JPS6346152A - Medical tube and its production - Google Patents
Medical tube and its productionInfo
- Publication number
- JPS6346152A JPS6346152A JP61185165A JP18516586A JPS6346152A JP S6346152 A JPS6346152 A JP S6346152A JP 61185165 A JP61185165 A JP 61185165A JP 18516586 A JP18516586 A JP 18516586A JP S6346152 A JPS6346152 A JP S6346152A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- polyurethane
- vacuole
- tube wall
- core rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 210000003934 vacuole Anatomy 0.000 claims description 53
- 229920002635 polyurethane Polymers 0.000 claims description 50
- 239000004814 polyurethane Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 230000015271 coagulation Effects 0.000 claims description 23
- 238000005345 coagulation Methods 0.000 claims description 23
- 229920003226 polyurethane urea Polymers 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000002356 single layer Substances 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 description 65
- 239000000243 solution Substances 0.000 description 51
- 239000002473 artificial blood Substances 0.000 description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 229910001220 stainless steel Inorganic materials 0.000 description 27
- 239000010935 stainless steel Substances 0.000 description 27
- 210000001519 tissue Anatomy 0.000 description 21
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- -1 polytetrafluoroethylene Polymers 0.000 description 11
- 241000282472 Canis lupus familiaris Species 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- 238000007711 solidification Methods 0.000 description 9
- 230000008023 solidification Effects 0.000 description 9
- 230000002785 anti-thrombosis Effects 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 208000007536 Thrombosis Diseases 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 230000003872 anastomosis Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000001226 reprecipitation Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241001111421 Pannus Species 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 230000001112 coagulating effect Effects 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- FCAJYRVEBULFKS-UHFFFAOYSA-N 2-(oxolan-2-yl)ethanol Chemical compound OCCC1CCCO1 FCAJYRVEBULFKS-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 238000011888 autopsy Methods 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 230000002308 calcification Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 210000001105 femoral artery Anatomy 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QAXZWHGWYSJAEI-UHFFFAOYSA-N n,n-dimethylformamide;ethanol Chemical compound CCO.CN(C)C=O QAXZWHGWYSJAEI-UHFFFAOYSA-N 0.000 description 2
- 229920006264 polyurethane film Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- 206010040102 Seroma Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000013040 bath agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 210000003090 iliac artery Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001291 polyvinyl halide Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、医療用チューブ及びその製造方法に関し、更
に詳しくは血液適合性に優れた医療用チューブ、特に人
工血管に適したチューブ及びその製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a medical tube and a method for manufacturing the same, and more particularly to a medical tube with excellent blood compatibility, particularly a tube suitable for artificial blood vessels, and a manufacturing method thereof. Regarding the method.
[従来技術及びその問題点]
従来、熱可塑性高分子化合物からなる医療用チューブの
製造方法としては、高分子化合物を加熱溶融して押出す
方法(以下「溶融押出し法」という)、丸棒状の型の上
に必要な厚さのボリマ一層が形成されるまでポリマー溶
液に繰り返しディッピングする方法(以下「デイツプ法
」という)及び環状オリフィスから高分子化合物の溶液
を押出し、環状オリフィスの中央から内部凝固液を押出
しつつ全体を外部凝固液に浸す方法(特開昭60−18
8164号公報)が知られている。[Prior art and its problems] Conventionally, methods for manufacturing medical tubes made of thermoplastic polymer compounds include a method of heating and melting a polymer compound and extruding it (hereinafter referred to as "melt extrusion method"), A method of repeatedly dipping into a polymer solution until a single layer of polymer of the required thickness is formed on the mold (hereinafter referred to as the "dipping method"), and a method of extruding a solution of a polymer compound from an annular orifice and internal solidification from the center of the annular orifice. A method of immersing the entire body in an external coagulating liquid while extruding the liquid (Japanese Patent Application Laid-Open No. 60-18
No. 8164) is known.
しかしながら、これらの方法で再現性よく血液適合性を
長期に亘って示す医療用チューブを得ることができず、
殊に6脂■以下の内径を有する人工血管で満足に使用で
きる製品はまだない。However, with these methods, it has not been possible to obtain medical tubes that exhibit blood compatibility with good reproducibility over a long period of time.
In particular, there is no product yet that can be satisfactorily used in artificial blood vessels having an inner diameter of 6 mm or less.
即ち、溶融押出し法により得たチューブは、平滑な内外
面を形成し、チューブの壁全体が緻密な構造となり任意
に制御することができない、また当然のことながら、縫
合時の針のとおりが悪いという実用上大きな問題点があ
る。このようなチューブを血液や周囲の組織との長期に
わたる適合性を要求される人工血管のような用途に適用
すると、ポリウレタンやポリウレタンウレアのように抗
血栓性の優れた材料を用いても望ましい成績を得られな
い、即ち、移植期間が長くなると、経時的に石灰化がお
こり結果としてその周辺に血栓が多量に生成してしまう
、また、このような平滑な内面を持ったチューブを人工
血管として使用した時には、生体側の血管の断端から伸
びる内膜組織が人工血管の内面に安定に生着せずに剥離
を起こすので、その部分で流れの乱れが発生して血栓を
生じ、再びそれが組織化することにより内膜の肥厚が起
ることが知られている。In other words, tubes obtained by melt extrusion have smooth inner and outer surfaces, and the entire wall of the tube has a dense structure that cannot be controlled arbitrarily, and, of course, the needle does not go well when suturing. There is a big practical problem. When such tubes are applied to applications such as artificial blood vessels that require long-term compatibility with blood and surrounding tissue, desirable results can be obtained even when using materials with excellent antithrombotic properties such as polyurethane and polyurethane urea. In other words, if the transplant period is prolonged, calcification will occur over time, resulting in the formation of a large amount of blood clots around the calcification. When used, the intimal tissue extending from the stump of the blood vessel on the living side does not adhere stably to the inner surface of the artificial blood vessel and detaches, causing flow disturbances in that area and forming a thrombus, which can then occur again. It is known that thickening of the intima occurs due to organization.
デイツプ法では、寸法の精度が低く肉厚にムラができる
上に壁の構造が多層状となり存意に再現性よく制御する
ことができない、即ち、デイツプ毎に型上に塗布された
ポリウレタン溶液の溶媒蒸発を均一にコントロールする
ことができないため構造に均一性を欠き、信頼性の高い
製品を得ることができない。In the dip method, the dimensional accuracy is low, the wall thickness is uneven, and the wall structure is multilayered, making it impossible to control it with good reproducibility. Since solvent evaporation cannot be uniformly controlled, the structure lacks uniformity, making it impossible to obtain highly reliable products.
特開昭60−188164号公報記載の方法は木質的に
高分子化合物の溶液の凝固を内外の両面から行うことに
特徴を有しているが、従来の中空繊維膜の製造方法と何
等変わりがなく、チューブの内側と外側とから凝固が進
むので両面にスキン層を持つ物しかできない、また、こ
の方法では、凝固がチューブが変形を起こさぬような状
態まで進むのに長時間を要するので、形態安定性の悪い
内径の大きなチューブを製造しようとすると、引き取り
の過程で変形や凝固のムラが起こりやすく、実際には径
が1〜2mmをこえると成形チューブはいびつになって
しまうという欠点がある。The method described in JP-A-60-188164 is characterized in that the solution of the polymeric compound is coagulated from both the inside and outside of the wood, but it is no different from the conventional method for producing hollow fiber membranes. Since solidification proceeds from the inside and outside of the tube, only products with skin layers on both sides can be produced.Also, with this method, it takes a long time for the solidification to proceed to a state where the tube does not deform. When trying to manufacture tubes with large inner diameters that have poor shape stability, deformation and uneven solidification tend to occur during the drawing process, and in reality, if the diameter exceeds 1 to 2 mm, the formed tubes will become distorted. be.
また、内径7mm以下の人工血管では、生体血管との接
合性が重要であり、物性の微妙な制御が開存成績の向上
のために不可欠である。殊に縫合の際に生体血管と人工
血管の内面同志がスムースにつながるための適当な柔軟
性が必要である。更に縫合針の通りがよいことが縫合性
を高め、開存成績に大きな影響をもつ、即ち、吻合性が
よいことは、生体血管との連結部分の流路を好ましい形
状にするためにきわめて重要である。また、人工血管は
半永久的に使用されるので、1日10万回以上の血圧に
よる拍動負荷に壁膜が耐えねばならぬことは勿論のこと
、応力集中点となる縫い目が徐々に拡張したり裂けたり
しないことが基本的に必要な性質である。Furthermore, for artificial blood vessels with an inner diameter of 7 mm or less, bondability with biological blood vessels is important, and delicate control of physical properties is essential for improving patency results. In particular, appropriate flexibility is required to smoothly connect the inner surfaces of the living blood vessel and the artificial blood vessel during suturing. In addition, good passage of the suture needle improves suturing performance and has a large effect on patency results. In other words, good anastomotic performance is extremely important for creating a desirable shape of the flow path at the connection with the biological blood vessel. It is. In addition, since artificial blood vessels are used semi-permanently, the wall membrane must withstand the pulsating load of blood pressure over 100,000 times a day, and the seams that serve as stress concentration points gradually expand. The basic property is that it does not tear or tear.
ポリ四フッ化エチレンをチューブ状に成形した後、延伸
して微細な繊維状構造を持たせた人工血管が従来から使
用されているが、これらはポリエステル#a雄を編織し
たチューブにヒダをつけた人工血管に比べて抗血栓性は
改良されているが、針の通りが悪く、針穴からの出血が
起る等の問題がある上に、生体血管との接合性に改善の
余地がある。Artificial blood vessels have been used that are made by forming polytetrafluoroethylene into a tube and then stretching it to give it a fine fibrous structure. Although the antithrombotic properties have been improved compared to artificial blood vessels, there are problems such as poor needle passage and bleeding from the needle hole, and there is still room for improvement in connection with biological blood vessels. .
人工血管のうち、殊に7I1層以下、とり分け6m思以
下の内径ではその開存成績は臨床的に満足・に使用でき
る物は存在しなかった。前記のポリ四フッ化エチレンを
多孔質にした物が限られた用途に使われているにすぎず
、1年以上の開存率は不満足な成績であるため、より開
存性の優れた人工血管の開発が望まれている。開存成績
向上のためには、素材の抗血栓性を改善することがまず
必要不可欠である。更に人工血管として必要な前記の力
学的性質を付与しなければならない0次に長期の開存性
に優れた管壁の構造を保持していなければならない、先
に述べたように緻密な構造の人工血管は長期にわたる開
存状態を維持できないことは実験的に多くのデータで示
されている。殊に内面に成長する内膜が安定に保持され
ず、成長と血流や屈曲による剥離が繰返されている。と
り分は生体血管との連結部分ではパンヌスの異常な成長
が起こったり、これが血流の乱れの原因となって血栓が
成長し、徐々に組織化して吻合部の狭窄にいたる、内膜
の安定な生着のためには、内面にスキン層がなく1〜1
00、好ましくは3〜20ミクロンの直径を持つへこみ
があり、かつ、このへこみが管壁内部の空胞まで貫通し
ていることが好ましい、従って、このような少くとも内
面にスキン層を持たない構造を有する人工血管は、公知
の環状オリフィスを用いて内外両面から凝固させる方法
では作ることができない。Among artificial blood vessels, there was no one with an inner diameter of 7I1 layer or less, especially one with an inner diameter of 6 m or less, whose patency results were clinically satisfactory and usable. The above-mentioned porous polytetrafluoroethylene is only used for limited purposes, and the patency rate for more than one year is unsatisfactory. The development of blood vessels is desired. In order to improve patency results, it is essential to improve the antithrombotic properties of the material. Furthermore, it must provide the above-mentioned mechanical properties necessary for an artificial blood vessel, and it must maintain a vessel wall structure with excellent long-term patency, and as mentioned above, it must have a dense structure. A large amount of experimental data has shown that artificial blood vessels cannot maintain their patency over a long period of time. In particular, the intima that grows on the inner surface is not stably maintained, and it repeatedly grows and peels off due to blood flow and bending. In particular, abnormal growth of the pannus occurs at the connection with biological blood vessels, and this causes disturbances in blood flow, leading to thrombus growth, which gradually organizes and leads to stenosis of the anastomosis, and stabilization of the intima. For proper engraftment, there is no skin layer on the inner surface and 1 to 1
00, preferably with an indentation with a diameter of 3 to 20 microns, and preferably this indentation penetrates to the vacuole inside the tube wall, so that it does not have a skin layer on at least the inner surface of the tube. An artificial blood vessel having such a structure cannot be made by using a known method of coagulation from both the inside and outside using an annular orifice.
