JPS6346055B2 - - Google Patents

Info

Publication number
JPS6346055B2
JPS6346055B2 JP7480087A JP7480087A JPS6346055B2 JP S6346055 B2 JPS6346055 B2 JP S6346055B2 JP 7480087 A JP7480087 A JP 7480087A JP 7480087 A JP7480087 A JP 7480087A JP S6346055 B2 JPS6346055 B2 JP S6346055B2
Authority
JP
Japan
Prior art keywords
general formula
formula
group
represented
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7480087A
Other languages
Japanese (ja)
Other versions
JPS6322041A (en
Inventor
Kazuhiro Maruyama
Yoshinori Narita
Hidemitsu Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7480087A priority Critical patent/JPS6322041A/en
Publication of JPS6322041A publication Critical patent/JPS6322041A/en
Publication of JPS6346055B2 publication Critical patent/JPS6346055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテルペン骨格またはテルペンに類似の
骨格を有するアリル型アルコールの製造方法に関
し、詳しくは一般式 〔式中R1およびR4は独立に水素原子もしくは低
級アルキル基を表わすかまたは一緒になつて低級
アルキレン基を表わし、R2およびR3は独立に水
素原子または低級アルキル基を表わし、R5は水
素原子、アルキル基、アルケニル基または式
【式】で示される 基を表わし、ここでnは2以上の整数を表わし、
R6およびR7は独立に水素原子、アルキル基また
はアルケニル基を表わす〕 で示されるアリル型アルコールの製造方法に関す
る。 本発明の方法によつて得られるゲラニオールな
どに代表される一般式()で示されるアリル型
アルコールは、香料の香気成分などとして有用で
ある。 〔従来の技術〕 1,2−エポキシ−3−ブテンまたは1,2−
エポキシ−2−メチル−3−ブテンとアリル基、
2−ブテニル基または3−プロピル−2−ヘキセ
ニル基のような炭化水素基を有するグリニヤール
試薬とをテトラヒドロフラン中、5%の臭化銅
()の存在下で−25℃の温度で反応させること
によつてそれぞれ対応するアリル型アルコールが
得られることが知られている(C.Cahiez et al.、
Synthesis、1978、528参照)。 (各式中Xはハロゲン原子を表わす) 〔発明が解決しようとする問題点〕 本発明者らが1,2−エポキシ−3−ブテンと
臭化アリルマグネシウムとをヨウ化銅()の存
在下または不存在下に反応させたところ、ヨウ化
銅()の存在下に反応させた場合には2,6−
ヘプタジエン−1−オールと2−ビニル−4−ペ
ンテン−1−オールとが81.2対18.8の割合で得ら
れ、またヨウ化銅()の不存在下に反応させた
場合には2,6−ヘプタジエン−1−オールと2
−ビニル−4−ペンテン−1−オールとが70.0対
30.0の割合で得られた。 このように、1,2−エポキシ−3−ブテンな
どの不飽和エポキシ化合物と臭化アリルマグネシ
ウムなどのアリル型の炭化水素基を有するグリニ
ヤール試薬との反応では通常2種類の付加生成物
が得られる。 本発明者らは、1般式 (式中R1、R2、R3およびR4は前記定義のとおり
である) で示される不飽和エポキシ化合物とアリル型の炭
化水素基を有する有機錫化合物をある種のルイス
酸の存在下に反応させる場合には、一般式()
で示される不飽和エポキシ化合物の2−位に該ア
リル型の炭化水素基が導入された一般式 (式中R1、R2、R3、R4、R5、R6およびR7は前記
定義のとおりである) で示されるβ−アリル置換−γ,δ−不飽和アル
コールが高選択率で得られるという知見を得た。 しかして、本発明の目的は、一般式()で示
されるβ−アリル置換−γ,δ−不飽和アルコー
ルを用いて一般式()で示されるアリル型アル
コールを容易にかつほぼ定量的に製造することが
できる新しい方法を提供することにある。 〔問題点を解決するための手段〕 本発明によれば、上記の目的は、一般式()
で示されるβ−アリル置換−γ,δ−不飽和アル
コールを加熱転位させることを特徴とする一般式
()で示されるアリル型アルコールの製造方法
を提供することによつて達成される。 前記の一般式におけるR1、R2、R3、R4、R5
R6およびR7を以下に詳しく説明する。R1、R2
R3およびR4が表わす低級アルキル基はメチル、
エチル、n−プロピル、i−プロピル、n−ブチ
ル、i−ブチル、n−ペンチル、n−ヘキシル等
を包含する。またR1とR4とは相互に一緒になつ
てメチレン、エチレン等の低級アルキレン基を構
成することができる。R1〜R4はこれらの基およ
び水素原子から、生成物の所望の構造が得られる
ように適宜選ばれるべきであるが、生成物の有用
性の点ではR1およびR4はともに水素原子である
かまたは一緒になつてメチレンもしくはエチレン
を構成し、R2が水素原子であり、かつR3がメチ
ルまたはエチルである場合がとくに好ましい。
R5は水素原子;メチル、エチル、ブチル、ペン
チル、オクテル、デシル、エイコシル等のアルキ
ル基;ビニル、アリル、イソプロペニル、3−ブ
テン−1−イル、3−メチル−3−ブテン−1−
イル、3−メチル−2−ブテン−1−イル、4−
ペンテン−1−イル、4−メチル−3−ペンテン
−1−イル、フイチルメチル等のアルケニル基;
または式【式】に おいてnが2以上の整数である炭化水素基、例え
ばゲラニルメチル、フアルネシルメチル、ゲラニ
ルゲラニルメチル、ソラネシルメチル、デカプレ
ニルメチル等の基を表わす。上記式においてnは
12以下の整数である場合が好ましい。R6および
R7はR5に関して言及した如きアルキル基、アル
ケニル基および水素原子から目的に応じて選ばれ
る。 本発明に従う加熱転位(コープ転位)反応は、
一般式()で表わされるβ−アリル置換−γ,
δ−不飽和アルコールを150〜300℃の範囲内の温
度に加熱することによつて実施される。 本発明で使用する一般式()で示されるβ−
アリル置換−γ,δ−不飽和アルコールは、一般
式()で示される不飽和エポキシ化合物と一般
(式中R5、R6およびR7は前記定義のとおりであ
り、R8、R9およびR10は独立に低級アルキル基ま
たは置換されていてもよいフエニル基を表わす) で示される有機錫化合物とを三フツ化ホウ素、三
フツ化ホウ素エーテラートまたは塩化アルミニウ
ムの存在下で反応させることによつて高選択率で
製造される。 上記の不飽和エポキシ化合物と有機錫化合物と
の反応は、触媒としての三フツ化ホウ素、三フツ
化ホウ素エーテラート(例えばジエチルエーテラ
ート)または塩化アルミニウムの存在下で両者を
接触させることにより行われるが、反応の選択性
の点から反応温度は0〜−80℃のような比較的低
温が好ましい。反応溶媒は不可欠ではないが、反
応に関与しないものを使用するのが選択性の面で
好ましく、たとえば塩化メチレン、四塩化炭素、
クロロホルムなどを使用することができる。一般
式()で示される不飽和エポキシ化合物と一般
式()で示される有機錫化合物との使用割合は
厳密ではないが、前者1モルあたり後者0.2〜5
モルの範囲が適当である。反応剤および触媒の仕
込み順序は任意に選ぶことができるが、例えば三
フツ化ホウ素エーテラートを触媒として用いる反
応では、一般式()で示される不飽和エポキシ
化合物と一般式()で示される有機錫化合物と
の混合溶液に三フツ化ホウ素エーテラートを滴下
する場合が一般的に収率が高い。 一般式()で示される有機錫化合物は、例え
ば次に示すように一般式()で示される有機ハ
ロゲン化物と一般式()で示されるリチウム錫
化合物とを反応させることにより調製することが
できる。 なお、一般式()で示されるリチウム錫化合
物は例えば下記(i)、(ii)または(iii)の反応により得ら
れる。 (i) HSnR8R9R10+C4H9Li→LiSnR8R9R10 (ii) (R8R9R10Sn)2+C4H9Li→LiSnR8R9R10 (iii) R8R9R10SnX+Li→LiSnR8R9R10 別法として下記のように一般式()で示され
