JPS6346096B2 - - Google Patents

Info

Publication number
JPS6346096B2
JPS6346096B2 JP54007467A JP746779A JPS6346096B2 JP S6346096 B2 JPS6346096 B2 JP S6346096B2 JP 54007467 A JP54007467 A JP 54007467A JP 746779 A JP746779 A JP 746779A JP S6346096 B2 JPS6346096 B2 JP S6346096B2
Authority
JP
Japan
Prior art keywords
unsaturated dicarboxylic
mol
dicarboxylic acid
resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54007467A
Other languages
Japanese (ja)
Other versions
JPS5599925A (en
Inventor
Shigeaki Ogi
Nobuo Mizuno
Masao Mori
Hiroshi Kimoto
Hiroshi Takita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP746779A priority Critical patent/JPS5599925A/en
Publication of JPS5599925A publication Critical patent/JPS5599925A/en
Publication of JPS6346096B2 publication Critical patent/JPS6346096B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高吸収性樹脂の製造法に関する。さら
に詳しくは不飽和ジカルボン酸系単量体とビニル
エステルとの共重合体ケン化物の特定の粒度の粉
末を特定の条件下で熱処理することによつて高吸
収性樹脂を得るものである。 近年水または水性液体を高度に吸収する樹脂、
例えばデンプン−(メタ)アクリロニトリルグラ
フト共重合体ケン化物、架橋ポリエチレンオキシ
ド、デンプン−アクリルアミドグラフト体、ビニ
ルエステルとエチレン系不飽和カルボン酸または
その誘導体との共重合体ケン化物、ポリビニルピ
ロリドンの架橋体、スルホン化ポリスチレンの架
橋体などが開発されるにいたり、かかる素材を
尿、血液等の体液処理品などの衛生分野、また吸
水性、保水性を利用して農業、土木建築の分野、
さらにその他の分野で広くその利用が提案されて
いる。 これらの樹脂の中でも特にデンプン−アクリロ
ニトリルグラウト共重合体ケン化物、ビニルエス
テルとエチレン系不飽和カルボン酸またはその誘
導体との共重合体ケン化物が高吸水性能を有する
ものとして注目されている。 しかしながらこれらの樹脂は水に対しては高度
の吸収能力を有しているものの、尿、血液等の体
液に相当する人工尿、生理食塩水に対する吸収能
力は、水に比較して劣り、特に人工尿の如く含有
成分濃度の高い水性液体に対する吸収能力が顕著
に低下する傾向がある。 しかして本出願人は先に、マレイン酸系単量体
−酢酸ビニル共重合体をケン化した後乾燥して得
られた変性ポリビニルアルコールを用い土壌に保
水性を付与する方法に関して特願昭51−1930(特
開昭52−88168)にて出願した。即ち該変性ポリ
ビニルアルコールを乾燥することによつて、水を
多量に吸収する能力が付与されることを見出した
のであつた。 本発明者らはさらに検討を重ねたところ、該変
性ポリビニルアルコールの特定の範囲の粒度の粉
末を、特定の条件にて熱処理することによつての
み、水を多量に吸収するという特性を損なうこと
なく、さらに生理食塩水、及び人工尿を多量に吸
収する能力が付与されるということを初めて見い
出すにいたり、本発明を完成するにいたつたので
ある。 本発明に関連した公知技術としては、ビニルエ
