センサーでP V aはその測定
値、17は蒸気Sの供給量制御弁、18は蒸気供給量調
節計であり、測定値PV4と供給量設定値S V aの
Iii差を制@演痒して操作出力M V aを供給ff
i Ill tlo弁17に供給して、蒸気供給量が設
定めに追従するように供剖1す部片を操作する。
16 is a steam S supply amount sensor, P V a is its measured value, 17 is a steam S supply amount control valve, and 18 is a steam supply amount controller, which measures the measured value PV4 and the set supply amount S V a. Control the difference and supply the manipulated output M V aff
i Ill tlo valve 17 and operate the dissection piece so that the steam supply follows the setting.

19は比率設定器で、原料供給量測定値P V 2に対
して一定の比率Rを掛けて蒸気供給量の設定fill 
S V 4を演算し、蒸気供給量調節計18に設定する
。20は原料供給量の設定ffl S V 2を設定す
る設定器である。
19 is a ratio setting device, which sets the steam supply amount by multiplying the raw material supply amount measurement value P V 2 by a constant ratio R.
S V 4 is calculated and set in the steam supply amount controller 18. 20 is a setting device for setting the raw material supply amount setting fflSV2.

各管路3.4.5.7においてにおいてA、B。A, B in each conduit 3.4.5.7.

C,Dで示した記号は、同一構成のf、11 till
計が4系列並列接続されている構成を表し、このうち△
系列のみが図示されている。
Symbols shown as C and D have the same structure f, 11 till

Only series are shown.

この様な構成において、分解温度は800℃強に設定さ
れる場合が多く、出口温度によって各成分の生成量が変
わるため、下流側のi要により設定温度が決定される。
In such a configuration, the decomposition temperature is often set at a little over 800° C., and since the amount of each component produced changes depending on the outlet temperature, the set temperature is determined by the requirements on the downstream side.

さらに、蒸気供給ffi Q sと原料供給ff1QN
の比Q s / Q Nを比率!制御系により定値制御
しておけば、出口2HIfiTは原料供給量QNにより
一義的に決定できる性質を有する。
Furthermore, steam supply ffi Q s and raw material supply ff1QN
The ratio Q s / Q N is the ratio! If constant value control is performed by the control system, the outlet 2HIfiT has a property that can be uniquely determined by the raw material supply amount QN.

第3図は原料供給量QNと出口温度Tの関数関係を示す
特性図である。しかしながら、実際には理論式との差や
操11時間と共に分解管路内壁に発生する炭素の付着(
コーキング)が増加して熱伝達率αが変動するので、第
4図に示すように、コーキングの増加に伴なう熱伝達率
αの増加α1゜α2.αコ・・・αnに応じて関数関係
をX ! l X2 +X3・・・XTLのごとく変更
操作する必要が生じる。
FIG. 3 is a characteristic diagram showing the functional relationship between the raw material supply amount QN and the outlet temperature T. However, in reality, there is a difference with the theoretical formula, and carbon adhesion occurs on the inner wall of the cracking pipe after 11 hours of operation.
Since the heat transfer coefficient α changes as the amount of coking increases, as shown in FIG. 4, the heat transfer coefficient α increases α1°α2. αco...The functional relationship is X according to αn! l X2 +X3... It is necessary to perform a change operation like XTL.

この様な関数関係の変更操作の一例を第2図により説明
する。211.212・・・217Lは熱伝達率α1.
α2・・・αnに対応した特性X + * X2 +・
・・Xuを演粋する折れ線閏数演輝手段であり、共通に
原料供給ffi設定値QNを入力し、各関数関係に従っ
た出口温度設定信号T+ 、T2・・・T1を発信する
An example of such a functional relationship changing operation will be explained with reference to FIG. 211.212...217L is the heat transfer coefficient α1.
α2...Characteristics corresponding to αn
. . . A polygonal leap number calculation means for extracting Xu, which commonly inputs the raw material supply ffi setting value QN and transmits outlet temperature setting signals T+, T2, . . . T1 according to each functional relationship.