る有機マグネシウムハライドと一般式()で示
される有機錫ハライドとを反応させることによつ
ても一般式()で示される有機錫化合物を調整
することができる。 上記の各式において、R5、R6、R7、R8、R9
よびR10は前記定義のとおりであり、Xはハロゲ
ン原子を表わす。 また、一般式()で示される不飽和エポキシ
化合物は例えば次の反応により調整される。 (1) ジエンと過酸の反応 (式中Rは炭化水素基を表わす) 〔例えばJ.K.Crandall et al.、J.Org.Chem.、
33、423(1968)およびN.Heap et、al.、J.
Chem.Soc.、(B)、164(1966)参照〕 (2) イオウイリドとα,β−不飽和アルデヒドの
反応 〔例えばE.J.Corey et al.、J.Amer.Chem.
Soc.、87、1353(1965)およびA.Merz et al.、
Angew.Chem.Internat.Edit.、12、845(1973)
参照〕 〔実施例〕 次に、実施例により本発明を具体的に説明する
が、特定の反応例を示すにすぎない該実施例によ
つて本発明は限定的に解釈されるものでない。 参考例 1 塩化メチレン15mlに1,2−エポキシ−3−メ
チル−3−ブテン3ミリモルと該1,2−エポキ
シ−3−メチル−3−ブテンに対して1.1当量の
トリメチル(3−メチル−2−ブテニル)錫を加
え、得られた溶液中に−78℃で三フツ化ホウ素ジ
エチルエーテラート3ミリモルを加えて1時間反
応させたのち、反応温度を0.5時間を要してゆつ
くりと−10℃まで上昇させた。反応終了後、反応
溶液に水を加え、有機層と水層とに分離し、水層
をジエチルエーテルで2回抽出した。有機層を合
し、水で2回洗滌したのち、無水硫酸マグネシウ
ム上で乾燥した。ガスクロマトグラフイー(カラ
ム10%−Ucon oil LB550、内部標準n−ヘプタ
ノールにより生成物を標品とし比較した結果、
3,3−ジメチル−2−イソプロペニル−4−ペ
ンテノールへの選択率は95%以上であることが判
明した。有機層をロータリーエバポレーターで濃
縮したのち、その残渣をシリカゲルクロマトグラ
フイー(展開溶媒:ヘキサン−ジエチルエーテル
混合溶媒)に付することにより、3,3−ジメチ
ル−2−イソプロペニル−4−ペンテノールを単
離収率91%で得た。なお、得られた3,3−ジメ
チル−2−イソプロペニル−4−ペンテノールの
構造はNMRおよびIRにより同定された。 実施例 1 3,3−ジメチル−2−イソプロペニル−4−
ペンテノール154mgをアルゴン雰囲気下に190〜
195℃で2時間加熱反応させ、ゲラニオール
(E/Z=58/42)を定量的に得た。このものの
ガスクロマトグラフイーでの保持時間および
NMRスペクトルが市販の標品のものと一致した
ことにより、生成したゲラニオールの構造を確認
した。 〔発明の効果〕 本発明によれば、上記の実施例から明らかなと
おり、一般式()で示されるβ−アリル置換−
γ,δ−不飽和アルコールから一般式()で示
されるアリル型アルコールを容易にかつほぼ定量
的に製造することができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an allylic alcohol having a terpene skeleton or a skeleton similar to a terpene. [In the formula, R 1 and R 4 independently represent a hydrogen atom or a lower alkyl group, or together represent a lower alkylene group, R 2 and R 3 independently represent a hydrogen atom or a lower alkyl group, and R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, or a group represented by the formula [Formula], where n represents an integer of 2 or more,
R 6 and R 7 independently represent a hydrogen atom, an alkyl group, or an alkenyl group. Allyl alcohols represented by the general formula (), such as geraniol, obtained by the method of the present invention are useful as aroma components of perfumes. [Prior art] 1,2-epoxy-3-butene or 1,2-
Epoxy-2-methyl-3-butene and allyl group,
A Grignard reagent having a hydrocarbon group such as a 2-butenyl group or a 3-propyl-2-hexenyl group is reacted with a Grignard reagent having a hydrocarbon group such as a 2-butenyl group or a 3-propyl-2-hexenyl group in the presence of 5% copper bromide () in tetrahydrofuran at a temperature of -25°C. It is known that corresponding allylic alcohols can be obtained in this way (C. Cahiez et al.,
Synthesis, 1978 , 528). (In each formula, X represents a halogen atom) [Problems to be solved by the invention] The present inventors prepared 1,2-epoxy-3-butene and allylmagnesium bromide in the presence of copper iodide (). Or, when the reaction was carried out in the absence of copper iodide, the reaction was carried out in the presence of 2,6-
Heptadien-1-ol and 2-vinyl-4-penten-1-ol were obtained in a ratio of 81.2 to 18.8, and 2,6-heptadien-1-ol was obtained in the absence of copper iodide. -1-all and 2
-70.0 pairs with vinyl-4-penten-1-ol
Obtained at a rate of 30.0. Thus, the reaction of an unsaturated epoxy compound such as 1,2-epoxy-3-butene with a Grignard reagent having an allylic hydrocarbon group such as allylmagnesium bromide usually yields two types of addition products. . The inventors have determined that the general formula (In the formula, R 1 , R 2 , R 3 and R 4 are as defined above.) An unsaturated epoxy compound represented by the formula and an organotin compound having an allyl hydrocarbon group are mixed in the presence of a certain Lewis acid. When reacting with, the general formula ()