ステルとエチレン系不飽和カルボン酸またはその
誘導体との共重合体ケン化物を水を含む状態で乾
燥し吸水性を付与する方法が特公昭53−13495号
公報に開示されている。しかしながらかかる技術
によつては、前述した如く水に対しては高度の吸
収能力を有する樹脂が得られるとは言うものの、
人工尿のような含有成分濃度の高い水性液体に対
しては吸収能力が低下するのであり、本発明によ
つて初めて、水、生理食塩水、人工尿、いずれに
対してもバランスのとれた吸収能力を有する樹脂
が得られるのである。 本発明に於ける不飽和ジカルボン酸系単量体単
独または2種以上の混合物とビニルエステルとの
共重合体の製造方法に特に限定はないが、例えば
メタノールなどの低級アルコール溶媒と重合触媒
の存在下、該単量体単独または2種以上の混合物
とビニルエステルとを共重合して得られるもので
あつて、共重合体中の該単量体含量は0.2〜50モ
ル%の範囲であり、好ましくは1〜30モル%であ
る。この含量が少なすぎると吸収能力が乏しく、
また50モル%を越えるものは高分子量ポリマーゲ
ルが得がたい。 該共重合体のケン化物は、該共重合体をアルコ
ールまたは含アルコール混合媒体中で硫酸、塩酸
などの酸触媒、または苛性ソーダ、苛性カリ、炭
酸ソーダ、アルカリ金属アルコラートなどのアル
カリ触媒を用いてケン化して得られる。ビニルエ
ステル成分のケン化度は70モル%以上、好ましく
は90モル%以上に高めることが望ましく、ケン化
度が低すぎると水に対する親和性が損われるので
好ましくない。 上記の如くケン化して得られた変性ポリビニル
アルコールはアルコール分、ケン化時に副生する
該アルコールのエステルなどの溶媒を含むもので
あるから、温度50〜110℃の条件にて加熱乾燥す
る。 本発明に於ける樹脂は、実質的に乾燥された樹
脂粉末をさらに温度100〜200℃で、時間1〜360
分の条件で熱処理することによつて得られる。熱
処理条件は粒度、変性度、ケン化度と密接な関係
があるので、これらの要因を考慮した上で上記温
度と時間の条件を適宜選択することが好ましい。
具体的に変性度とケン化度と熱処理温度の関係を
例示すれば、熱処理温度T(℃)は、次式で表わ
される。 200−1.5X−0.5YT120−0.3X−0.1Y ここでXは変性度(mol%)、Yは残存酢酸基
(mol%)を表わす。 また粒度と熱処理温度、及び時間については、
粒度が比較的粗いものについては、温度は上記範
囲の温度での高めの温度で、粒度が細かいものに
ついては、温度は上記範囲の温度での低くめの温
度で行なうのが好ましい。時間は粒度が粗いもの
については、比較的長く、粒度が細かいものは比
較的短かくてよい。上記条件は本発明の熱処理条
件の一態様を示したものであり、これによつて本
発明は限定されるものではない。具体的方法とし
ては実質的に乾燥された樹脂粉末を引続いて上記
熱処理条件にて熱処理した樹脂粉末のうち、粒度
10〜400メツシユ(日本工業規格標準フルイの10
メツシユフルイ下及び400メツシユフルイ上の粒
度のものを指す)、好ましくは32〜250メツシユの
ものである。粒度が粗すぎるものは熱処理度が不
均一であるから本発明の特性を有せず、また細か
すぎるものは取扱い上好ましくない。 また一たん実質的に乾燥された樹脂粉末をその
まま上記条件にて熱処理した後分級して10〜400
メツシユの粒度のものを選択してもよく、さらに
一たん実質的に乾燥された樹脂粉末を分級または
粉砕して粒度10〜400メツシユのものを取り出し
それを上記条件にて熱処理したものでもよいが、
熱処理度の均一化の点で後者の方法の採用が望ま
しい。 熱処理温度が低くすぎると熱処理時間が長くな
りすぎたり、熱処理効果が不足するので好ましく
なく、温度が高すぎると樹脂が変質、分解する傾
向があるので好ましくない。かかる熱処理によつ
て、実質的に乾燥された樹脂が熱履歴をうけるこ
とにより、本発明の樹脂の特性が付与されるもの
であつて、乾燥のみではかかる特性を有する樹脂
は得がたいものである。 熱処理を行う場合は粉体を撹拌しながら加熱す