22+ 、222・・・22mは折れ線関数演算手段の
出力T+ 、T2・・・Tnの保持手段であり、この保
持手段の出力n個が切り換え手段23により選択され、
出力ボート24を介して温度調節計10に設定till
 S V + として供給される。
22+, 222...22m are holding means for the outputs T+, T2...Tn of the polygonal function calculation means, and n outputs of this holding means are selected by the switching means 23,
Set till temperature controller 10 via output boat 24
Supplied as S V + .

25は補正係数設定器であり、手動操作により、補正(
数αマ、α2・・・α1を設定する事により、切り換え
手段23の保持手段の選択対象を操作する操作出力M 
V sを発信する。
25 is a correction coefficient setting device, which allows correction (
By setting the numbers α, α2...α1, the operation output M for manipulating the selection target of the holding means of the switching means 23
Send Vs.

オペレータは、操業時間、原料の供給量、成分。Operators can monitor operating hours, raw material supply, and ingredients.

出口温度などを監視して、適当と判断しIc時点で補正
係a設定器25を操作する。
The outlet temperature and the like are monitored, and if it is determined to be appropriate, the correction coefficient a setting device 25 is operated at the time of Ic.

〈発明が解決しようとする問題点〉 この様なオペレータの経験と肋に依存した補正係数の切
り換えによる操業では、勘の狂いなどによって生成物の
品質にバラツキがでたり、異常加熱により操業不可状態
となる可能性があった。
<Problems to be Solved by the Invention> In operations where correction coefficients are switched depending on the operator's experience and factors, the quality of the product may vary due to misunderstandings, or abnormal heating may cause an operational failure. There was a possibility that

本発明は、補正係数の設定を自動化することにより品質
のバラツキと異常加熱による操業不可の招来を回避した
制御方法の提供を目的とする。
An object of the present invention is to provide a control method that avoids variations in quality and operational failure due to abnormal heating by automating the setting of correction coefficients.

く問題点を解決するための手段〉 本発明方法の特徴は、原料ナフナを加熱分解して次段の
精製系へ分解ガスを送出する分解炉において、コーキン
グがないと仮定した場合の原料供給lと燃料供給間の関
係に基づいて現在の原料供給量l、−おける燃料供給量
の理論値を求め、この理論値と実測値との差よりコーキ
ング闇を推定し、この推定値に基づく補正係数により上
記出口温度の設定値を修正して熱伝達率の変紡を自動的
に補正することにある。
Means for Solving the Problems〉 The feature of the method of the present invention is that the raw material supply l, assuming that there is no coking, in the cracking furnace that thermally decomposes the raw naphna and sends the cracked gas to the next stage refining system. Find the theoretical value of the fuel supply amount at the current raw material supply amount l, - based on the relationship between and fuel supply, estimate the coking darkness from the difference between this theoretical value and the actual value, and calculate the correction coefficient based on this estimated value. The purpose is to automatically correct variations in heat transfer coefficient by correcting the set value of the outlet temperature.

く作用〉 本発明によれば、コーキングがないと仮定した場合の原
料供給量と燃料供給量との関係から、現在の原料供給量
における燃料供給量の理論値が求められ、この理論値と
現在の燃料の実測値との差からコーキング量が推定され
、この推定値に基づいて出口温度の設定値が自動的に修
正される。
According to the present invention, the theoretical value of the fuel supply amount at the current raw material supply amount is determined from the relationship between the raw material supply amount and the fuel supply amount assuming that there is no coking, and this theoretical value and the current The amount of coking is estimated from the difference between the measured value of the fuel and the set value of the outlet temperature is automatically corrected based on this estimated value.

〈実施例〉 第1図に基づいて本Rfl)の実M!1例を説明する。<Example> Based on Figure 1, the actual M! An example will be explained.

第2図で説明した要素と同一な構成要素については、同
一符号を付してその説明は省略する。
Components that are the same as those described in FIG. 2 are given the same reference numerals, and their description will be omitted.