A general formula in which the allyl type hydrocarbon group is introduced at the 2-position of an unsaturated epoxy compound represented by (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above) I obtained the knowledge that it can be obtained by Therefore, an object of the present invention is to easily and almost quantitatively produce an allylic alcohol represented by the general formula () using a β-allyl substituted-γ,δ-unsaturated alcohol represented by the general formula (). Our goal is to provide new ways to do things. [Means for solving the problem] According to the present invention, the above object is achieved by solving the general formula ()
This is achieved by providing a method for producing an allylic alcohol represented by the general formula (), which is characterized by carrying out thermal rearrangement of a β-allyl substituted -γ,δ-unsaturated alcohol represented by the formula (). R 1 , R 2 , R 3 , R 4 , R 5 in the general formula above,
R 6 and R 7 are explained in detail below. R1 , R2 ,
The lower alkyl group represented by R 3 and R 4 is methyl,
Includes ethyl, n-propyl, i-propyl, n-butyl, i-butyl, n-pentyl, n-hexyl, and the like. Furthermore, R 1 and R 4 can be taken together to form a lower alkylene group such as methylene or ethylene. R 1 to R 4 should be appropriately selected from these groups and hydrogen atoms to obtain the desired structure of the product, but in terms of the usefulness of the product, R 1 and R 4 should both be hydrogen atoms. or together form methylene or ethylene, R 2 is a hydrogen atom and R 3 is methyl or ethyl.
R 5 is a hydrogen atom; an alkyl group such as methyl, ethyl, butyl, pentyl, octyl, decyl, eicosyl; vinyl, allyl, isopropenyl, 3-buten-1-yl, 3-methyl-3-buten-1-
yl, 3-methyl-2-buten-1-yl, 4-
Alkenyl groups such as penten-1-yl, 4-methyl-3-penten-1-yl, phythylmethyl;
Or it represents a hydrocarbon group in which n is an integer of 2 or more, such as geranylmethyl, farnesylmethyl, geranylgeranylmethyl, solanesylmethyl, decaprenylmethyl, and the like. In the above formula, n is
Preferably, it is an integer of 12 or less. R6 and
R 7 is optionally selected from alkyl groups, alkenyl groups, and hydrogen atoms as mentioned for R 5 . The heated rearrangement (Cope rearrangement) reaction according to the present invention is
β-allyl substituted −γ represented by the general formula (),
It is carried out by heating the delta-unsaturated alcohol to a temperature within the range of 150-300<0>C. β- represented by the general formula () used in the present invention
Allyl-substituted-γ,δ-unsaturated alcohol is an unsaturated epoxy compound represented by the general formula () and a general formula (In the formula, R 5 , R 6 and R 7 are as defined above, and R 8 , R 9 and R 10 independently represent a lower alkyl group or an optionally substituted phenyl group) It is produced with high selectivity by reacting the compound with boron trifluoride, boron trifluoride etherate, or aluminum chloride. The reaction between the unsaturated epoxy compound and the organotin compound described above is carried out by bringing the two into contact in the presence of boron trifluoride, boron trifluoride etherate (e.g. diethyl etherate) or aluminum chloride as a catalyst. From the viewpoint of reaction selectivity, the reaction temperature is preferably relatively low, such as 0 to -80°C. Although the reaction solvent is not essential, it is preferable to use one that does not participate in the reaction in terms of selectivity, such as methylene chloride, carbon tetrachloride,
Chloroform etc. can be used. The usage ratio of the unsaturated epoxy compound represented by the general formula () and the organic tin compound represented by the general formula () is not strict, but it is 0.2 to 5 mol of the latter per 1 mole of the former.