るか、加熱された空気、または不括性ガスを吹き
込み粉体を静置あるいは流動化して行なうか、流
動化状態にて行う。流動化状態で行う方法が熱処
理度の均一化が図られるのでその採用が望まし
い。 また水蒸気、溶剤蒸気等の存在下、さらには高
沸点溶剤存在下での熱処理を行なつてもよい。 本発明に於けるビニルエステルとしてはギ酸ビ
ニル、酢酸ビニル、プロピオン酸ビニル、ステア
リン酸ビニルなどがあげられるが、酢酸ビニルが
好ましい。 ジカルボン酸系単量体としては、マレイン酸、
イタコン酸、フマール酸、グルタコン酸、アリル
マロン酸などのジカルボン酸、及びこれらの無水
物、さらにこれらのメチル、エチル、プロピルな
どのモノアルキルエステルがあげられ、これらは
単独または2種以上の混合物として用いられる。
なかでもマレイン酸モノアルキルエステルが好ま
しい。 さらに上記単量体に、ビニルエステルと共重合
性を有する単量体、例えばクロトン酸、(メタ)
アクリル酸、などの不飽和モノカルボン酸及びそ
のエステル類、エチレン、プロピレンなどのα−
オレフイン、(メタ)アリルスルホン酸、エチレ
ンスルホン酸、スルホン酸マレートなどのオレフ
インスルホン酸、(メタ)アリルスルホン酸ソー
ダ、エチレンスルホン酸ソーダ、スルホン酸ソー
ダ(メタ)アクリレート、スルホン酸ソーダ(モ
ノアルキルマレート)、ジスルホン酸ソーダアル
キルマレートなどのオレフインスルホン酸アルカ
リ塩、N−メチロールアクリルアミド、アクリル
アミドアルキルスルホン酸アルカリ塩などのアミ
ド基含有単量体、さらにN−ビニルピロリドン、
N−ビニルピロリドン誘導体、などを少量併用し
ても差支えない。 本発明の樹脂を衛生用吸収材として使用する際
の使用方法を例示すれば、1)クレープ紙、クラ
ツシユパルプなどの吸収層中に該樹脂粉末を散添
する。2)クレープ紙、クラツシユパルプなどの
吸収層を水または水性接着剤で処理した後該樹脂
を散添し、圧着または圧着せずして固定する。
3)シート状物(プラスチツクフイルム、繊維質
シート)上に該樹脂を散添する。または散添後さ
らに該シート状物にて包みサンドイツチ状とす
る。4)該シート状物を水または水性接着剤にて
処理し該樹脂を散添し、圧着または圧着せずして
固定する。またはさらに該シート状物にて包みサ
ンドイツチ状とする。などがあげられ、さらにこ
れらの組合せがある。 本発明の樹脂は水、生理食塩水、及び人工尿に
対して、バランスのとれた吸収能を有するもので
あるから、前述の如く、体液吸収材、なかんず
く、紙おしめ、生理ナプキン、医療用吸収材(包
帯、ガーゼなど)などの用途に好適なものであ
る。さらに土木建築、農業水産分野での吸水材、
保水材としての広汎な用途にも好適なものであ
る。 次に実施例によつて本発明を具体的に説明す
る。尚例中「部」とあるのは「重量部」、「%」と
なるのは「重量%」を表わす。 実施例 1 マレイン酸モノメチル含量5モル%のマレイン
酸モノメチル−酢酸ビニル共重合体のメタノール
溶液、苛性ソーダの存在下にケン化して酢酸ビニ
ル成分のケン化度95モル%のケン化物スラリーを
得て、固−液分離した後のウエツトケーキを110
℃の熱風乾燥機にて乾燥し揮発分0.5%の変性ポ
リビニルアルコール粉末を得た。該粉末のうち粒
度100〜200メツシユのものを熱風循環式乾燥機に
て130℃×120分の条件にて熱処理して樹脂(A)を得
た。 樹脂(A)の一定量を蒸留水、生理食塩水
(Nacl9.0部を蒸留水1に溶解したもの)、人工
尿(尿素19.4部、Nacl8.0部、MgSO4・7H2O1.1
部及びCacl20.6部を蒸留水1に溶解したもの)
夫々に投入分散させ、室温(約20℃)にて40〜60
時間放置後、膨潤したゲルを取り出し、吸引過
後膨潤ゲルの重量を秤量した。蒸留水の吸収量は
200(g/g)、生理食塩水の吸収量は28(g/g)、
人工尿の吸収量は30(g/g)であつた。 ここでの吸収量は次式によつて求めた。 吸収量(g/g)=膨潤ゲル重量(g)/試料重量(
g) 実施例 2 実施例1に於ける変性ポリビニルアルコール粉