ニーキングがないと仮定すると、第3図の特性を利用し
、原料供給量に基づいて出口温度を求める演算を実行す
ればよいので簡単であるが、現実にはコーキングが起こ
るので、第2図の様にn1llの折れ111rI111
!l演輝手段を必要とする。
Assuming that there is no kneeing, it is easy to use the characteristics shown in Figure 3 to calculate the outlet temperature based on the amount of raw material supplied, but in reality coking occurs, so the Like n1ll fold 111rI111
! l Requires a means of performance.

従来技術では、オペレータの手動操作によりこれら関数
演鐸手段の出力を切り換えて補正された出口温度の設定
値を求めていたが、本発明ではこの切り換えを自動的に
実行する方法を提供する。
In the prior art, the corrected outlet temperature set value was obtained by switching the outputs of these function calculation means manually by an operator, but the present invention provides a method for automatically performing this switching.

26はプログラム設定器であり、入力ボート27より補
正係数αを入力し、出力ボート28より補正された温麿
設定値Tを1りる。このプログロム設定器の機能は折れ
Iil関数演算手段であり、折れ線演痒手lR21+、
212・・・21vtの出力T+。
26 is a program setting device, which inputs the correction coefficient α from the input port 27 and outputs the corrected Onmaro set value T from the output port 28. The function of this program setting device is a polygonal function calculation means, which is a polygonal polygonal function calculation means.
212...21vt output T+.

T2・・・TTLによりその折点が常に更新されている
T2...The break point is constantly updated by TTL.

従って補正係数αが入力されると、補正された段定瀧a
丁をただちに且つ連続的に得ることができる。
Therefore, when the correction coefficient α is input, the corrected stage setting waterfall a
can be obtained immediately and continuously.

次に、補正係数αを推定方法について説明する。Next, a method for estimating the correction coefficient α will be explained.

コーキングがないと仮定した場合の原料供給量と燃料供
給量の関係は、第6図のようになる。
The relationship between the raw material supply amount and the fuel supply amount when it is assumed that there is no coking is shown in FIG. 6.

従って、この関係を利用すれば現在の原料供給ff1Q
Nが決まると、コーキングがない場合の必要燃料供給1
1Qpを求めることができる。一般にツーキング生成聞
に比例して出口温度の設定値を増加修正する補正は、燃
料の供給量を増加修正する即ち、燃料の増加文は、コー
キングの生成mと比例関係にあるので、コーキングがな
い場合の理論的な燃料供給量と実際の燃料流量の差を取
ることによりコーキングはを推定することが可能となる
Therefore, using this relationship, the current raw material supply ff1Q
Once N is determined, the required fuel supply without coking 1
1Qp can be found. In general, the correction that increases the set value of the outlet temperature in proportion to the amount of coking produced increases the amount of fuel supplied. In other words, the increase in fuel is proportional to the amount of coking produced, so there is no coking. Coking can be estimated by taking the difference between the theoretical fuel supply amount and the actual fuel flow rate.

そこで折れ線関数m算手段29を用いて、第5図の関係
、すなわち原料供給ff1QNに対する燃料供給量の理
論値QFを求めておく。一方、現在の燃料供給量は、燃
料供給管路5に挿入された流柵センサー30により測定
WJ P V 5として求められ、この測定値は指示計
31を経由して減鋒器32に導かれて上記理論値Q%と
減桿される。
Therefore, the relationship shown in FIG. 5, that is, the theoretical value QF of the fuel supply amount with respect to the raw material supply ff1QN is determined using the polygonal line function m calculation means 29. On the other hand, the current fuel supply amount is determined as a measurement WJ P V 5 by a flow fence sensor 30 inserted into the fuel supply pipe 5, and this measured value is led to a detensioner 32 via an indicator 31. It is reduced to the above theoretical value Q%.