この問題点を回避するための方法として、例えば、特開
昭60−188165号が提案されている。即ち、溶液
中の造孔剤を混在させて成形した後、これを何等かの方
法で除去することにより、内面に緻密なスキン層の生じ
るのを防止する方法である。しかしながら、この方法で
は工程が極めて複雑になるのみならず、血管の素孔性が
高くなるという木質的な欠陥を伴う、即ち、管壁全体が
多孔質になるため血漿の浸出が起こり、セローマのよう
な合併症が予後を悪くしてしまう、同様の現象は前記の
ポリ四フッ化エチレンの人工血管でも頻繁に発生し、ひ
いては感染症をひき起こし再移植を余儀なくされること
は周知の事実である。As a method for avoiding this problem, for example, Japanese Patent Application Laid-Open No. 188165/1983 has been proposed. That is, this method prevents the formation of a dense skin layer on the inner surface by mixing a pore-forming agent in a solution, molding it, and then removing it by some method. However, this method not only makes the process extremely complicated, but also involves woody defects such as increased porosity of the blood vessel, i.e., the entire wall of the blood vessel becomes porous, causing plasma exudation and seroma formation. It is a well-known fact that similar complications that worsen the prognosis occur frequently with polytetrafluoroethylene artificial blood vessels, which can lead to infections and necessitate reimplantation. be.
更に血球成分の管壁からの漏れが起きぬような造孔剤を
使用すれば、人工血管内面での組織の安定な生着が望め
ないことはいうまでもない。Furthermore, it goes without saying that if a pore-forming agent is used that prevents blood cell components from leaking from the vessel wall, stable tissue engraftment on the inner surface of the artificial blood vessel cannot be expected.
人工血管としては、内面に内膜の安定な生着を促すよう
に管壁の内部まで貫通した穴を有し、かつ、外面には血
球は勿論、血漿をも通さないような緻密な構造を持って
いることが好ましい、このような構造に加うるに、力学
的に充分な強度と、初期血栓を少量にとどめ得る本質的
な抗血栓性、更に長期に生体に移植されても強い組織反
応の原因となったり生分解による劣化を起こさない材料
で形成されることが必要である。As an artificial blood vessel, it has a hole that penetrates into the inside of the vessel wall to promote stable engraftment of the intima on the inner surface, and a dense structure on the outer surface that prevents not only blood cells but also plasma from passing through. In addition to such a structure, it is desirable to have sufficient mechanical strength, essential antithrombotic properties that can keep the initial thrombus to a small amount, and strong tissue reaction even when transplanted into a living body over a long period of time. It is necessary that the material be made of a material that does not cause deterioration due to biodegradation or cause deterioration due to biodegradation.
本発明者らは前述した従来の医療用チューブの欠点を解
消するため、鋭意研究を重ねた結果、血液適合性に優れ
た医療用チューブ、とり分は開存性に優れた人工血管の
製造に成功し、本発明を完成するに至った。In order to eliminate the drawbacks of the conventional medical tubes mentioned above, the inventors of the present invention have conducted intensive research and have succeeded in manufacturing medical tubes with excellent blood compatibility, especially artificial blood vessels with excellent patency. This was a success and led to the completion of the present invention.
[発明の構成]
本発明の医療用チューブは、高分子化合物からなる単層
の医療用チューブであって、該チューブを構成する管壁
の内部組織が多孔質であり、該管壁の内面にはスキン層
が存在しないことを特徴とするものである。[Structure of the Invention] The medical tube of the present invention is a single-layer medical tube made of a polymer compound, and the internal structure of the tube wall constituting the tube is porous, and the inner surface of the tube wall is porous. is characterized by the absence of a skin layer.
前述した本発明の医療用チューブの一態様として、管壁
の内部組織が、空胞を構成する空胞壁が多数連続して繋
がった状態に構成され、該管壁の内面が該空胞壁が連続
して繋がったものから構成されているものが挙げられる
。前記空胞壁は前記空胞に比べて充分小さい孔を多数有
する多孔質のものであることが好ましく、このような構
成は後述の湿式法による製造方法を用いて凝固させるこ
とによって得られる0本発明の医療用チューブにおいて
空胞を構成する空胞壁はo、oig〜30ルの細かい孔
が存在するミクロなスポンジ状の構造をなしているので
、細胞が生育し易くて治癒効果も高い。As one embodiment of the medical tube of the present invention described above, the internal structure of the tube wall is configured such that a large number of vacuole walls constituting a vacuole are connected in series, and the inner surface of the tube wall is connected to the vacuole wall. An example of this is something that is made up of a series of . The vacuole wall is preferably porous and has a large number of pores that are sufficiently smaller than the vacuole. In the medical tube of the invention, the vacuole wall constituting the vacuole has a micro-sponge-like structure in which fine pores of 0.0 to 30 mm are present, so cells can easily grow there and the healing effect is high.
本発明の医療用チューブは、特殊な内部組織と、異質の
スキン構造を有さないので、優れたコンプライアンス(
力学的順応性)と、優れた生体適合性と、生育内皮・の
安定化とを達成することができる。このようにして本発
明は用いた材料本来の力学的特性、例えば強度及び耐疲
労性を保持し、移植後、経時的塑性変形を生じず、また
内部組織に緻密な部分が存在する従来の医療用チューブ
の剛直さがなく、優れた力学的特性、コンプライアンス
及び細胞生成安定性を併せもつ医療用チューブを初めて
提供し得たものである。The medical tube of the present invention has no special internal structure or foreign skin structure, so it has excellent compliance (
mechanical adaptability), excellent biocompatibility, and stabilization of the growing endothelium. In this way, the present invention maintains the original mechanical properties of the material used, such as strength and fatigue resistance, does not undergo plastic deformation over time after implantation, and has a dense internal tissue. This is the first time that we have been able to provide a medical tube that does not have the rigidity of medical tubes and has excellent mechanical properties, compliance, and cell production stability.
本発明の医療用チューブのうち、これを構成する管壁の
内部組織の全体に亘って、空胞を構成する空胞壁が多数
連続して繋がった状態に構成されたものでは、該空胞の
大きさは任意の断面における最大径の空胞の径(9,)
が該管壁の厚み(d)に対して、好ましくは、
0.005 d≦文≦0.9 d
の関係にあり、更に好ましくは、
0.01 d≦交≦0.8 d
の関係にある。なお、文が0.9 dを超えると、実
用的見地からみて力学的強度が低くて臨床使用に不安を
生じ、文が0.005 d未満では、好ましいコンプ
ライアンスが得られない。Among the medical tubes of the present invention, in the case where a large number of vacuole walls constituting vacuoles are continuously connected throughout the internal tissue of the tube wall constituting the tube, the vacuoles The size of is the diameter of the largest vacuole in any cross section (9,)
is preferably in the relationship of 0.005 d≦min≦0.9 d, and more preferably in the relationship of 0.01 d≦cross≦0.8 d with respect to the thickness (d) of the tube wall. be. Note that if the length exceeds 0.9 d, the mechanical strength is low from a practical standpoint, causing concerns about clinical use, and if the length is less than 0.005 d, preferred compliance cannot be obtained.
本発明に医療用チューブのいまひとつの特長は縫合性が
極めてよいことである0M合性の良否はしばしば移植血
管の開存性に影響し、縫合状態が悪いとそこに血流の乱
れを生じて血栓生成の引金となり、このために移植血管
の閉塞をもたらす。Another feature of the medical tube of the present invention is that it has extremely good suturing properties.The quality of the 0M coaptation often affects the patency of the transplanted blood vessel, and poor suturing conditions can cause disturbances in blood flow there. It triggers thrombus formation and thus results in occlusion of the graft vessel.
本発明の如く、チューブを高分子化合物で構成し、管壁
の内部組織を多孔質とすることによって、適度の伸びと
組織の柔軟性とが相まって縫合針が通り易くて縫合し易
くなり、スムースに宿主血管に吻合させることができる
。As in the present invention, by constructing the tube from a polymer compound and making the internal tissue of the tube wall porous, the combination of appropriate elongation and flexibility of the tissue makes it easy for the suture needle to pass through and suture, making it smooth. can be anastomosed to host blood vessels.
興味のあることは、管壁の内部組織が多孔質である人工
血管は縫合部から裂けることはなく、前記内部組織に緻
密部を含む従来のポリウレタン系人工血管のように縫合
した縫目から亀裂が生じる欠点が完全に解消されている
。また縫合した縫目から血液が漏れることもないのは興
味ある現象であり、これは本来のポリウレタン等の弾性
に加えて、空胞を構成する多数の空胞壁の幾重にも及ぶ
開孔効果によるものと思われる。It is interesting to note that artificial blood vessels whose internal tissue is porous do not tear from the sutures, but do not tear from the sutures like conventional polyurethane artificial blood vessels, which have a densified part in the internal tissue. The drawbacks caused by this have been completely eliminated. It is also an interesting phenomenon that blood does not leak from the sutured seams, and this is due to the inherent elasticity of polyurethane, as well as the effect of the many layers of the vacuole walls that make up the vacuole. This seems to be due to
本発明の医療用チューブを宿主血管に吻合させると、そ
の内部組織が両者で互いに連続した空胞組織となるため
に、吻合部からの細胞の侵入が容易であって、極めて噛
合部治癒性に優れ、また血管を構成する管壁の内面にス
キン層がないために、内皮細胞の生育に適していて生体
化も早く、このことは本発明の医療用チューブが極めて
優れた長期開存性を有する原因であろうと思われる。When the medical tube of the present invention is anastomosed to a host blood vessel, the internal tissue of both becomes a continuous vacuolar tissue, making it easy for cells to invade from the anastomosis, resulting in excellent healing of the occlusal area. In addition, since there is no skin layer on the inner surface of the tube wall that constitutes the blood vessel, it is suitable for the growth of endothelial cells and becomes biogenic quickly, which means that the medical tube of the present invention has extremely excellent long-term patency. This seems to be the cause.