末の粒度48〜100メツシユの粉末を実施例1と同
じ乾燥機にて140℃×60分の条件にて熱処理して
樹脂(B)を得た。樹脂(B)を用い実施例1と同様にし
て、蒸留水、生理食塩水、及び人工尿の吸収量を
求めたところ、蒸留水の吸収量は200(g/g)、
生理食塩水の吸収量は26(g/g)、人工尿の吸収
量は28(g/g)であつた。 対照例 1 実施例1に於ける実質的に乾燥された変性ポリ
ビニルアルコール粉末(揮発分0.5%)の粒度100
〜200メツシユのものを用い、実施例と同様に、
蒸留水、生理食塩水、及び人工尿の吸収量を求め
たところ、樹脂はいずれに対しても殆んど溶解し
てしまつた。 対照例 2 酢酸ビニル−アクリル酸メチル共重合体ケン化
物を用いて実施例と同様にして、蒸留水、生理食
塩水及び人工尿の吸収量を求めたところ、蒸留水
の吸収量は415(g/g)と多かつたが、生理食塩
水の吸収量は23(g/g)、人工尿の吸収量は16
(g/g)と低下た。特に人工尿の吸収量は実施
例より劣つていることは明らかである。 対照例 3 デンプン−アクリルニトリルグラフト体ケン化
物を用いて実施例と同様にして、蒸留水、生理食
塩水、及び人工尿の吸収量を求めたところ、蒸留
水の吸収量は85(g/g)、生理食塩水の吸収量は
17(g/g)、人工尿の吸収量は9(g/g)であ
り、実施例よりいずれも劣つていた。 実施例 3 マレイン酸モノメチル含量5モル%、イタコン
酸モノメチル含量5モル%の酢酸ビニル共重合体
を実施例1と同様にしてケン化してケン化度90モ
ル%のケン化物を得たのち乾燥して変性ポリビニ
ルアルコール粉末を得た。該粉末の48〜100メツ
シユのものを実施例と同じ乾燥機にて130%×30
分の条件にて熱処理して樹脂(C)を得た。該樹脂(C)
を実施例と同様にして、蒸留水、生理食塩水及び
人工尿の吸収量を求めた。結果を第1表に示し
た。 実施例1〜3及び対照例1〜3の結果を第1表
に記載した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing superabsorbent resins. More specifically, a superabsorbent resin is obtained by heat-treating powder of a saponified copolymer of an unsaturated dicarboxylic acid monomer and vinyl ester with a specific particle size under specific conditions. In recent years, resins that highly absorb water or aqueous liquids,
For example, saponified starch-(meth)acrylonitrile graft copolymers, crosslinked polyethylene oxide, starch-acrylamide grafts, saponified copolymers of vinyl ester and ethylenically unsaturated carboxylic acid or its derivatives, crosslinked polyvinylpyrrolidone, With the development of cross-linked sulfonated polystyrene, such materials have been used in the sanitary field, such as body fluid treatment products such as urine and blood, and in the fields of agriculture, civil engineering and construction, using their water absorption and water retention properties.