A molar range is suitable. The order of charging the reactants and catalysts can be arbitrarily selected, but for example, in a reaction using boron trifluoride etherate as a catalyst, an unsaturated epoxy compound represented by the general formula () and an organic tin represented by the general formula () are used. The yield is generally high when boron trifluoride etherate is added dropwise to a mixed solution with the compound. The organotin compound represented by the general formula () can be prepared, for example, by reacting the organic halide represented by the general formula () with the lithium tin compound represented by the general formula () as shown below. . Note that the lithium tin compound represented by the general formula () can be obtained, for example, by the following reaction (i), (ii), or (iii). (i) HSnR 8 R 9 R 10 +C 4 H 9 Li→LiSnR 8 R 9 R 10 (ii) (R 8 R 9 R 10 Sn) 2 +C 4 H 9 Li→LiSnR 8 R 9 R 10 (iii) R 8 R 9 R 10 SnX + Li → LiSnR 8 R 9 R 10 Alternatively, as shown below, by reacting an organomagnesium halide represented by the general formula () with an organotin halide represented by the general formula (). An organic tin compound represented by the general formula () can be prepared. In each of the above formulas, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined above, and X represents a halogen atom. Further, the unsaturated epoxy compound represented by the general formula () is prepared, for example, by the following reaction. (1) Reaction of diene and peracid (In the formula, R represents a hydrocarbon group) [For example, JK Crandall et al., J.Org.Chem.,
33, 423 (1968) and N. Heap et, al., J.
See Chem.Soc., (B), 164 (1966)] (2) Reaction of sulfur and α,β-unsaturated aldehydes [For example, EJCorey et al., J.Amer.Chem.
Soc., 87 , 1353 (1965) and A. Merz et al.,
Angew.Chem.Internat.Edit., 12 , 845 (1973)
Reference] [Example] Next, the present invention will be specifically explained with reference to Examples, but the present invention should not be construed as being limited by the Examples, which merely show specific reaction examples. Reference Example 1 In 15 ml of methylene chloride, 3 mmol of 1,2-epoxy-3-methyl-3-butene and 1.1 equivalent of trimethyl (3-methyl-2-butene) were added to 15 ml of methylene chloride. -butenyl)tin was added, and 3 mmol of boron trifluoride diethyl etherate was added to the resulting solution at -78°C and reacted for 1 hour, and then the reaction temperature was slowly increased over a period of 0.5 hour to -10 It was raised to ℃. After the reaction was completed, water was added to the reaction solution to separate it into an organic layer and an aqueous layer, and the aqueous layer was extracted twice with diethyl ether. The organic layers were combined, washed twice with water, and then dried over anhydrous magnesium sulfate. Gas chromatography (column 10% - Ucon oil LB550, internal standard n-heptanol, product was compared as a standard,
The selectivity to 3,3-dimethyl-2-isopropenyl-4-pentenol was found to be greater than 95%. After concentrating the organic layer using a rotary evaporator, the residue was subjected to silica gel chromatography (developing solvent: hexane-diethyl ether mixed solvent) to obtain 3,3-dimethyl-2-isopropenyl-4-pentenol. Obtained with an isolated yield of 91%. The structure of the obtained 3,3-dimethyl-2-isopropenyl-4-pentenol was identified by NMR and IR. Example 1 3,3-dimethyl-2-isopropenyl-4-
154mg of pentenol under argon atmosphere 190~
A heating reaction was carried out at 195° C. for 2 hours to quantitatively obtain geraniol (E/Z=58/42). Retention time of this substance in gas chromatography and
The structure of the produced geraniol was confirmed because the NMR spectrum matched that of a commercially available standard. [Effects of the Invention] According to the present invention, as is clear from the above examples, β-allyl substituted -
The allylic alcohol represented by the general formula () can be easily and almost quantitatively produced from a γ,δ-unsaturated alcohol.