本発明の医療用チューブを構成する管壁の断面における
空胞の分布において、外面に近い程空胞の大きさが小さ
くなるように構成すると、縫合部からの漏血を少くする
ことができて手術成績を著しく向上させることができる
。これは本発明の医療用チューブの製造時に、凝固を外
面からのみ行わせることによって達成される。In the distribution of vacuoles in the cross section of the tube wall constituting the medical tube of the present invention, if the size of the vacuoles is configured to be smaller as it approaches the outer surface, blood leakage from the sutured portion can be reduced. Surgical results can be significantly improved. This is achieved by allowing coagulation to occur only from the outside during manufacture of the medical tube of the invention.
本発明に用いる高分子化合物は、血液や組織との適合性
に優れた物質、即ち急性及び慢性の毒性、発熱性、溶血
性を持たず、長期に亘って移植しても周囲の組織に炎症
を惹起しないポリマーである。このようなポリマーとし
ては、例えばポリハロゲン化ビニル、ポリスチレン及び
その誘導体、ポリオレフィン系重合体、ポリエステル系
縮合体、セルロース系高分子、ポリウレタン系高分子、
ポリスルホン系樹脂、ポリアミド系高分子などが挙げら
れる。勿論これらを相互に含む共重合体や混合物でもよ
い、力学的性質や生体内での安定性、更に、抗血栓性の
面から見て、これらの中で好ましいのは、ポリウレタン
系のものである。The polymer compound used in the present invention is a substance that is highly compatible with blood and tissues, that is, it does not have acute or chronic toxicity, pyrogenicity, or hemolysis, and does not cause inflammation in surrounding tissues even after long-term implantation. It is a polymer that does not cause Examples of such polymers include polyvinyl halides, polystyrene and its derivatives, polyolefin polymers, polyester condensates, cellulose polymers, polyurethane polymers,
Examples include polysulfone resins and polyamide polymers. Of course, copolymers or mixtures containing these materials may also be used; polyurethane-based materials are preferred from the viewpoint of mechanical properties, in-vivo stability, and antithrombotic properties. .
その具体例としては、ポリウレタン、ポリウレタンウレ
ア、これらとシリコーンポリマーとのブレンド物又は相
互侵入網目構造を有するものが挙げられる。また、これ
らには、セグメント化ポリウレタン又はポリウレタンウ
レア、主鎖中にポリジメチルシロキサンを含むもの、ハ
ード、ソフトセグメントにフッ素を含むものを包含する
。生分解を受けにくいという点で、ポリエーテル型のポ
リウレタン又はポリウレタンウレアがポリエステル型よ
りも好ましい。Specific examples thereof include polyurethane, polyurethane urea, blends of these with silicone polymers, and those having an interpenetrating network structure. These also include segmented polyurethanes or polyurethane ureas, those containing polydimethylsiloxane in the main chain, and those containing fluorine in the hard and soft segments. Polyether-type polyurethane or polyurethane urea is preferable to polyester-type because it is less susceptible to biodegradation.
前記ポリウレタン等のポリエーテルセグメントを構成す
るポリエーテルとしてはポリテトラメチレンオキシドが
最も好ましいが、その他のポリアルキレンオキシド(但
しアルキレンの炭素数は2及び/又は3)も好ましい、
かかるポリアルキレンオキシドの具体例としては、ポリ
エチレンオキシド、ポリプロピレンオキシド、エチレン
オキシド−プロピレンオキシド共重合体又はブロック共
重合体がある。また同−主鎖中にポリテトラメチレンオ
キシドセグメントとポリアルキレンオキシド(但しアル
キレンの炭素数は2及び/又は3)とを含む親木性と力
学的特性とを兼ねそなえたポリウレタンを用いてもよい
、このポリウレタンは抗血栓性、生体適合性が群を抜い
て優れており、本発明者らの見出した新しいタイプの生
体適合性のよいポリウレタンである。The polyether constituting the polyether segment such as polyurethane is most preferably polytetramethylene oxide, but other polyalkylene oxides (however, alkylene has 2 and/or 3 carbon atoms) are also preferred.
Specific examples of such polyalkylene oxides include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymers, or block copolymers. Furthermore, a polyurethane having both wood-philicity and mechanical properties that contains a polytetramethylene oxide segment and a polyalkylene oxide (alkylene has 2 and/or 3 carbon atoms) in its main chain may also be used. This polyurethane has outstanding antithrombotic properties and biocompatibility, and is a new type of polyurethane with good biocompatibility discovered by the present inventors.
これらのソフトセグメントを形成するポリエーテルの分
子量は通常400〜3,000の範囲であり、好ましく
は450〜2,500、更に好ましくは500〜2,5
00の範囲であり、中でも最も優れたポリエーテルセグ
メントは分子量SOO〜2.500、特に分子量1,3
00〜2.000のポリテトラメチレンオキシド鎖であ
る。このポリエーテルソフトセグメントの分子量が3,
000を超えると、ポリウレタン人工血管の機械的性質
が劣悪となり、400未満では人工血管として成形して
も固すぎて使用できない。The molecular weight of the polyether forming these soft segments is usually in the range of 400 to 3,000, preferably 450 to 2,500, more preferably 500 to 2,500.
00, and the best polyether segments have molecular weights of SOO to 2.500, especially molecular weights of 1.3
00 to 2.000 polytetramethylene oxide chains. The molecular weight of this polyether soft segment is 3,
If it exceeds 000, the mechanical properties of the polyurethane artificial blood vessel will be poor, and if it is less than 400, it will be too hard to be used even if it is molded as an artificial blood vessel.
ポリウレタンの合成は、両末端水酸基の上述のポリエー
テルを、4.4′−ジフェニルメタンジイソシアネート
、トルイジンジイソシアネート、4.4′−ジシクロヘ
キシルメタンジイソシアネート、ヘキサメチレンジイソ
シアネートなど公知のポリウレタン合成に用いるジイソ
シアネートと反応させて末端インシアネートのプレポリ
マーをつくり、これをエチレンジアミン、プロピレンジ
アミン、テトラメチレンジアミンなどのジアミンや、エ
チレングリコール、フロピレンゲリコール、ブタジオー
ルのようなジオールで鎖延長する常法を用いて合成して
もよい。Synthesis of polyurethane is carried out by reacting the above-mentioned polyether with hydroxyl groups at both terminals with diisocyanates used in known polyurethane synthesis, such as 4,4'-diphenylmethane diisocyanate, toluidine diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and hexamethylene diisocyanate. It can also be synthesized using the conventional method of creating a prepolymer of terminal incyanate and extending the chain with diamines such as ethylene diamine, propylene diamine, and tetramethylene diamine, or diols such as ethylene glycol, propylene gelicol, and butadiol. good.
本発明の医療用チューブは、該チューブを構成する管壁
の内部組織が多孔質であり、かつ該管壁の内面にはスキ
ン層が存在しないので、本来の生体適合性に加えて、組
織が柔らかく、このため極めて縫合し易く、その結果、
吻合部にパンヌ、スが発生せず、また優れたコンプライ
アンスが付与されるため、人工血管として用いた場合に
、心臓の拍動に伴って適度に弾性変形して宿主血管に対
する血液の刺激を緩和し、更にこの血管の内面にスキン
層がなくて空胞の中に細胞が侵入し易いため治癒性にも
優れ、このため内径が6m冒以下で長期開存性の優れた
人工血管への道を開いたものである。The medical tube of the present invention has a porous inner tissue of the tube wall constituting the tube, and there is no skin layer on the inner surface of the tube wall, so in addition to the inherent biocompatibility, the tissue is It is soft and therefore extremely easy to suture;
No pannus or suction occurs at the anastomotic site, and it has excellent compliance, so when used as an artificial blood vessel, it moderately elastically deforms with the heartbeat, alleviating the stimulation of blood against the host blood vessel. Furthermore, since there is no skin layer on the inner surface of this blood vessel, cells can easily invade into the vacuole, so it has excellent healing properties, and this is the path to an artificial blood vessel with an inner diameter of 6 m or less and excellent long-term patency. It is opened.
本発明の医療用チューブは、例えば、次のようにして製
造することができる。The medical tube of the present invention can be manufactured, for example, as follows.
即ち、円形のオリフィスから断面円形の剛体の芯棒を押
し出すことにより、該オリフィスと該芯棒との間隙スリ
ットより高分子化合物の溶液を該芯棒の全周表面に流延
するように押し出し、該芯棒を凝固浴に導き該芯棒の周
りに該高分子化合物を凝固させた後、該芯棒をとり出す
ことにより製造することができる。That is, by extruding a rigid core rod with a circular cross section from a circular orifice, a solution of a polymer compound is forced out through a gap slit between the orifice and the core rod so as to be spread over the entire circumferential surface of the core rod, The core rod can be produced by introducing the core rod into a coagulation bath, coagulating the polymer compound around the core rod, and then taking out the core rod.
成形に使用する溶液は、成形温度での粘度が5ポアズ以
上になるように設定することが好ましい、該粘度が5ポ
アズ未満であると管壁の内部に巨大な空泡が生成して強
度が低下する。また成形の過程で肉厚のムラができやす
くなる。10ポアズ以上になると成形条件に対する制約
が少くなるのでより好ましい。It is preferable to set the solution used for molding so that the viscosity at the molding temperature is 5 poise or more. If the viscosity is less than 5 poise, huge voids will be generated inside the tube wall and the strength will deteriorate. descend. Also, unevenness in wall thickness tends to occur during the molding process. If it is 10 poise or more, there are fewer restrictions on molding conditions, so it is more preferable.
一方、高粘度側の制約は殆んどなく、溶液の流動性がな
くても充分成形できる。公知の環状ノズルを使用する中
空m雄の製造方法で成形する場合には側底困難な500
0ポアズ程度の溶液でもきわめて容易に成形ができるの
が本発明の製造方法の大きな特徴である。しかし、溶液
の脱泡が比較的簡単にできることが生産上から望まれる
ため、好ましくは3000ポアズ以下、より好ましくは
2000ポアズ以下にする。On the other hand, there are almost no restrictions on the high viscosity side, and sufficient molding is possible even without fluidity of the solution. When molding using a known method for manufacturing a hollow mold using an annular nozzle, it is difficult to form a hollow mould.
A major feature of the manufacturing method of the present invention is that even a solution of approximately 0 poise can be molded very easily. However, since it is desirable from the viewpoint of production that the solution can be defoamed relatively easily, it is preferably 3000 poise or less, more preferably 2000 poise or less.