Furthermore, its use has been widely proposed in other fields. Among these resins, saponified starch-acrylonitrile grout copolymers and saponified copolymers of vinyl ester and ethylenically unsaturated carboxylic acids or derivatives thereof are attracting attention as having high water absorption performance. However, although these resins have a high absorption capacity for water, their absorption capacity for artificial urine and physiological saline, which correspond to body fluids such as urine and blood, is inferior to that of water. The ability to absorb aqueous liquids with high component concentrations, such as urine, tends to be significantly reduced. However, the present applicant previously filed a patent application in 1973 regarding a method for imparting water-holding properties to soil using modified polyvinyl alcohol obtained by saponifying and drying a maleic acid monomer-vinyl acetate copolymer. - Filed in 1930 (Japanese Unexamined Patent Publication No. 52-88168). That is, it has been found that by drying the modified polyvinyl alcohol, it is given the ability to absorb a large amount of water. The inventors of the present invention conducted further studies and found that the property of absorbing a large amount of water can be impaired only by heat-treating the modified polyvinyl alcohol powder having a particle size within a specific range under specific conditions. It was discovered for the first time that the ability to absorb large amounts of physiological saline and artificial urine was achieved, and the present invention was completed. As a known technique related to the present invention, Japanese Patent Publication No. 53-13495 discloses a method of drying a saponified copolymer of a vinyl ester and an ethylenically unsaturated carboxylic acid or its derivative in a water-containing state to impart water absorption properties. Disclosed in the official gazette. However, although it is possible to obtain a resin having a high water absorption capacity using this technique as described above,
Absorption capacity decreases for aqueous liquids containing high concentration of components such as artificial urine, and this invention is the first to achieve balanced absorption for water, physiological saline, and artificial urine. A resin with this ability can be obtained. In the present invention, there is no particular limitation on the method for producing a copolymer of a vinyl ester and an unsaturated dicarboxylic acid monomer alone or a mixture of two or more, but for example, the presence of a lower alcohol solvent such as methanol and a polymerization catalyst is required. Below, it is obtained by copolymerizing the monomer alone or a mixture of two or more types and vinyl ester, and the content of the monomer in the copolymer is in the range of 0.2 to 50 mol%, Preferably it is 1 to 30 mol%. If this content is too low, the absorption capacity will be poor,
Moreover, if it exceeds 50 mol%, it is difficult to obtain a high molecular weight polymer gel. The saponified product of the copolymer is obtained by saponifying the copolymer in an alcohol or alcohol-containing mixed medium using an acid catalyst such as sulfuric acid or hydrochloric acid, or an alkali catalyst such as caustic soda, caustic potash, soda carbonate, or an alkali metal alcoholate. can be obtained. It is desirable to increase the degree of saponification of the vinyl ester component to 70 mol% or more, preferably 90 mol% or more, and if the degree of saponification is too low, the affinity for water will be impaired, which is not preferable. Since the modified polyvinyl alcohol obtained by saponification as described above contains an alcohol content and a solvent such as an ester of the alcohol produced as a by-product during saponification, it is dried by heating at a temperature of 50 to 110°C. The resin in the present invention is produced by further processing the substantially dried resin powder at a temperature of 100 to 200°C for a period of 1 to 360°C.
It can be obtained by heat treatment under the conditions of 10 minutes. Since the heat treatment conditions are closely related to the particle size, degree of modification, and degree of saponification, it is preferable to appropriately select the above temperature and time conditions in consideration of these factors.