Claims (1)

【特許請求の範囲】 1 一般式 〔式中R1およびR4は独立に水素原子もしくは低
級アルキル基を表わすかまたは一緒になつて低級
アルキレン基を表わし、R2およびR3は独立に水
素原子または低級アルキル基を表わし、R5は水
素原子、アルキル基、アルケニル基または式
【式】で示される 基を表わし、ここでnは2以上の整数を表わし、
R6およびR7は独立に水素原子、アルキル基また
はアルケニル基を表わす〕 で示されるβ−アリル置換−γ,δ−不飽和アル
コールを加熱転位させることを特徴とする一般式 (式中R1、R2、R3、R4、R5、R6およびR7は前記
定義のとおりである) で示されるアリル型アルコールの製造方法。
[Claims] 1. General formula [In the formula, R 1 and R 4 independently represent a hydrogen atom or a lower alkyl group, or together represent a lower alkylene group, R 2 and R 3 independently represent a hydrogen atom or a lower alkyl group, and R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, or a group represented by the formula [Formula], where n represents an integer of 2 or more,
R 6 and R 7 independently represent a hydrogen atom, an alkyl group, or an alkenyl group] A general formula characterized by thermally rearranging a β-allyl-substituted-γ,δ-unsaturated alcohol represented by (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above.) A method for producing an allyl alcohol represented by the following formula.
JP7480087A 1987-03-27 1987-03-27 Production of allyl type alcohol Granted JPS6322041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7480087A JPS6322041A (en) 1987-03-27 1987-03-27 Production of allyl type alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7480087A JPS6322041A (en) 1987-03-27 1987-03-27 Production of allyl type alcohol