本発明の製造方法において、高分子化合物の溶液に用い
る溶剤は、それぞれの物質に対して公知の溶剤を容易に
選択することが可能であるが、製品への残留を避けるた
めと工程のコストの点から、水溶性の溶剤が有利である
。かかる溶剤としては、例えばジメチルホルムアミド、
ジメチルアセトアミド、ジメチルスルホキシド、N−メ
チル−2−ピロリドン、ジオキサン、テトラヒドロフラ
ン、アセトンなどが挙げられる。また本発明の製造方法
においては、溶液は必ずしも良好な溶解状態になくても
よい、このため、貧溶剤や尿素などの膨潤剤を多量に混
合・使用することができる。このことは本発明の目的た
る医療用チューブ、とり分は人工血管の製造にとってき
わめて有利である。即ち、溶剤系を幅広く選択すること
により、特に造孔剤を使用する等の煩雑な工程なしに容
易にポロシティ−(有孔度)を幅広く変化させることが
可能である。In the manufacturing method of the present invention, the solvent used for the solution of the polymer compound can be easily selected from known solvents for each substance, but in order to avoid residue in the product and to reduce the cost of the process. From this point of view, water-soluble solvents are advantageous. Such solvents include, for example, dimethylformamide,
Examples include dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, dioxane, tetrahydrofuran, acetone, and the like. Further, in the production method of the present invention, the solution does not necessarily have to be in a good dissolved state, and therefore a large amount of a poor solvent or a swelling agent such as urea can be mixed and used. This is extremely advantageous for the manufacture of medical tubes, particularly artificial blood vessels, which is the object of the present invention. That is, by selecting a wide range of solvent systems, it is possible to easily change the porosity over a wide range without particularly requiring complicated steps such as using a pore-forming agent.
本発明の製造方法において、芯として用いる剛体の棒は
、溶液に溶解せず、凝固浴に導くまでの間形状が容易に
変化しない物質から作られる。耐腐食性も求められるの
でステンレススチール、鋼や真鍮にクロームメツキやテ
フロン加工を施した物が特に好ましい。In the manufacturing method of the present invention, the rigid rod used as the core is made of a material that does not dissolve in the solution and does not easily change shape until it is introduced into the coagulation bath. Corrosion resistance is also required, so stainless steel, steel, or brass coated with chrome or Teflon is particularly preferred.
その全周表面に溶液が流延された状態で押し出された芯
棒は、直接、又は一定の乾式部を通過した後、凝固浴に
導かれる。The extruded core rod with the solution spread over its entire circumferential surface is led to a coagulation bath either directly or after passing through a certain dry section.
即ち、円形のオリフィスと芯棒との間隙スリットより吐
出される高分子化合物の溶液が直接水系凝固浴中に吐出
される湿式凝固と乾式部を経てから水系凝固浴に導入さ
れる乾湿式凝固のいずれでも適用可能である。In other words, there are two methods: wet coagulation, in which a polymer compound solution discharged from a slit between a circular orifice and a core rod is directly discharged into an aqueous coagulation bath, and dry-wet coagulation, in which it is introduced into an aqueous coagulation bath after passing through a dry section. Either is applicable.
公知の中空繊維膜の紡糸方法を人工血管のような径と肉
厚の大きなものに適用した場合には、内外両面から迅速
な凝固作用を与えないと形状を好ましい状態に保持する
ことが困難である。従って、内外両面から強固な凝固作
用を及ぼすような条件はチューブの安定な製造に不可欠
であるが、これは人工血管として望ましい構造を作る上
で大きな障害となる。即ち、内外面の表面に管壁内部よ
りも緻密な構造を形成してしまう。When applying the known hollow fiber membrane spinning method to something with a large diameter and wall thickness, such as an artificial blood vessel, it is difficult to maintain the desired shape unless rapid coagulation is applied from both the inside and outside. be. Therefore, conditions that exert a strong coagulation effect from both the inner and outer surfaces are essential for the stable manufacture of tubes, but this is a major obstacle in creating a desirable structure for an artificial blood vessel. That is, a denser structure is formed on the inner and outer surfaces than on the inside of the tube wall.
本発明の製造方法により、これらの欠点が解決された。These drawbacks have been solved by the manufacturing method of the present invention.
即ち、内部に存在する剛体が周囲の溶液を安定に保持す
る役目を果すので、外面からの凝固のみで形状、寸法の
均一なチューブを再現性よく作ることが可能となった。That is, since the rigid body existing inside plays the role of stably holding the surrounding solution, it has become possible to produce tubes with uniform shape and size with good reproducibility only by solidifying from the outside surface.
更に外面からの凝固速度を緩慢にしても成形上問題なく
、充分時間をかけて凝固させることができる。Furthermore, even if the rate of solidification from the outside is slowed down, there is no problem in molding, and solidification can take a sufficient amount of time.
本発明の方法では、凝固条件を幅広く変化させることが
できるので成形の自由度が大きく、種々の構造の成形品
を作り得る。In the method of the present invention, since the solidification conditions can be varied over a wide range, there is a large degree of freedom in molding, and molded products with various structures can be produced.
凝固浴に、例えば、溶剤、貧浴剤、塩などを加えること
により、内外面共、又は、外面の構造を幅広く変化させ
ることができる。By adding, for example, a solvent, a poor bath agent, a salt, etc. to the coagulation bath, the structure of both the inner and outer surfaces or the outer surface can be changed widely.
また、芯として用いる剛体の表面エネルギーを材質の選
定や、テフロン、シリコーンなトノコーティング等の手
段によって変化させ、抗血栓性に影響を与えるミクロな
性質のみならず、形態学的な表面状態をも変化させるこ
とができる。In addition, the surface energy of the rigid body used as the core can be changed by material selection, Teflon, silicone coating, etc., and not only the microscopic properties that affect antithrombotic properties, but also the morphological surface condition can be changed. It can be changed.
本発明の製造方法の際立った特徴の一つは乾湿式凝固を
行ったときに乾式部の通過時間を極めて厳密に制御でき
ることである。殊にこの乾式部の通過時間を0.01〜
数10秒という短い時間にも正確に制御できる。このこ
とは成形チューブの外壁構造を均一にする点で極めて重
要で、従来公知のデイツプ法と大きく異なる点である。One of the distinguishing features of the production method of the present invention is that the passage time through the dry section can be very precisely controlled when wet-dry coagulation is carried out. In particular, the passage time of this dry section is 0.01~
Accurate control is possible even in a short period of several tens of seconds. This is extremely important in making the outer wall structure of the formed tube uniform, and is significantly different from the conventional dip method.
以上の理由から、積極的に乾式部を設けることが好まし
く、この場合、乾式区間での高分子化合物の溶液の表面
における流れを利用してスムーズな外面を容易に得るこ
とができる。最適な乾式部の長さは主として溶液の粘度
と溶剤の揮発性とによって決められるが、通常5〜30
0m+sの範囲が望ましい、5mm未満では、前記の整
面効果が不充分となる。300mmを越えると、溶液の
流下が起こり、偏肉や長さ方向に厚さが徐々に変化した
ものが得られるようになる。更に、高分子化合物の溶液
に揮発性の高い溶剤が含まれる場合には、表面から蒸発
が進み、結果として表面が露点に到ることがあり、微少
な水滴が@縮する等の現象が現れ、環境条件の厳密な制
御が必要となる。For the above reasons, it is preferable to proactively provide a dry section. In this case, a smooth outer surface can be easily obtained by utilizing the flow of the solution of the polymer compound on the surface in the dry section. The optimal length of the dry zone is determined mainly by the viscosity of the solution and the volatility of the solvent, but is usually 5 to 30 mm.
A range of 0 m+s is desirable; if it is less than 5 mm, the above-mentioned surface smoothing effect will be insufficient. If it exceeds 300 mm, the solution will flow down, resulting in uneven thickness or a product whose thickness gradually changes in the length direction. Furthermore, when a highly volatile solvent is contained in a solution of a polymer compound, evaporation progresses from the surface, and as a result, the surface may reach the dew point, resulting in phenomena such as minute water droplets condensing. , requiring strict control of environmental conditions.
以上の理由から乾式部の長さは、好ましくは20〜20
0m諺の範囲にある。For the above reasons, the length of the dry part is preferably 20 to 20
0m is within the proverbial range.
芯棒が乾式部を通過する際の押し出し速度は、通常1〜
300+sm/秒であり、好ましくは5〜200mm/
秒、更に好ましくは10−100mm/秒の範囲である
。押し出し速度が300+am/秒を越えると、後処理
工程で残留応力による歪が現れる傾向にあり、1 ra
ts/秒未満では、雰囲気の温湿度や溶剤濃度によって
外表面の構造がばらつく原因となる。The extrusion speed when the core rod passes through the dry section is usually 1~
300+sm/sec, preferably 5-200mm/sec
seconds, more preferably in the range of 10-100 mm/second. When the extrusion speed exceeds 300+am/sec, distortion due to residual stress tends to appear in the post-processing process, and 1 ra
If it is less than ts/second, the structure of the outer surface may vary depending on the temperature and humidity of the atmosphere and the concentration of the solvent.
凝固浴は、溶剤を除去するために、相溶性の優れたもの
を使用することが好ましい、殊に安全性、コストの面か
ら水が好ましい、必要に応じて、メタノール、エタノー
ル、インブロパノール変性アルコールなどの低級アルコ
ール等を用いてもよい、いずれにしても溶剤の完全な除
去のために、最終的に水と置換できる溶剤が凝固系に用
いられることが好ましい1例えば、水を凝固浴に用いた
場合には、一般的に外面から内面に向かう程、疎な構造
となったものが得られ、内面は、内側からの凝固が全く
作用しないので、異質の緻密層を生ずることなく内膜が
薄く安定に保持されるのに必要な1〜100−程度の前
述の粗面構造を与える。この凹みは内部の空隙まで貫通
し、内膜の安定化に寄与する。For the coagulation bath, in order to remove the solvent, it is preferable to use one with excellent compatibility.Water is particularly preferable from the viewpoint of safety and cost.If necessary, methanol, ethanol, imbropanol denatured bath may be used. Lower alcohols such as alcohol may be used.In any case, in order to completely remove the solvent, it is preferable to use a solvent that can ultimately replace water in the coagulation system1.For example, if water is added to the coagulation bath When used, a structure that generally becomes sparser from the outer surface to the inner surface is obtained, and since coagulation from the inside does not act at all on the inner surface, the inner membrane does not form a foreign dense layer. The above-mentioned rough surface structure of about 1 to 100 is required for the film to be kept thin and stable. This depression penetrates into the internal cavity and contributes to the stabilization of the intima.
得られた凝固成形物は、充分に溶剤を除去した後、風乾
又は強制乾燥後、滅菌するか、湿潤状態のまま、生理食
塩水と置換し、オートクレーブやγ線で滅菌してもよい
。The obtained coagulated molded product may be sterilized after sufficiently removing the solvent, air-dried or forced-dried, or replaced with physiological saline while still wet, and sterilized by autoclaving or gamma rays.
ポリウレタン、ポリウレタンウレアを用いるときには、
多孔質構造が好ましいコンプライアンス(C)を与える
ことができるが、これを次式:%式%()
(式中、voは内圧50 mmHgのときの測定血管の
内容積、ΔPは内圧が50mmHgから150mm)I
gまで変化したときの変化分10C)++aHg、Δv
は内圧が50IIIH8力ラ150mlIIHgマチ変
化したときに増加した測定血管の内容積である。)
で定義した値で示すとき65%を越えると、長期埋植後
には、繰り返し、血圧の応力を受けるために徐々に不可
逆的な内腔の拡張を引き起こす、また、この値が低すぎ
る場合、特に1%未満では、宿主血管側に異常な拡張を
もたらす結果、吻合部付近に乱流が生じて吻号部内膜の
肥厚の要因となる。When using polyurethane or polyurethane urea,
A porous structure can provide a preferable compliance (C), which can be expressed as follows: % formula % () (where vo is the internal volume of the measured blood vessel when the internal pressure is 50 mmHg, and ΔP is the internal volume from the internal pressure of 50 mmHg. 150mm) I
Change amount when changing to g10C)++aHg, Δv
is the internal volume of the measured blood vessel that increased when the internal pressure changed by 50 ml II Hg. ) If the value exceeds 65%, it will cause gradual irreversible expansion of the lumen due to repeated pressure stress after long-term implantation, and if this value is too low, In particular, if it is less than 1%, it causes abnormal expansion on the host blood vessel side, resulting in turbulent flow near the anastomosis, which causes thickening of the intima of the proboscis.