To specifically illustrate the relationship between the degree of modification, the degree of saponification, and the heat treatment temperature, the heat treatment temperature T (° C.) is expressed by the following formula. 200-1.5X-0.5YT120-0.3X-0.1Y Here, X represents the degree of modification (mol%) and Y represents the residual acetic acid group (mol%). Regarding particle size, heat treatment temperature, and time,
For particles with a relatively coarse particle size, it is preferable to carry out the treatment at a higher temperature within the above-mentioned range, and for particles with a fine particle size, it is preferable to carry out the temperature at a lower temperature within the above-mentioned range. The time may be relatively long for coarse grains, and relatively short for fine grains. The above conditions represent one embodiment of the heat treatment conditions of the present invention, and the present invention is not limited thereby. Specifically, the particle size of the resin powder obtained by heat-treating the substantially dried resin powder under the above-mentioned heat treatment conditions is
10 to 400 mesh (Japanese Industrial Standards standard sieve 10
(refers to particles with a particle size below mesh size and above 400 mesh size), preferably between 32 and 250 mesh size. If the particle size is too coarse, the degree of heat treatment will be non-uniform, and therefore it will not have the characteristics of the present invention, and if the particle size is too fine, it is not preferred for handling. In addition, once the substantially dried resin powder is heat treated as it is under the above conditions, it is classified and
A mesh particle size may be selected, or a material having a particle size of 10 to 400 mesh may be selected by classifying or pulverizing the substantially dried resin powder and heat-treating it under the above conditions. ,
The latter method is preferable in terms of uniformity of the degree of heat treatment. If the heat treatment temperature is too low, the heat treatment time becomes too long or the heat treatment effect is insufficient, which is undesirable. If the temperature is too high, the resin tends to deteriorate and decompose, which is undesirable. Through such heat treatment, the substantially dried resin is subjected to thermal history, thereby imparting the characteristics of the resin of the present invention, and it is difficult to obtain a resin having such characteristics by drying alone. When heat treatment is carried out, the powder is heated while being stirred, or heated air or a non-volatile gas is blown into the powder to leave it still or fluidized, or it is carried out in a fluidized state. It is desirable to employ a method in which the heat treatment is carried out in a fluidized state, since this method allows for uniformity of the degree of heat treatment. Further, heat treatment may be performed in the presence of water vapor, solvent vapor, etc., or even in the presence of a high boiling point solvent. Vinyl esters in the present invention include vinyl formate, vinyl acetate, vinyl propionate, vinyl stearate, etc., with vinyl acetate being preferred. Examples of dicarboxylic acid monomers include maleic acid,
Examples include dicarboxylic acids such as itaconic acid, fumaric acid, glutaconic acid, and allylmalonic acid, their anhydrides, and their monoalkyl esters such as methyl, ethyl, and propyl, which may be used alone or in a mixture of two or more. It will be done.
Among these, maleic acid monoalkyl esters are preferred. Furthermore, in addition to the above monomer, a monomer copolymerizable with vinyl ester, such as crotonic acid, (meth)
Unsaturated monocarboxylic acids such as acrylic acid and their esters, α- such as ethylene and propylene
Olefin, (meth)allyl sulfonic acid, ethylene sulfonic acid, olefin sulfonic acid such as sulfonic acid malate, sodium (meth)allyl sulfonate, sodium ethylene sulfonate, sodium sulfonate (meth)acrylate, sodium sulfonate (monoalkyl olefin sulfonic acid alkali salts such as sodium disulfonate alkyl maleate, amide group-containing monomers such as N-methylol acrylamide and acrylamide alkyl sulfonic acid alkali salts, as well as N-vinylpyrrolidone,
A small amount of N-vinylpyrrolidone derivatives or the like may also be used in combination. Examples of the method of using the resin of the present invention as a sanitary absorbent material include: 1) Sprinkling the resin powder into an absorbent layer of crepe paper, crushed pulp, or the like. 2) After treating an absorbent layer such as crepe paper or crushed pulp with water or a water-based adhesive, the resin is added thereto and fixed with or without pressure bonding.
3) Sprinkle the resin onto a sheet-like material (plastic film, fibrous sheet). Alternatively, after the addition, the mixture is further wrapped in the sheet-like material to form a sandwich sandwich. 4) The sheet material is treated with water or a water-based adhesive, the resin is added thereto, and the sheet is fixed with or without pressure bonding. Or further wrapped in the sheet-like material to form a sandwich sandwich. There are also combinations of these. The resin of the present invention has a well-balanced absorption capacity for water, physiological saline, and artificial urine. It is suitable for use as materials (bandages, gauze, etc.). In addition, water absorbing materials for civil engineering and construction, agriculture and fisheries fields,
It is also suitable for a wide range of uses as a water retaining material. Next, the present invention will be specifically explained with reference to Examples. In the examples, "part" means "part by weight" and "%" means "% by weight." Example 1 A methanol solution of a monomethyl maleate-vinyl acetate copolymer having a monomethyl maleate content of 5 mol% was saponified in the presence of caustic soda to obtain a saponified product slurry with a degree of saponification of the vinyl acetate component of 95 mol%, Wet cake after solid-liquid separation was heated to 110
It was dried in a hot air dryer at ℃ to obtain a modified polyvinyl alcohol powder with a volatile content of 0.5%. Among the powders, those having a particle size of 100 to 200 mesh were heat-treated in a hot air circulation dryer at 130° C. for 120 minutes to obtain resin (A). Add a certain amount of resin (A) to distilled water, physiological saline (9.0 parts of NaCl dissolved in 1 part of distilled water), artificial urine (19.4 parts of urea, 8.0 parts of NaCl, 1.1 parts of MgSO 4 7H 2 O).