減碑器32の出力Xは、 x−Q%−PV5 と表され、これがレンジ合わせのための関数演算器33
に導かれ、 α−ax+bの演算が実行され、コーキング量に関連し
た補正係数αが演算されプログラム設定器26の入力ボ
ート27に入力される。プログラム設定器26は閏a*
算手段の出カポインド11゜T2・・・TTIを直線で
枯ぶ機能を有するため、連続的な補正係数αの入力に対
して連続的な温a段定1iflTを得ることが可能であ
る。
The output X of the subtraction device 32 is expressed as x-Q%-PV5, and this is expressed as
, a calculation of α-ax+b is executed, and a correction coefficient α related to the amount of coking is calculated and input to the input port 27 of the program setting device 26. The program setting device 26 is a leap a*
The output point 11°T2 of the calculating means has the function of depleting the TTI in a straight line, so it is possible to obtain a continuous temperature a stage setting 1iflT in response to a continuous input of the correction coefficient α.

〈発明の効果〉 以上説明したように、本発明によれば従来オペレータの
経験と勘に基づいて切り換えていた熱伝達率の補正操作
を不要とし、理論燃料供給量と現在の燃料供給ffiと
の差から推定される補正係数αに基づいて自動的に出口
温度の設定値を補正することが可能となり、製品の品質
の向上と異常加熱による操業停止の危険を未然に防止す
ることが出来る。
<Effects of the Invention> As explained above, according to the present invention, it is no longer necessary to correct the heat transfer coefficient, which was conventionally changed based on the operator's experience and intuition, and it is possible to change the theoretical fuel supply amount and the current fuel supply ffi. It becomes possible to automatically correct the set value of the outlet temperature based on the correction coefficient α estimated from the difference, and it is possible to improve the quality of the product and prevent the risk of operation stoppage due to abnormal heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用した出口温度$り御装置の実
施例を示す構成図、第2図は従来技術の一例を示す構成
図、第3図、第4図はその動作説明図、第5図は原料供
給量に対する燃料供給量の理論値の関係を示ず特性図で
ある。 1・・・分解炉  201・・・第1分解管路  20
2・・・第2分wE管路  3・・・原料供給管路  
4.・、蒸気供給管路  5・・・燃料供給管路  6
・・・バーナ7・・・出力管路  8・・・出口4麿セ
ンサー9・・・燃料供給量υJlll弁  10・・・
燃料供給ffi調節計  11・・・原料供給量センナ
−12・・・原料供給量制御弁  13・・・原料供給
ff1UA節計14・・・原料fi度廿ンサー  15
・・・密度指示計16・・・蒸気供給間センサー  1
7・・・蒸気供給量1ilI1111か  18・・・
蒸気供給量調節計  19・・・比率設定器  21t
〜21u・・・折れam数演痺手段  26・・・プロ
グラム設定器  29・・・折れ線閏数演口手段  3
0・・・流mセンサー  31・・・指示:132・・
・減弾器  33・・・関数演桿器第3図 第4図
FIG. 1 is a block diagram showing an embodiment of an outlet temperature control device to which the method of the present invention is applied, FIG. 2 is a block diagram showing an example of a conventional technique, and FIGS. 3 and 4 are diagrams explaining its operation. FIG. 5 is a characteristic diagram that does not show the relationship between the theoretical value of the fuel supply amount and the raw material supply amount. 1... Decomposition furnace 201... First cracking pipe line 20
2... 2nd minute wE pipe line 3... Raw material supply pipe line
4.・, Steam supply pipe 5...Fuel supply pipe 6
...Burner 7...Output pipe 8...Outlet 4 Sensor 9...Fuel supply amount υJllll valve 10...
Fuel supply ffi controller 11... Raw material supply amount sensor 12... Raw material supply amount control valve 13... Raw material supply ff1UA saving meter 14... Raw material fi degree sensor 15
... Density indicator 16 ... Steam supply sensor 1
7... Steam supply amount 1ilI1111 18...
Steam supply amount controller 19...Ratio setting device 21t
~21u...Folded am number performance means 26...Program setting device 29...Folded line interleave number performance means 3
0...Flow m sensor 31...Instruction: 132...
・Bullet reduction device 33...Function rod Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 原料ナフナを加熱分解して次段の精製系へ分解ガスを送
出する分解炉において、コーキングがないと仮定した場
合の原料供給量と燃料供給量の関係に基づいて現在の原
料供給量における燃料供給量の理論値を求め、この理論
値と実測値との差よりコーキング量を推定し、この推定
値に基づく補正係数により上記出口温度の設定値を修正
して熱伝達率の変動を自動的に補正することを特徴とす
る熱分解炉の出口温度制制御方法。
In a cracking furnace that thermally decomposes raw material Nafuna and sends the cracked gas to the next stage refining system, the fuel supply at the current raw material supply amount is based on the relationship between the raw material supply amount and fuel supply amount assuming that there is no coking. The amount of coking is estimated from the difference between the theoretical value and the measured value, and the set value of the outlet temperature is corrected using a correction coefficient based on this estimated value to automatically compensate for fluctuations in the heat transfer coefficient. A method for controlling outlet temperature of a pyrolysis furnace, characterized by correcting the temperature.
JP18994986A 1986-08-13 1986-08-13 Controlling method for outlet temperature of cracking furnace Pending JPS6346293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18994986A JPS6346293A (en) 1986-08-13 1986-08-13 Controlling method for outlet temperature of cracking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18994986A JPS6346293A (en) 1986-08-13 1986-08-13 Controlling method for outlet temperature of cracking furnace