従って、前記コンプライアンスが、通常1〜65%、好
ましくは3〜20%、更に好ましくは3〜10%になる
ように予め押し出しの厚みと溶液のポリマー濃度を定め
ることが好ましい。Therefore, it is preferable to determine the extrusion thickness and the polymer concentration of the solution in advance so that the compliance is usually 1 to 65%, preferably 3 to 20%, and more preferably 3 to 10%.
また、予め、芯棒にポリエステルのメツシュのような補
強材を被せた後に本発明の方法を実施し前記補強材を内
部に包埋させてもよく、予め、芯棒に他の素材を薄くコ
ーティングした後、本発明の方法を実施してもよい。Alternatively, the method of the present invention may be carried out after covering the core rod with a reinforcing material such as a polyester mesh and embedding the reinforcing material inside. Alternatively, the core rod may be thinly coated with another material in advance. After that, the method of the present invention may be carried out.
[発明の実施例]
以下、実施例により本発明を更に詳細に説明するが、こ
れらの実施例は、本発明の範囲を何ら制限するものでは
ない。[Examples of the Invention] Hereinafter, the present invention will be explained in more detail with reference to Examples, but these Examples are not intended to limit the scope of the present invention in any way.
なお、以下に示した(%)は特にことわりのない場合は
、全て重量%を示す。Note that all (%) shown below indicate weight % unless otherwise specified.
支立1
分子量1650の両末端水酸基のポリテトラメチレング
リコールを4.4′−ジフェニルメタンジイソシアネー
トと反応させて両末端イソシアネートのプレポリマーと
し、これをブタンジオールで鎖延長してポリウレタンを
合成した0合成したポリウレタンはテトラヒドロフラン
−エタノール系で再沈殿を3回鰻返して精製した。この
精製ポリウレタンをジメチルアセトアミドに溶解して1
8.3%の溶液とした。Support 1 Polytetramethylene glycol with a molecular weight of 1650 and having hydroxyl groups at both ends was reacted with 4,4'-diphenylmethane diisocyanate to produce a prepolymer of isocyanates at both ends, and this was chain-extended with butanediol to synthesize polyurethane. The polyurethane was purified by reprecipitation with a tetrahydrofuran-ethanol system and refluxing three times. This purified polyurethane was dissolved in dimethylacetamide and 1
It was made into an 8.3% solution.
直径10mmの円形オリフィスから、上記オリフィスと
同心となるように精密に設定された外径8Il111の
ステンレスの棒を一定速度で押し出し、この押し出され
るステンレス棒とオリフィスとの均一な間隙からこの棒
の全周表面に前記ポリウレタン溶滴が流延するように前
記溶液を均一に押し出してこの棒を30℃の水中に導き
、凝固させた。From a circular orifice with a diameter of 10 mm, a stainless steel rod with an outer diameter of 8Il111, which is precisely set to be concentric with the orifice, is extruded at a constant speed, and the entire length of the rod is extruded from a uniform gap between the extruded stainless steel rod and the orifice. The solution was uniformly extruded so that the polyurethane droplets were cast on the circumferential surface, and the rod was introduced into water at 30° C. and solidified.
この場合、芯はステンレス棒であるから凝固は外側から
のみ生じる。3時間後、この棒をとり出し、更に流水中
に一夜つけて充分に脱溶剤した。In this case, since the core is a stainless steel rod, solidification occurs only from the outside. After 3 hours, the rod was taken out and soaked in running water overnight to thoroughly remove the solvent.
このようにして凝固したポリウレタンチューブをステン
レス棒から剥離して風乾した。The thus solidified polyurethane tube was peeled off from the stainless steel rod and air-dried.
得られたポリウレタンチューブは乳白色の多孔質構造を
もち、その管壁の断面は空胞を構成する空胞壁が多数連
続して繋がった状態となっていた。管壁の厚みは0.7
+u+であり、管壁の内径は風乾時に君子の収縮が生じ
て7■であった。このようにして得られたポリウレタン
人工血管の管壁の内面には異質のスキン層は存在せず、
また管壁の内面には空胞が開口して直接露出しているこ
とはなく、従って管壁の内面はこの人工血管の内部組織
中の空胞壁の場合と同様の細かい孔が存在するミクロな
スポンジ構造をなしていた。そして走査型電子顕微鏡で
200倍に拡大して観察した処、管壁の内面はこの人工
血管の内部組織中の空胞壁と物理的な構造が実質的に同
一であって、両者の間に差異は認められなかった。この
人工血管の管壁の内面は空胞が管壁の内面に開口して直
接露出している場合に生ずると思われる血流の渦巻きを
生じない構造であった。また空胞は大きめの気泡からな
り、管壁の外面付近では比較的小さくなっていた。また
コンプライアンス値は45%であった。この実施例によ
って得られたポリウレタンチューブの中に水を満たし、
この水を120 +*+*Hgの陽圧に保った0人工透
析の体外血液循環に用いる力こユーレ(針径1 、5m
m)を上記チューブの15c1の長さに亘ってランダム
の位置に150回穿刺を繰返し、水漏れの状態を調べた
。150回に及ぶ穿刺にもかかわらず、著しい水漏れは
認められなかった。The obtained polyurethane tube had a milky white porous structure, and the cross section of the tube wall was in a state in which a large number of vacuole walls constituting a vacuole were connected in succession. The thickness of the tube wall is 0.7
+u+, and the inner diameter of the tube wall was 7 cm due to the shrinkage during air drying. There is no foreign skin layer on the inner surface of the tube wall of the polyurethane artificial blood vessel obtained in this way,
In addition, vacuoles are not opened and directly exposed on the inner surface of the tube wall, so the inner surface of the tube wall has microscopic pores similar to those of the vacuole wall in the internal tissue of this artificial blood vessel. It had a sponge structure. When observed under 200x magnification with a scanning electron microscope, it was found that the physical structure of the inner surface of the vessel wall was essentially the same as that of the vacuole wall in the internal tissue of this artificial blood vessel, and that there was a gap between the two. No difference was observed. The inner surface of the wall of this artificial blood vessel had a structure that did not cause swirling of blood flow, which would occur if the vacuole were directly exposed by opening into the inner surface of the wall. In addition, the vacuoles were made up of large bubbles, and were relatively small near the outer surface of the tube wall. Moreover, the compliance value was 45%. Fill the polyurethane tube obtained in this example with water,
This water was kept at a positive pressure of 120 + * + * Hg and was used for extracorporeal blood circulation in artificial dialysis (needle diameter 1, 5 m).
m) was repeatedly punctured at random positions over a length of 15c1 of the tube 150 times to check for water leakage. Despite 150 punctures, no significant water leakage was observed.
1凰U
実施例1と全く同様の実験を、本例では外径4msのス
テンレス棒を用いて行った。この結果、管壁の内径3.
2mm、管壁の厚み0.5mmで、空胞を構成する空胞
壁が多数連続して繋がった状態に管壁の内部組織が構成
されたコンプライアンス(C=64%)のチューブが得
られた。1凰U An experiment completely similar to Example 1 was conducted using a stainless steel rod with an outer diameter of 4 ms in this example. As a result, the inner diameter of the tube wall is 3.
A compliant tube (C = 64%) was obtained with a tube wall thickness of 2 mm and a tube wall thickness of 0.5 mm, in which the internal tissue of the tube wall was composed of a large number of continuously connected vacuole walls. .
本例によるチューブの管壁の内面は、実施例1によるチ
ューブの場合と同様に、前記空胞壁が連続して繋がった
ものから構成され、この内面にはスキン層(より緻密な
層)は存在しなかった。The inner surface of the tube wall of the tube according to this example is composed of the vacuole walls connected continuously, as in the case of the tube according to Example 1, and there is no skin layer (more dense layer) on this inner surface. It didn't exist.
このチューブを人工血管として用いて、雑種成犬の膓骨
動脈及び大腿動脈に端一端縫合で移植した。吻合は適度
の柔軟性とコンプライアンス(39%)があって極めて
容易であり、また縫合部からの出血がなかった。同じ条
件で6例の動物実験を行ったが、移植血管はいずれも1
6ケ月後でもなお開存していた。This tube was used as an artificial blood vessel and was implanted into the fibular artery and femoral artery of an adult mongrel dog by suturing one end to the other. The anastomosis was extremely easy with moderate flexibility and compliance (39%), and there was no bleeding from the suture site. Six animal experiments were conducted under the same conditions, but each transplanted blood vessel was
It was still patent 6 months later.
裏ム血−」
分子量1650の両末端水酸基のポリテトラメチレング
リコールを4,4′−ジフェニルメタンジイソシアネー
トと反応させて両末端インシアネートのプレポリマーと
し、これをブタンジオールで鎖延長してポリウレタンを
合成した0合成したポリウレタンはテトラヒドロフラン
−エタノール系で再沈殿を3回繰返して精製した。この
精製ポリウレタンをジメチルアセトアミドに溶解して2
0.0%の溶液とした。Polytetramethylene glycol with a molecular weight of 1650 and having hydroxyl groups at both ends was reacted with 4,4'-diphenylmethane diisocyanate to form a prepolymer with incyanate at both ends, and this was chain-extended with butanediol to synthesize polyurethane. The synthesized polyurethane was purified by repeating reprecipitation three times in a tetrahydrofuran-ethanol system. This purified polyurethane was dissolved in dimethylacetamide and 2
A 0.0% solution was prepared.
直径10mmの円形オリフィスから、上記オリフィスと
同心となるように精密に設定された外径7tsのステン
レスの棒を一定速度で押し出し、この押し出されるステ
ンレス棒とオリフィスとの均一な間隙からこの棒の全周
表面に前記ポリウレタン溶液が流延するように前記溶液
を均一に押し出してこの棒を20℃の水中に導き、凝固
させた。A stainless steel rod with an outer diameter of 7ts, which is precisely set to be concentric with the orifice, is extruded from a circular orifice with a diameter of 10 mm at a constant speed, and the entire length of the rod is extruded from a uniform gap between the extruded stainless steel rod and the orifice. The polyurethane solution was uniformly extruded so as to be spread over the circumferential surface, and the rod was introduced into water at 20° C. and solidified.
この場合、芯はステンレス棒であるから凝固は外側から
のみ生じる。10時間後、この棒をとり出し、更に流水
中に一夜つけて充分に脱溶剤した。In this case, since the core is a stainless steel rod, solidification occurs only from the outside. After 10 hours, the rod was taken out and soaked in running water overnight to thoroughly remove the solvent.
このようにして凝固したポリウレタンチューブをステン
レス棒から剥離して風乾した。The thus solidified polyurethane tube was peeled off from the stainless steel rod and air-dried.