(1 part and 0.6 parts of Cacl 2 dissolved in 1 part of distilled water)
Pour and disperse into each, and heat at room temperature (approximately 20℃) for 40 to 60 minutes.
After standing for a period of time, the swollen gel was taken out, and the weight of the swollen gel was measured after suction. The amount of distilled water absorbed is
200 (g/g), absorption amount of physiological saline is 28 (g/g),
The amount of artificial urine absorbed was 30 (g/g). The absorption amount here was determined by the following formula. Absorption amount (g/g) = swollen gel weight (g) / sample weight (
g) Example 2 The modified polyvinyl alcohol powder in Example 1 with a particle size of 48 to 100 mesh was heat-treated at 140°C for 60 minutes in the same dryer as in Example 1 to obtain resin (B). Obtained. When the absorption amount of distilled water, physiological saline, and artificial urine was determined using resin (B) in the same manner as in Example 1, the absorption amount of distilled water was 200 (g/g),
The amount of physiological saline absorbed was 26 (g/g), and the amount of artificial urine absorbed was 28 (g/g). Control Example 1 Particle size of substantially dry modified polyvinyl alcohol powder (volatile content 0.5%) in Example 1: 100
Using ~200 mesh, as in the example,
When the absorption amount of distilled water, physiological saline, and artificial urine was determined, the resin was almost completely dissolved in all of them. Control Example 2 When the absorbed amount of distilled water, physiological saline, and artificial urine was determined in the same manner as in the example using saponified vinyl acetate-methyl acrylate copolymer, the absorbed amount of distilled water was 415 (g The absorption amount of physiological saline was 23 (g/g), and the absorption amount of artificial urine was 16 (g/g).
(g/g). In particular, it is clear that the amount of artificial urine absorbed is inferior to that of the Examples. Control Example 3 Using a saponified starch-acrylonitrile graft product, the absorption amount of distilled water, physiological saline, and artificial urine was determined in the same manner as in the example, and the absorption amount of distilled water was 85 (g/g ), the amount of saline absorbed is
17 (g/g), and the amount of artificial urine absorbed was 9 (g/g), both of which were inferior to the Examples. Example 3 A vinyl acetate copolymer containing 5 mol% of monomethyl maleate and 5 mol% of monomethyl itaconate was saponified in the same manner as in Example 1 to obtain a saponified product with a degree of saponification of 90 mol%, and then dried. A modified polyvinyl alcohol powder was obtained. 48 to 100 mesh of the powder was dried at 130% x 30 in the same dryer as in the example.
Resin (C) was obtained by heat treatment under the conditions of 10 minutes. The resin (C)
The absorbed amounts of distilled water, physiological saline, and artificial urine were determined in the same manner as in the examples. The results are shown in Table 1. The results of Examples 1 to 3 and Control Examples 1 to 3 are listed in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 不飽和ジカルボン酸系単量体(不飽和ジカル
ボン酸ジアルキルエステルを除く)単独または2
種以上の混合物0.2〜50モル%、ビニルエステル
99.8〜50モル%からなる共重合体をケン化して得
られたケン化度70モル%以上の変性ポリビニルア
ルコールの実質的に乾燥された粒度10〜400メツ
シユの粉末を、温度100〜200℃、時間1〜360分
の条件にて熱処理することを特徴とする高吸収性
樹脂の製造法。 2 不飽和ジカルボン酸系単量体が不飽和ジカル
ボン酸、不飽和ジカルボン酸無水物、不飽和ジカ
ルボン酸モノアルキルエステルである特許請求の
範囲第1項記載の製造法。 3 ビニルエステルが酢酸ビニルである特許請求
の範囲第1項記載の製造法。
[Claims] 1. Unsaturated dicarboxylic acid monomer (excluding unsaturated dicarboxylic acid dialkyl ester) alone or 2.