Publications (1)

Publication Number Publication Date
JPS6346293A true JPS6346293A (en) 1988-02-27

Family

ID=16249892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18994986A Pending JPS6346293A (en) 1986-08-13 1986-08-13 Controlling method for outlet temperature of cracking furnace

Country Status (1)

Country Link
JP (1) JPS6346293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998013A (en) * 2012-11-27 2013-03-27 清华大学 Soft sensing method for true temperature of pyrolysis mixed products at outlet of ethylene cracking furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998013A (en) * 2012-11-27 2013-03-27 清华大学 Soft sensing method for true temperature of pyrolysis mixed products at outlet of ethylene cracking furnace

Similar Documents

Publication Publication Date Title
CN104633698B (en) System and method for automatically controlling content of residual oxygen in regenerative heating furnace
CN101679879B (en) Ethylene furnace radiant coil decoking method
DE102006008484A1 (en) Fuel gas calorie control method and apparatus
KR890005133B1 (en) Process heater control
CN103207632B (en) Control system and control method for coal gas mixed pressure regulating
JPS6346293A (en) Controlling method for outlet temperature of cracking furnace
KR0177201B1 (en) Thermal decoking of cracking ovens and coolers
US4144997A (en) Control of multiple fuel streams to a burner
JPS62278618A (en) Control method for exit temperature of cracker
US3319887A (en) Multi-zone furnace temperature and atmosphere control
JPH07206401A (en) Control method of hydrogen producing apparatus and its device
CN105045303B (en) The control method of reaction raw materials flow in a kind of polysilicon production process
JPS63153315A (en) Control of combustibility of fuel gas and its device
JP3521455B2 (en) Temperature control system for glass melting tank
CN110205147A (en) Coke oven heating coal gas single tube intelligence control system
US4598669A (en) Control of a system for supplying heat
JPS5867831A (en) Method for heating steel strip in direct firing type heating furnace
US5846340A (en) Process for preparing a heat treatment atmosphere and method for regulating said process
JPH03243694A (en) Multibranch control method for gas/liquid mixed phase fluid
JP3337185B2 (en) Hybrid control method
JP3046467B2 (en) Heating furnace heating control method
JPS6077415A (en) Process control apparatus for semiconductor vapor growth apparatus
SU1373717A1 (en) Method of automatic control of single-flow two-chamber tube furnace
JPH03113201A (en) Method and apparatus for controlling boiler
SU952946A1 (en) Device for automatically controlling heating of tubular multiple stream reactor