得られたポリウレタンチューブは乳白色の多孔質構造を
もち、その管壁の断面は空胞を構成する空胞壁が多数連
続して繋がった状態となっていた。管壁の厚みは1.1
mmであり、管壁の内径は風乾時に若干の収縮が生じて
6.5mmであった。The obtained polyurethane tube had a milky white porous structure, and the cross section of the tube wall was in a state in which a large number of vacuole walls constituting a vacuole were connected in succession. The thickness of the tube wall is 1.1
mm, and the inner diameter of the tube wall was 6.5 mm due to some shrinkage during air drying.
このようにして得られたポリウレタン人工血管の管壁の
内面には異質のスキン層は存在せず、また管壁の内面に
は空胞が開口して直接露出していることはなく、従って
管壁の内面はこの人工血管の内部組織中の空胞壁の場合
と同様の細かい孔が存在するミクロなスポンジ構造をな
していた。そして走査型電子顕微鏡で200倍に拡大し
て観察した処、管壁の内面はこの人工血管の内部組織中
の空胞壁と物理的な構造が実質的に同一であって、両者
の間に差異は認められなかった。この人工血管の管壁の
内面は空胞が管壁の内面に開口して直接露出している場
合に生ずると思われる血流の渦巻きを生じない構造であ
った。また空胞は大きめの気泡からなり、管壁の外面付
近では比較的小さくなっていた。またコンプライアンス
値は25%であった。この実施例によって得られたポリ
ウレタンチューブの中に水を満たし、この水を275
wingの陽圧に保ったが管壁からの水漏れは認められ
なかった。There is no foreign skin layer on the inner surface of the tube wall of the polyurethane artificial blood vessel obtained in this way, and no vacuoles are opened and directly exposed on the inner surface of the tube wall. The inner surface of the wall had a microscopic spongy structure with fine pores similar to those of the vacuole wall in the internal tissue of this artificial blood vessel. When observed under 200x magnification with a scanning electron microscope, it was found that the physical structure of the inner surface of the vessel wall was essentially the same as that of the vacuole wall in the internal tissue of this artificial blood vessel, and that there was a gap between the two. No difference was observed. The inner surface of the wall of this artificial blood vessel had a structure that did not cause swirling of blood flow, which would occur if the vacuole were directly exposed by opening into the inner surface of the wall. In addition, the vacuoles were made up of large bubbles, and were relatively small near the outer surface of the tube wall. Moreover, the compliance value was 25%. The polyurethane tube obtained in this example was filled with water, and the water was
Although the wing was maintained at positive pressure, no water leakage from the pipe wall was observed.
見立1
実施例3と全く同様の実験を、本例では外径4.5mm
のステンレス棒を用いて行った。この結果、管壁の内径
4.0−■、管壁の厚み0.5mmで、空胞を構成する
空胞壁が多数連続して繋がった状態に管壁の内部組織が
構成されたコンプライアンス(C= 19%)のチュー
ブが得られた。Mitate 1 Exactly the same experiment as in Example 3 was carried out using an outer diameter of 4.5 mm in this example.
This was done using a stainless steel rod. As a result, the inner diameter of the tube wall is 4.0-■, the thickness of the tube wall is 0.5 mm, and the internal structure of the tube wall is constructed in a state where many vacuole walls constituting the vacuole are connected in a continuous manner. A tube with C=19%) was obtained.
本例によるチューブの管壁の内面は、実施例3によるチ
ューブの場合と同様に、前記空胞壁が連続して繋がった
ものから構成され、この内面にはスキン層(より緻密な
層)は存在しなかった。The inner surface of the tube wall of the tube according to this example is composed of the continuous vacuole walls, as in the case of the tube according to Example 3, and there is no skin layer (more dense layer) on this inner surface. It didn't exist.
このチューブを人工血管として用いて、雑種成犬の腸骨
動脈及び大腿動脈に端一端縫合で移植した。This tube was used as an artificial blood vessel and was implanted into the iliac artery and femoral artery of an adult mongrel dog by suturing one end to the other.
市販のテフロン製の人工血管に比べて針のとおり及び宿
主血管との密着性がよく、術後針穴及び吻合部からの出
血は1000単位の全身ヘパリン化下にて全くみられな
かった。3例を用いた実験において金側18ケ月経過後
良好な開存性を示した。Compared to commercially available Teflon artificial blood vessels, the needle fit and adhesion to the host blood vessel were better, and no bleeding from the needle hole or anastomotic site was observed after surgery under 1000 units of systemic heparinization. In an experiment using 3 cases, good patency was shown on the gold side after 18 months.
註2」t−」
実施例1で用いたポリウレタン溶液を用い、これをギア
ポンプを用いて環状ノズル(溶液出口の寸法は内径31
11m、外径5 m11)から約40c+s/分で押し
出し、同時に環状に押し出される溶液の内側中央から予
め脱泡した水を吐出した。水の吐出量はポリウレタン溶
液の押し出し量の1.2倍であった。この水を内側に包
含して押し出された線状体を直ちに水中に導いてポリウ
レタンを管状に凝固させ、更に1時間そのまま放置した
。Note 2 "T-" Using the polyurethane solution used in Example 1, apply it to an annular nozzle using a gear pump (the solution outlet has an inner diameter of 31 mm).
The solution was extruded at a rate of about 40 c+s/min from a solution with an outer diameter of 11 m and an outer diameter of 5 m11, and at the same time, pre-defoamed water was discharged from the center inside the solution being extruded in an annular shape. The amount of water discharged was 1.2 times the amount of extruded polyurethane solution. The extruded linear body containing water was immediately introduced into water to solidify the polyurethane into a tubular shape, and was left as it was for an additional hour.
このようにして得られたチューブは、内径が約3mm、
外径が約4.2m+sであり、内側と外側の両側から凝
固したので、管壁の内面及び外面の両方にこの管壁の内
部組織とは異質でこれよりもm密なスキン層が存在して
いた。これは既述の実施例1.2で得たチューブとは異
なる際立った特徴であり、実施例1.2で得たチューブ
は管壁の内面ニスキン層がなくて外面のみに薄いスキン
層を有していた。そして本参考例のチューブは管壁の断
面の様相が実施例2とよく似たスポンジ様の構造を示し
ていた0本参考例のチューブを用いて、実施例2と全く
同じ条件で雑種成犬に移植を行った。移植血管4例のう
ちの3例は1ケ月後、1例は3ケ月後に閉塞した。The tube thus obtained had an inner diameter of about 3 mm,
Since the outer diameter was approximately 4.2 m + s and it solidified from both the inside and outside, there existed a skin layer on both the inner and outer surfaces of the tube wall that was different from the internal structure of the tube wall and was denser than this. was. This is a distinctive feature that is different from the tube obtained in Example 1.2, which has already been described. Was. The tube of this reference example had a sponge-like structure in the cross section of the tube wall, which was very similar to that of Example 2. Using the tube of this reference example, a mongrel adult dog was tested under exactly the same conditions as Example 2. was transplanted to. Three of the four transplanted blood vessels were occluded after one month and one after three months.
犬を犠牲死させて、腎臓の剖検を行った結果、腎の毛細
血管に閉塞がみられた。同様な剖検を実施例2の犬で行
っても腎臓に異常はみられなかった。The dog was sacrificed and a kidney autopsy revealed that the capillaries in the kidney were blocked. When a similar autopsy was performed on the dog of Example 2, no abnormality was found in the kidneys.
参2」1−ヱ
実施例3で用いたポリウレタン溶液を用い、これをギア
ポンプを用いて環状ノズル(溶液出口の寸法は内径3■
、外径5■層)から押し出し、同時に環状に押し出され
る溶液の内側中央から水を吐出した。水の吐出量はポリ
ウレタン溶液の押し出し量の1.2倍であった。この水
を内側に包含して押し出された線状体を直ちに水中に導
いてポリウレタンを管状に凝固させ、更に1時間そのま
ま放置した。Reference 2" 1-e Using the polyurethane solution used in Example 3, apply it to an annular nozzle using a gear pump (the solution outlet has an inner diameter of 3").
water was extruded from the inside center of the extruded solution in an annular shape. The amount of water discharged was 1.2 times the amount of extruded polyurethane solution. The extruded linear body containing water was immediately introduced into water to solidify the polyurethane into a tubular shape, and was left as it was for an additional hour.
このようにして得られたチューブは、内径が約3.3I
、外径が約4.81であり、内側と外側の両側から凝固
したので、管壁の内面及び外面の両方にこの管壁の内部
組織とは異質でこれよりも緻密なスキン層が存在してい
た。これは既述の実施例3.4で得たチューブとは異な
る際立った特徴であり、実施例3.4で得たチューブは
管壁の内面にスキン層がなくて外面のみに薄いスキン層
を有していた。そして本参考例のチューブは管壁の断面
の様相が実施例4とよく似たスポンジ様の構造を示して
いた。管の横断面を調べたところ、偏平化しており直交
する2つの内径X、YはX/Y=1.30の関係にあっ
た0本参考例のチューブを用いて、実施例4と全く同じ
条件で雑種成犬に移植を行った。移植血管2例のうちの
1例は3ケ月後に閉塞し、他の1例は2ケ月後に犠牲死
の上、ri!L察したところ、吻合部に約1■のパンヌ
スがみられ、その周囲に多量の新しい血栓が生じていた
。The tube thus obtained has an inner diameter of approximately 3.3I
, the outer diameter was approximately 4.81 mm, and it solidified from both the inside and outside, so there was a skin layer on both the inner and outer surfaces of the tube wall that was different from and denser than the internal structure of the tube wall. was. This is a distinctive feature that is different from the tube obtained in Example 3.4, which has been previously described. had. In the tube of this reference example, the cross-sectional appearance of the tube wall exhibited a sponge-like structure very similar to that of Example 4. When the cross section of the tube was examined, it was found that it was flattened and the two orthogonal inner diameters X and Y had a relationship of X/Y = 1.30. Using the tube of the reference example, it was exactly the same as Example 4. Transplantation was performed in adult mongrel dogs under certain conditions. One of the two transplanted blood vessels was occluded after 3 months, and the other patient was sacrificed after 2 months and ri! Upon examination, a pannus of about 1 cm was observed at the anastomotic site, and a large amount of new thrombus had formed around it.
見立U
分子11890の両末端水酸基のポリテトラメチレング
リコールと4,4′−ジシクロヘキシルメタンジイソシ
アネートとから常法によって両末端インシアネート基の
プレポリマーをつくり、これをエチレンジアミンで鎖延
長を行って、ポリウレタンウレアを合成した。これをジ
メチルホルムアミド−エタノール系で再沈殿を3回行っ
て精製した。A prepolymer with incyanate groups at both ends is prepared by a conventional method from polytetramethylene glycol having hydroxyl groups at both ends of Mitate U molecule 11890 and 4,4'-dicyclohexylmethane diisocyanate, and this is chain-extended with ethylenediamine to form polyurethane. Synthesized urea. This was purified by reprecipitation three times using a dimethylformamide-ethanol system.