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8619680A Division JPS5711930A (en) 1980-06-24 1980-06-24 Production of unsaturated alcohol

Publications (2)

Publication Number Publication Date
JPS6322041A JPS6322041A (en) 1988-01-29
JPS6346055B2 true JPS6346055B2 (en) 1988-09-13

Family

ID=13557742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7480087A Granted JPS6322041A (en) 1987-03-27 1987-03-27 Production of allyl type alcohol

Country Status (1)

Country Link
JP (1) JPS6322041A (en)

Also Published As

Publication number Publication date
JPS6322041A (en) 1988-01-29

Similar Documents

Publication Publication Date Title
Furuta et al. Regio-and stereocontrolled synthesis of allenic and acetylenic derivatives. Organotitanium and boron reagents.
Still Conjugate addition of trimethysilyllithium. A preparation of 3-silyl ketones
Denmark et al. (E)-3-(Trimethylsilyl)-2-propen-1-ol. An improved preparation
Nakamura et al. Geminal acylation via pinacol rearrangement. Synthesis of spiro [4. n] ring systems
Yamaguchi et al. A ring opening reaction of oxetanes with lithium acetylides promoted by boron trifluoride etherate
Yasuda et al. Chemistry of dienyl anions. IV. Geometry of pentadienyl anions in solution and in the solid state determined by regioselective trimethylsilylation and NMR.
Félix et al. Regiospecific Synthesis of Mono‐and Polyiodo Derivatives of Benzene
Sampson et al. A new synthesis of. beta.-keto phosphonates and. beta.-keto silanes
Meyers et al. (E)-1-Bromo-3, 3-diethoxy-1-propene (diethyl acetal of 3-bromoacrolein). A versatile synthon for the synthesis of furans, butenolides, and (Z)-allyl alcohols
Suzuki et al. Three-component coupling synthesis of prostaglandins: The aldol route.
Barton et al. A rearrangement-elimination sequence to 1-silatoluene
Ranasinghe et al. Ramberg-Backlund syntheses and chemodirected annulations of exocyclic allylsilanes
Kato et al. Specific generation of lithiated 3-trimethylsiloxy-1, 2-propadiene derivatives from 1-(trimethylsilyl) propargyl alcohols.
JPS6345375B2 (en)
JPS6346055B2 (en)
US5136066A (en) Process for preparing optically active cyclopentenone derivative
Hatanaka et al. Reactions of 3-[(trimethylsilyl) methyl]-2-cyclohexen-1-one with carbonyl compounds. Regio-and chemoselective condensations
Hoshi et al. The synthesis of Se-alkyl alkaneselenoates via (1-iodo-1-alkenyl) dialkylboranes.
JPS5817175B2 (en) Ether Kagobutsuno Seizouhou
US5180844A (en) Optically active 2-methylenecyclopentanone derivative and process for preparing same
Nishiyama et al. Silver-induced allylation of. beta.-bromo ethers with allylsilanes
Nakada et al. Preparation of phorone.
Georg et al. Reaction of 4-(iodomethyl) azetidin-2-ones with tetracarbonylferrate (II)
US6180835B1 (en) Process for the preparation of cyclopropylacetylene derivatives
US5216187A (en) Optically active 2-methylenepentane derivative and process for preparing same