Mixture of species or more 0.2-50 mol%, vinyl ester
A substantially dried powder of modified polyvinyl alcohol having a saponification degree of 70 mol% or more obtained by saponifying a copolymer consisting of 99.8 to 50 mol% and having a particle size of 10 to 400 mesh is heated at a temperature of 100 to 200°C. A method for producing a superabsorbent resin, characterized by heat treatment under conditions of 1 to 360 minutes. 2. The production method according to claim 1, wherein the unsaturated dicarboxylic acid monomer is an unsaturated dicarboxylic acid, an unsaturated dicarboxylic anhydride, or an unsaturated dicarboxylic acid monoalkyl ester. 3. The manufacturing method according to claim 1, wherein the vinyl ester is vinyl acetate.
JP746779A 1979-01-23 1979-01-23 Preparation of highly absorbing resin Granted JPS5599925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP746779A JPS5599925A (en) 1979-01-23 1979-01-23 Preparation of highly absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP746779A JPS5599925A (en) 1979-01-23 1979-01-23 Preparation of highly absorbing resin

Publications (2)

Publication Number Publication Date
JPS5599925A JPS5599925A (en) 1980-07-30
JPS6346096B2 true JPS6346096B2 (en) 1988-09-13

Family

ID=11666602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP746779A Granted JPS5599925A (en) 1979-01-23 1979-01-23 Preparation of highly absorbing resin

Country Status (1)

Country Link
JP (1) JPS5599925A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122616A (en) * 1982-12-27 1984-07-16 Dynic Corp Draining material for drain work
US11161943B2 (en) * 2017-07-10 2021-11-02 Denka Company Limited Production method for poly(vinyl alcohol)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288168A (en) * 1976-01-08 1977-07-23 Nippon Synthetic Chem Ind Process for giving water retentivity to soil
JPS5313495A (en) * 1976-07-23 1978-02-07 Toshiba Corp Automatic depositing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288168A (en) * 1976-01-08 1977-07-23 Nippon Synthetic Chem Ind Process for giving water retentivity to soil
JPS5313495A (en) * 1976-07-23 1978-02-07 Toshiba Corp Automatic depositing system

Also Published As

Publication number Publication date
JPS5599925A (en) 1980-07-30

Similar Documents

Publication Publication Date Title
US6300275B1 (en) Resilient superabsorbent compositions
US4124748A (en) Cross-linked saponified absorbent polymer
JP2003518150A (en) High permeability and low absorption capacity polymer
TWI439297B (en) Water-absorbing polymer structure having improved permeability and absorption under pressure
US4666983A (en) Absorbent article
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
JPH0117411B2 (en)
JPS59189103A (en) Water-absorbing agent
EP0843690A1 (en) Absorbing agents for water and aqueous liquids and process for their production and use
WO1993021237A1 (en) Crosslinked hydrophilic resins and method of preparation
JP2008522003A (en) Cross-linking agent for super absorbent polymer
JPH01207327A (en) Surface treating method of water absorbing resin
US4102842A (en) Water-insoluble, hydrophilic gels and a method for the preparation of the same
JPH0826085B2 (en) Method for producing water-absorbent resin having excellent durability
JPH02153903A (en) Production of highly hygroscopic resin
JPH01292004A (en) Production of highly water-absorbable resin
JPH01297430A (en) Method for treating surface of water-absorbable resin
JPS6346096B2 (en)
JP2008524411A (en) Hydrogel with low freezing point
JPH03137129A (en) Pelletizing method of granular material
CN1044470A (en) Superabsorbing copolymers of vinyl alcohol
TW201900702A (en) Water absorbent resin and method of producing the same
JPH0656933A (en) Water-absorbing resin and its production
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
JPS6340801B2 (en)