このポリウレタンウレアをジメチルホルムアミドに溶解
して濃度20%の溶液とした。外径5曹鳳のステンレス
棒を直径7.2m鳳の円形オリフィスの中から同心的に
押し、この押し出されるステンレス棒とオリフィスとの
間の均一な間隙からこの棒の全外周囲に上記ポリウレタ
ンウレア溶液が流延するように前記溶液を均一に押し出
し、ポリウレタン溶液の流出速度とステンレス棒の押し
出し速度とを一致させてこれを10℃の水中に導入した
。この押し出されたポリウレタンチューブの凝固は外側
、即ち外面から緩慢に行われ、約30分後には白色のポ
リウレタン膜がステンレス棒の周囲に生成した。これを
−昼夜放置して凝固を完成させ、更に澄水中で20時間
浸漬してジメチルホルムアミドを完全に除いた。得られ
たポリウレタンウレアチューブをステンレス棒から剥離
して室温で風乾した。This polyurethane urea was dissolved in dimethylformamide to form a solution with a concentration of 20%. A stainless steel rod with an outer diameter of 5 mm is pushed concentrically from inside a circular orifice with a diameter of 7.2 m, and the polyurethane urea is applied to the entire outer periphery of the rod from a uniform gap between the extruded stainless steel rod and the orifice. The solution was uniformly extruded so as to be cast, and the outflow rate of the polyurethane solution was matched with the extrusion rate of the stainless steel rod, and then introduced into water at 10°C. The extruded polyurethane tube was slowly solidified from the outside, and a white polyurethane film was formed around the stainless steel rod after about 30 minutes. This was left to stand day and night to complete coagulation, and was further immersed in clear water for 20 hours to completely remove dimethylformamide. The obtained polyurethane urea tube was peeled off from the stainless steel rod and air-dried at room temperature.
このポリウレタンウレアチューブの乾燥後の内径は3.
6mm、管壁の厚みは0.6I+mであり、この管壁の
断面構造は管壁の外面の薄いスキン層を除いてその全体
が空胞を構成する空胞壁が多数連結した構造を実質的に
とっていた。即ち、管壁の断面構造は、実施例1による
チューブの場合と同様に、前記スキン層を除いて、空胞
を構成する空胞壁が多数連続して繋がった状態に構成さ
れ、その内面は前記空胞壁が連続して繋がったものから
成っていた。また本実施例の人工血管のコンプライアン
ス値は62%であった。The inner diameter of this polyurethane urea tube after drying is 3.
6mm, the thickness of the tube wall is 0.6I+m, and the cross-sectional structure of this tube wall is essentially a structure in which many connected vacuole walls, which constitute a vacuole, are formed in its entirety, except for a thin skin layer on the outer surface of the tube wall. I took it. That is, as in the case of the tube according to Example 1, the cross-sectional structure of the tube wall is such that, except for the skin layer, a large number of vacuole walls constituting the vacuole are continuously connected, and the inner surface thereof is It consisted of the vacuole walls connected continuously. Further, the compliance value of the artificial blood vessel of this example was 62%.
このチューブは適度の柔らかさ、弾性及びコンプライア
ンスを有していて取扱い易かった。このチューブを人工
血管として用い、雑種成犬の大腿動脈−大腿静脈のバイ
パスとして移植する動静脈バイパス手術を行った。結合
方法は端側結合であり、バイパスの全長は20c層であ
った。N合性は極めて優れ、針も通り易くかつ縫合後に
漏血も認められなかった0本バイパスチューブは6ケ月
を経てもなお開存していた。This tube had appropriate softness, elasticity, and compliance and was easy to handle. Using this tube as an artificial blood vessel, arteriovenous bypass surgery was performed in which the tube was implanted as a femoral artery-femoral vein bypass in an adult mongrel dog. The joining method was end-side joining, and the total length of the bypass was 20c layers. The N-synthesis was excellent, the needle was easy to pass through, and no blood leakage was observed after suturing, and the bypass tube remained patent even after 6 months.
見立拠−」
分子量1890の両末端水酸基のポリテトラメチレング
リコールと4,4′−ジシクロヘキシルメタンジイソシ
アネートとから常法によって両末端インシアネート基の
プレポリマーをつくり、これをエチレンジアミンで鎖延
長を行って、ポリウレタンウレアを合成した。これをジ
メチルホルムアミド−エタノール系で再沈殿を3回行っ
て精製した。A prepolymer having incyanate groups at both ends was prepared by a conventional method from polytetramethylene glycol having a molecular weight of 1890 and having hydroxyl groups at both ends and 4,4'-dicyclohexylmethane diisocyanate, and this was chain-extended with ethylenediamine. , synthesized polyurethane urea. This was purified by reprecipitation three times using a dimethylformamide-ethanol system.
このポリウレタンウレアをジメチルホルムアミドに溶解
して濃度33%の溶液(20℃における粘度4300ポ
アズ)とした、外径5m鳳のステンレス棒を直径8.0
mmの円形オリフィスの中から同心的に押し、この押し
出されるステンレス棒とオリフィスとの間の均一な間隙
からこの棒の全外周囲に上記ポリウレタンウレア溶液が
流延するように前記溶液を均一に押し出し、ポリウレタ
ン溶液の流出速度とステンレス棒の押し出し速度とを一
致させてこれを20℃の水中に導入した。この押し出さ
れたポリウレタンチューブの凝固は外側、即ち外面から
緩慢に行われ、約30分後には白色のポリウレタン膜が
ステンレス棒の周囲に生成した。これを−昼夜放置して
凝固を完成させ、更に流水中で20時間浸漬してジメチ
ルホルムアミドを完全に除いた。得られたポリウレタン
ウレアチューブをステンレス棒から剥離して室温で風乾
した。This polyurethane urea was dissolved in dimethylformamide to make a solution with a concentration of 33% (viscosity 4300 poise at 20°C), and a stainless steel rod with an outer diameter of 5 m and a diameter of 8.0
Push concentrically from inside a circular orifice of mm in diameter, and extrude the solution uniformly so that the polyurethane urea solution is cast around the entire outer circumference of the extruded stainless steel rod through a uniform gap between the extruded stainless steel rod and the orifice. The outflow rate of the polyurethane solution was matched with the extrusion rate of the stainless steel rod, and the solution was introduced into water at 20°C. The extruded polyurethane tube was slowly solidified from the outside, and a white polyurethane film was formed around the stainless steel rod after about 30 minutes. This was left to stand day and night to complete coagulation, and was further immersed in running water for 20 hours to completely remove dimethylformamide. The obtained polyurethane urea tube was peeled off from the stainless steel rod and air-dried at room temperature.
このポリウレタンウレアチューブの乾燥後の内径は4.
4国組管壁の厚みは0.6mmであり、この管壁の断面
構造は管壁の外面の薄いスキン層を除いてその全体が空
胞を構成する空胞壁が多数連結した構造を実質的にとっ
ていた。即ち、管壁の断面構造は、実施例3によるチュ
ーブの場合と同様に、前記スキン層を除いて、空胞を構
成する空胞壁が多数連続して繋がった状態に構成され、
その内面は前記空胞壁が連続して繋がったものから成っ
ていた。また本実施例の人工血管のコンプライアンス値
は25%であった。The inner diameter of this polyurethane urea tube after drying is 4.
The thickness of the Shikokugumi tube wall is 0.6 mm, and the cross-sectional structure of this tube wall is essentially a structure in which many vacuole walls constituting a vacuole are connected, except for a thin skin layer on the outer surface of the tube wall. I was on target. That is, as in the case of the tube according to Example 3, the cross-sectional structure of the tube wall is configured such that a large number of vacuole walls constituting the vacuole are connected in series, excluding the skin layer,
Its inner surface consisted of a series of connected vacuole walls. Further, the compliance value of the artificial blood vessel of this example was 25%.
このチューブは適度の柔らかさ、弾性及びコンプライア
ンスを有していて取扱い易かった。このチューブを人工
血管として用い、雑種成犬の大腿動脈−大腿静脈のバイ
パスとして移植する動静脈バイパス手術を行った。結合
方法は端側結合であり、バイパスの全長は20c■であ
った。N合性は極めて優れ、針も通り易くかつ縫合後に
漏血も認められなかった0本バイパスチューブは6ケ月
を経てもなお開存していた。This tube had appropriate softness, elasticity, and compliance and was easy to handle. Using this tube as an artificial blood vessel, arteriovenous bypass surgery was performed in which the tube was implanted as a femoral artery-femoral vein bypass in an adult mongrel dog. The joining method was end-side joining, and the total length of the bypass was 20 cm. The N-synthesis was excellent, the needle was easy to pass through, and no blood leakage was observed after suturing, and the bypass tube remained patent even after 6 months.
1主懇−」
実施例1及び5で用いたポリウレタン及びポリウレタン
ウレア溶液に、夫々外径4■層及び5鵬鳳のステンレス
棒を従来公知の方法で、即ちデイツプ−乾燥を10回以
上繰返して、夫々ポリウレタン及びポリウレタンウレア
のチューブをつくった。1. Into the polyurethane and polyurethane urea solutions used in Examples 1 and 5, stainless steel rods with an outer diameter of 4 mm and 5 mm were added using a conventionally known method, that is, dip drying was repeated 10 times or more. , polyurethane and polyurethane urea tubes were made, respectively.
これらのチューブは透明感があり、前記各実施例のチュ
ーブとは異なり、空胞を構成する空胞壁が多数連続して
繋がった状態に管壁の内部組織が構成されていないで、
むしろ緻密な組織部分が多かった。チューブは固くて弾
性に乏しく、コンプライアンスに欠けるものであった。These tubes have a transparent appearance, and unlike the tubes of the above embodiments, the internal structure of the tube wall does not consist of a large number of continuous vacuole walls that make up the vacuole.
On the contrary, there were many parts with detailed structures. The tube was stiff, had poor elasticity, and lacked compliance.
参考のため、この参考例3のチューブを既述の実施例2
.5の場合と同様に雑種成犬に移植したが、固くて弾性
に欠けるために縫合しにくく、また縫合後の針穴から漏
血がみられ、移植チューブは一週間以内に閉塞した。For reference, the tube of Reference Example 3 was replaced with the tube of Example 2 described above.
.. The tube was transplanted into an adult mongrel dog in the same way as in case 5, but it was difficult to suture because it was hard and lacked elasticity, and blood leaked from the needle hole after suturing, and the transplant tube was occluded within a week.
11±−」
実施例3及び6で用いたポリウレタン及びポリウレタン
ウレア溶液に、夫々外径4■■及び5+smのステンレ
ス棒を従来公知の方法で、即ちデイツプ−乾燥を10回
以上繰返して、夫々ポリウレタン及びポリウレタンウレ
アのチューブをつくった。11±-'' Stainless steel rods with outer diameters of 4 mm and 5+ sm, respectively, were added to the polyurethane and polyurethane urea solutions used in Examples 3 and 6 using a conventionally known method, that is, dip drying was repeated 10 times or more. and polyurethaneurea tubes were made.
これらのチューブは透明感があり、前記各実施例のチュ
ーブとは異なり、空胞を構成する空胞壁が多数連続して
繋がった状態に管壁の内部組織が構成されていないで、
むしろ緻密な組織部分が多かった。チューブは固くて弾
性に乏しく、コンプライアンスに欠けるものであった。These tubes have a transparent appearance, and unlike the tubes of the above embodiments, the internal structure of the tube wall does not consist of a large number of continuous vacuole walls that make up the vacuole.
On the contrary, there were many parts with detailed structures. The tube was stiff, had poor elasticity, and lacked compliance.
参考のため、この参考例4のチューブを既述の実施例4
.6の場合と同様に雑種成犬に移植したが、固くて弾性
に欠けるために縫合しにくく、また縫合後の針穴から漏
血がみられ、移植チューブは一週間以内に閉塞した。For reference, the tube of Reference Example 4 was replaced with the tube of Example 4 described above.
.. The tube was transplanted into an adult mongrel dog in the same manner as in case 6, but it was difficult to suture because it was hard and lacked elasticity, and blood leaked from the needle hole after suturing, and the transplant tube was occluded within a week.
1工U
実施例6で用いた溶液を、参考例2で用いたのと同じ環
状ノズルから押し出し、内部には、同様に水を注入した
。1 unit U The solution used in Example 6 was extruded from the same annular nozzle as used in Reference Example 2, and water was similarly injected into the inside.
溶液の粘度が高いために、背圧は8 Kg/−まで上昇
し、得られたチューブの外側表面には、吐出斑がみられ
、内径も3.0〜3.5鵬鳳の範囲で周期的な変化がみ
られた。Due to the high viscosity of the solution, the back pressure increased to 8 Kg/-, and the outer surface of the obtained tube showed ejection spots, and the inner diameter was cyclic within the range of 3.0 to 3.5 mm. A change was observed.
見A亘−二
実施例3と同じ溶液を、同じノズルとステンレス棒を用
いて押し出し、200m+wの乾式部を通過させた後、
凝固浴に導いた。The same solution as in Example 3 was extruded using the same nozzle and stainless steel rod, and after passing through a 200m+w dry section,
led to a coagulation bath.
本例で得られたチューブの外面は、実施例3で得られた
ものに比べて外面の滑らかさが優れており、1001の
長さのチューブを5+sm刻みで横断して外径を騨定し
たとき、本例では、95%信頼区間が7.55〜7.6
7に対し、乾式部を設けないものでは、7.43〜7.
75とばらつきが大きかった。The outer surface of the tube obtained in this example was smoother than that obtained in Example 3, and the outer diameter was determined by crossing the 1001 length tube in 5+sm increments. In this example, the 95% confidence interval is 7.55 to 7.6.
In contrast to 7.43 to 7.7 for those without a dry section.
75, and there was a large variation.
実1目1−J
実施例3と同じ溶液を、同じノズルとステンレス棒を用
いて押し出し、100+*mの乾式部を毎秒50mmの
速度で通過させた後、凝固浴に導いた。Fruit 1st 1-J The same solution as in Example 3 was extruded using the same nozzle and stainless steel rod, passed through a 100+*m dry section at a speed of 50 mm per second, and then introduced into a coagulation bath.
一夜、流水浴中にて凝固させた後、芯棒を抜きとり、沸
騰水中で30分煮沸後、45℃で乾燥した。得られた人
工血管は、直管状で曲がりがなく、表面にはシワなどの
変形もなかった。After coagulating in a running water bath overnight, the core rod was removed, boiled in boiling water for 30 minutes, and then dried at 45°C. The obtained artificial blood vessel was straight and had no bends, and there were no wrinkles or other deformations on the surface.
1工1
実施例8において、乾式部分を通過する速度を毎秒32
0mmとして、他はすべて同一条件で、乾燥した人工血
管を得た。これは、長さ方向に収縮し、外表面には、細
かなシワが多くみられた。1 work 1 In Example 8, the speed of passing through the dry part was set to 32 per second.
A dried artificial blood vessel was obtained under the same conditions except that the diameter was 0 mm. It shrunk in the length direction, and many fine wrinkles were observed on the outer surface.
太JLLu
実施例3で用いたポリウレタンをジメチルアセトアミド
に溶解し、10%の溶液とした。この溶液を外径5層層
の予めポリエステルのメツシュをかぶせたステンレス棒
と、7■のノズルを用いて、成形した。The polyurethane used in Example 3 was dissolved in dimethylacetamide to make a 10% solution. This solution was molded using a stainless steel rod previously covered with polyester mesh having five outer diameter layers and a 7-inch nozzle.
ポリエステルメツシュは、ポリウレタン溶液で完全に濡
れて、断面内部に包埋されており、内外いずれの面にも
露出していなかった。The polyester mesh was completely wetted with the polyurethane solution and embedded within the cross section, with no exposed surfaces on either the inside or outside.
このチューブのコンプライアンス値は4%であり、50
0++vHgで1ケ月内部より加圧しても不可逆的な形
態変化はみられなかった。The compliance value of this tube is 4% and 50
No irreversible morphological changes were observed even when internal pressure was applied at 0++vHg for one month.
支庭Aユ副
実施例7と同じ条件で押し出した応接を飽和食塩水中に
導き、−夜浸漬後、流水にて洗浄し、乾燥した。得られ
たチューブの外表面は、実施例7で得られたものに比べ
て著しく凹凸が少なく、5000倍の拡大像でも殆んど
起伏を認めなかった。A sample extruded under the same conditions as in Sub-Example 7 was introduced into a saturated saline solution, soaked overnight, washed with running water, and dried. The outer surface of the obtained tube had significantly fewer irregularities than that obtained in Example 7, and almost no undulations were observed even in an image magnified 5000 times.
[発明の効果]
本発明によれば、優れた長期開存性を有する医療用チュ
ーブを提供することができる。[Effects of the Invention] According to the present invention, a medical tube having excellent long-term patency can be provided.
Claims (6)
って、該チューブを構成する管壁の内部組織が多孔質で
あり、該管壁の内面にはスキン層が存在しないことを特
徴とする医療用チューブ。(1) A single-layer medical tube made of a polymer compound, characterized in that the internal structure of the tube wall constituting the tube is porous, and there is no skin layer on the inner surface of the tube wall. medical tube.
連続して繋がった状態に構成され、該管壁の内面が該空
胞壁が連続して繋がったものから構成されている特許請
求の範囲第1項記載の医療用チューブ。(2) The internal structure of the tube wall is composed of a large number of continuously connected vacuole walls constituting the vacuole, and the inner surface of the tube wall is composed of the continuous and connected vacuole walls. A medical tube according to claim 1.
タンウレアである特許請求の範囲第1項又は第2項記載
の医療用チューブ。(3) The medical tube according to claim 1 or 2, wherein the polymer compound is polyurethane and/or polyurethane urea.
し出すことにより、該オリフィスと該芯棒との間隙スリ
ットより高分子化合物の溶液を該芯棒の全周表面に流延
するように押し出し、該芯棒を凝固浴に導き該芯棒の周
りに該高分子化合物を凝固させた後、該芯棒をとり出す
ことを特徴とする医療用チューブの製造方法。(4) By extruding a rigid core rod with a circular cross section from a circular orifice, a solution of a polymer compound is extruded through a gap slit between the orifice and the core rod so as to be spread over the entire circumferential surface of the core rod. . A method for manufacturing a medical tube, which comprises introducing the core rod into a coagulation bath to coagulate the polymer compound around the core rod, and then taking out the core rod.
タンウレアである特許請求の範囲第4項記載の製造方法
。(5) The manufacturing method according to claim 4, wherein the polymer compound is polyurethane and/or polyurethane urea.
許請求の範囲第4項又は第5項記載の製造方法。(6) The manufacturing method according to claim 4 or 5, wherein the core rod is passed through a dry section immediately before being introduced into the coagulation bath.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/066,849 US4822352A (en) | 1986-08-08 | 1987-06-25 | Medical tubes with porous textured walls |
CA000540882A CA1302912C (en) | 1986-08-08 | 1987-06-29 | Medical tubes and process for producing the same |
EP19910118743 EP0473205A3 (en) | 1986-08-08 | 1987-06-30 | Process for producing a medical tube |
EP87109404A EP0255865B1 (en) | 1986-08-08 | 1987-06-30 | Medical tubes and process for producing the same |
DE8787109404T DE3783401T2 (en) | 1986-08-08 | 1987-06-30 | MEDICAL TUBE AND MANUFACTURING PROCESS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8089186 | 1986-04-08 | ||
JP61-80891 | 1986-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6346152A true JPS6346152A (en) | 1988-02-27 |
JP2553522B2 JP2553522B2 (en) | 1996-11-13 |
Family
ID=13730977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18516586A Expired - Fee Related JP2553522B2 (en) | 1986-04-08 | 1986-08-08 | Medical tube and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2553522B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63181755A (en) * | 1987-01-07 | 1988-07-26 | インペリアル・ケミカル・インダストリーズ・ピーエルシー | Artificial blood vessel |
EP0396344A2 (en) * | 1989-04-28 | 1990-11-07 | Ajinomoto Co., Inc. | Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173689A (en) * | 1976-02-03 | 1979-11-06 | University Of Utah | Synthetic polymer prosthesis material |
JPS60188165A (en) * | 1984-03-07 | 1985-09-25 | 鐘淵化学工業株式会社 | Production of artificial vessel |
JPS60194957A (en) * | 1984-03-19 | 1985-10-03 | 鐘淵化学工業株式会社 | Production of artificial vessel |
-
1986
- 1986-08-08 JP JP18516586A patent/JP2553522B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173689A (en) * | 1976-02-03 | 1979-11-06 | University Of Utah | Synthetic polymer prosthesis material |
JPS60188165A (en) * | 1984-03-07 | 1985-09-25 | 鐘淵化学工業株式会社 | Production of artificial vessel |
JPS60194957A (en) * | 1984-03-19 | 1985-10-03 | 鐘淵化学工業株式会社 | Production of artificial vessel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63181755A (en) * | 1987-01-07 | 1988-07-26 | インペリアル・ケミカル・インダストリーズ・ピーエルシー | Artificial blood vessel |
EP0396344A2 (en) * | 1989-04-28 | 1990-11-07 | Ajinomoto Co., Inc. | Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose |
Also Published As
Publication number | Publication date |
---|---|
JP2553522B2 (en) | 1996-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0130401B1 (en) | Artificial vessel and process for preparing the same | |
US6554857B1 (en) | Transmural concentric multilayer ingrowth matrix within well-defined porosity | |
EP0157178B1 (en) | Artificial vessel and process for preparing the same | |
US4661530A (en) | Biocompatible, antithrombogenic materials suitable for reconstructive surgery | |
EP1443982B1 (en) | Porous polymeric prostheses and methods for making same | |
US4834746A (en) | Artificial vessel and process for preparing the same | |
JPS63111863A (en) | Medical tube | |
US6117535A (en) | Biocompatible devices | |
US20050107868A1 (en) | Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member | |
US4986832A (en) | Artificial blood vessel and process for preparing it | |
CA1302912C (en) | Medical tubes and process for producing the same | |
US5462704A (en) | Method for preparing a porous polyurethane vascular graft prosthesis | |
JPS6346152A (en) | Medical tube and its production | |
AU2003221090B2 (en) | Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants | |
JPH0254101B2 (en) | ||
JPH01158966A (en) | Preparation of medical tube | |
JPH0237184B2 (en) | ||
JPH0233263B2 (en) | ||
JPH0581258B2 (en) | ||
JP2587066B2 (en) | Artificial blood vessel | |
JPS63222758A (en) | Medical tube | |
JP2003126240A (en) | Patch for medical care | |
JPH0450013B2 (en) | ||
JPH0579340B2 (en) | ||
JPS60188166A (en) | Production of artificial vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |