JPS6345375B2 - - Google Patents

Info

Publication number
JPS6345375B2
JPS6345375B2 JP8619680A JP8619680A JPS6345375B2 JP S6345375 B2 JPS6345375 B2 JP S6345375B2 JP 8619680 A JP8619680 A JP 8619680A JP 8619680 A JP8619680 A JP 8619680A JP S6345375 B2 JPS6345375 B2 JP S6345375B2
Authority
JP
Japan
Prior art keywords
formula
general formula
group
alkyl group
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8619680A
Other languages
Japanese (ja)
Other versions
JPS5711930A (en
Inventor
Kazuhiro Maruyama
Yoshinori Narita
Hidemitsu Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8619680A priority Critical patent/JPS5711930A/en
Publication of JPS5711930A publication Critical patent/JPS5711930A/en
Publication of JPS6345375B2 publication Critical patent/JPS6345375B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はテルペン骨格またはテルペンに類似の
骨格を有する化合物に転位することのできる不飽
和アルコール類の製造方法に関する。 1,2―エポキシ―3―ブテンとマグネシウム
またはリチウムの有機化合物RM〔Rはメチル基
を表わし、MはMgX(XはCl、BrまたはIを表
わす)またはLiを表わす〕とを反応させると、R
を2―位および4―位にそれぞれ導入したヒドロ
キシブテンが得られることは公知である〔R.J.
Anderson,J.Amer.Chem.Soc.,92,4978(1970)
およびR.W.Herr and C.R.Johnson,J.Amer.
Chem.Soc.,92,4979(1970)参照〕。 反応は次式で示される。 この反応においてはイソ型の1―ヒドロキシ―
2―メチル―3―ブテンとノルマル型の1―ヒド
ロキシ―2―ペンテンとは比較的広範囲の割合で
同時に生成し、いずれか一方を選択性よく製造す
ることはできない。上記反応のほかに、不飽和エ
ポキシ化合物とビニル銅、ビニルリチウム試剤と
の反応も知られているが(C.Cahiez et al.,
Synthesis,1978,528参照)、これらの反応にお
いても上記と同様の傾向がある。 上記の反応に関する詳細な検討の過程におい
て、マグネシウムまたはリチウムの有機化合物の
代りにアリル型の炭化水素基を有する有機錫化合
物をある種のルイス酸の存在下で用いる場合に
は、2―位に該アリル型の炭化水素基を高選択率
で導入することができ、かつ得られた不飽和アル
コール類は加熱転位(コープ転位)させることに
よりテルペン骨格またはテルペンに類似の骨格を
有する化合物に転化できるという知見が得られ
た。本発明はかかる知見に基づいて達成されたも
ので、本発明によれば一般式 (式中R1およびR4はそれぞれ独立に水素原子
もしくは低級アルキル基を表わすか、または一緒
になつて低級アルキレン基を表わし、R2および
R3はそれぞれ独立に水素原子または低級アルキ
ル基を表わす)で示される不飽和エポキシ化合物
と一般式 〔式中R5は水素原子、アルキル基、アルケニ
ル基または式
The present invention relates to a method for producing unsaturated alcohols that can be rearranged into compounds having a terpene skeleton or a skeleton similar to a terpene. When 1,2-epoxy-3-butene is reacted with an organic compound of magnesium or lithium RM [R represents a methyl group, M represents MgX (X represents Cl, Br or I) or Li], R
It is known that hydroxybutene can be obtained in which hydroxybutene is introduced into the 2- and 4-positions [RJ
Anderson, J.Amer.Chem.Soc., 92 , 4978 (1970)
and RWHerr and CRJohnson, J. Amer.
Chem.Soc., 92 , 4979 (1970)]. The reaction is shown by the following formula. In this reaction, the isoform 1-hydroxy-
2-methyl-3-butene and normal type 1-hydroxy-2-pentene are produced simultaneously in a relatively wide range of ratios, and it is not possible to produce either one with good selectivity. In addition to the above reactions, reactions between unsaturated epoxy compounds and vinyl copper and vinyl lithium reagents are also known (C. Cahiez et al.,
Synthesis, 1978 , 528), the same tendency as above is observed in these reactions. In the process of detailed study of the above reaction, we found that when an organotin compound having an allylic hydrocarbon group is used instead of an organic compound of magnesium or lithium in the presence of a certain Lewis acid, the 2-position The allyl type hydrocarbon group can be introduced with high selectivity, and the obtained unsaturated alcohol can be converted into a compound having a terpene skeleton or a skeleton similar to a terpene by thermal rearrangement (Cope rearrangement). This finding was obtained. The present invention has been achieved based on such knowledge, and according to the present invention, the general formula (In the formula, R 1 and R 4 each independently represent a hydrogen atom or a lower alkyl group, or together represent a lower alkylene group, and R 2 and
R 3 each independently represents a hydrogen atom or a lower alkyl group) and the general formula [In the formula, R 5 is a hydrogen atom, an alkyl group, an alkenyl group, or a formula

【式】 で示される基を表わし、ここでnは2以上の整数
を表わし、R6およびR7はそれぞれ独立に水素原
子、アルキル基またはアルケニル基を表わし、
R8、R9およびR10はそれぞれ独立に低級アルキル
基または置換されていてもよいフエニル基を表わ
す〕で示される有機錫化合物とを、三フツ化ホウ
素、三フツ化ホウ素エーテラートまたは塩化アル
ミニウムの存在下で反応させることにより一般式 (式中R1、R2、R3、R4、R5、R6およびR7は前
記定義のとおりである)で示される不飽和アルコ
ール類を高選択率で製造することができる。 一般式()で示される不飽和アルコール類は
150〜300℃の範囲内の温度に加熱することにより
容易に転位してほぼ定量的に次式で示されるテル
ペン系の骨格を有する化合物を与える。 したがつて本発明の方法は不飽和エポキシ化合
物を用いる新規な炭素鎖伸長法を提供する点で、
テルペン化学工業において特に意義の認められる
方法である。 本発明で使用する一般式()で示される不飽
和エポキシ化合物において、R1、R2、R3および
R4が表わす低級アルキル基はメチル、エチル、
n―プロピル、i―プロピル、n―ブチル、i―
ブチル、n―ペンチル、n―ヘキシル等を包含す
る。またR1とR4とは相互に一緒になつてメチレ
ン、エチレン等の低級アルキレン基を構成するこ
とができ、この場合、一般式()で示される不
飽和エポキシ化合物はエポキシ化シクロアルケン
である。R1〜R4はこれらの基および水素原子か
ら、生成物の所望の構造が得られるように適宜選
ばれるベきであるが、生成物の有用性の点では
R1およびR4はともに水素原子であるかまたは一
緒になつてメチレンもしくはエチレンを構成し、
R2が水素原子であり、かつR3がメチルまたはエ
チルである場合がとくに好ましい。 一般式()で示される有機錫化合物において
R5は水素原子;メチル、エチル、ブチル、ペン
チル、オクチル、デシル、エイコシル等のアルキ
ル基;ビニル、アリル、イソプロペニル、3―プ
テン―1―イル、3―メチル―3―ブテン―1―
イル、3―メチル―2―ブテン―1―イル、4―
ペンテン―1―イル、4―メチル―3―ペンテン
―1―イル、フイチルメチル等のアルケニル基;
または式
[Formula] represents a group represented by the following, where n represents an integer of 2 or more, R 6 and R 7 each independently represent a hydrogen atom, an alkyl group or an alkenyl group,
R 8 , R 9 and R 10 each independently represent a lower alkyl group or an optionally substituted phenyl group] and boron trifluoride, boron trifluoride etherate or aluminum chloride. By reacting in the presence of the general formula The unsaturated alcohol represented by the formula (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above) can be produced with high selectivity. The unsaturated alcohols represented by the general formula () are
By heating to a temperature within the range of 150 to 300°C, the compound is easily rearranged to almost quantitatively yield a compound having a terpene skeleton represented by the following formula. Therefore, the method of the present invention provides a novel carbon chain elongation method using an unsaturated epoxy compound.
This method is particularly significant in the terpene chemical industry. In the unsaturated epoxy compound represented by the general formula () used in the present invention, R 1 , R 2 , R 3 and
The lower alkyl group represented by R 4 is methyl, ethyl,
n-propyl, i-propyl, n-butyl, i-
Includes butyl, n-pentyl, n-hexyl and the like. Furthermore, R 1 and R 4 can be combined with each other to form a lower alkylene group such as methylene or ethylene, and in this case, the unsaturated epoxy compound represented by the general formula () is an epoxidized cycloalkene. . R 1 to R 4 should be selected appropriately from these groups and hydrogen atoms so that the desired structure of the product can be obtained, but in terms of the usefulness of the product,
R 1 and R 4 are both hydrogen atoms or together constitute methylene or ethylene;
It is particularly preferred that R 2 is a hydrogen atom and R 3 is methyl or ethyl. In the organotin compound represented by the general formula ()
R 5 is a hydrogen atom; an alkyl group such as methyl, ethyl, butyl, pentyl, octyl, decyl, eicosyl; vinyl, allyl, isopropenyl, 3-buten-1-yl, 3-methyl-3-butene-1-
yl, 3-methyl-2-buten-1-yl, 4-
Alkenyl groups such as penten-1-yl, 4-methyl-3-penten-1-yl, phythylmethyl;
or expression

【式】にお いてnが2以上の整数である炭化水素基、例えば
ゲラニルメチル、フアルネシルメチル、ゲラニル
ゲラニルメチル、ソラネシルメチル、デカプレニ
ルメチル等の基を表わす。上記式においてnは12
以下の整数である場合が好ましい。R6およびR7
はR5に関して言及した如きアルキル基、アルケ
ニル基および水素原子から目的に応じて選ばれ
る。 本発明において不飽和エポキシ化合物と有機錫
化合物との反応は、触媒としての三フツ化ホウ
素、三フツ化ホウ素エーテラート(例えばジエチ
ルエーテラート)または塩化アルミニウムの存在
下で両者を接触させることにより行われるが、反
応の選択性の点から反応温度は0〜−80℃のよう
な比較的低温が好ましい。反応溶媒は不可欠では
ないが、反応に関与しないものを使用するのが選
択性の面で好ましく、たとえば塩化メチレン、四
塩化炭素、クロロホルムなどを使用することがで
きる。一般式()で示される不飽和エポキシ化
合物と一般式()で示される有機錫化合物との
使用割合は厳密ではないが、前者1モルあたり後
者0.2〜5モルの範囲が適当である。反応剤およ
び触媒の仕込み順序は任意に選ぶことができる
が、例えば三フツ化ホウ素エーテラートを触媒と
して用いる反応では、一般式()で示される不
飽和エポキシ化合物と一般式()で示される有
機錫化合物との混合溶液に三フツ化ホウ素エーテ
ラートを滴下する場合が一般的に収率が高い。 本発明で使用する一般式()で示される有機
錫化合物は、例えば次に示すように一般式()
で示される有機ハロゲン化物と一般式()で示
されるリチウム錫化合物とを反応させることによ
り調製することができる。 なお、一般式()で示されるリチウム錫化合
物は例えば下記(i)、(ii)または(iii)の反応により得ら
れる。 (i) HSnR8R9R10+C4H9Li→LiSnR8R9R10 (ii) (R8R9R10Sn)2+C4H9Li→LiSnR8R9R10 (iii) R8R9R10SnX+Li→LiSnR8R9R10 別法として下記のように一般式()で示され
る有機マグネシウムハライドと一般式()で示
される有機錫ハライドとを反応させることによつ
ても一般式()で示される有機錫化合物を調製
することができる。 上記の各式において、R5、R6、R7、R8、R9
よびR10は前記定義のとおりであり、Xはハロゲ
ン原子を表わす。 また、本発明で使用する一般式()で示され
る不飽和エポキシ化合物は例えば次の反応により
調製される。 (1) ジエンと過酸の反応 (式中Rは炭化水素基を表わす) 〔例えばJ.K.Crandall et al.,J.Org.
Chem.,33,423(1968)およびN.Heap et
al.,J.Chem.Soc.,(B),164(1966)参照〕 (2) イオウイリドとα,β―不飽和アルデヒドの
反応 〔例えばE.J.Corey et al.,J.Amer.Chem.
Soc.,87,1353(1965)およびA.Merz et al.,
Angew.Chem.Internat.Edit.,12,845(1973)
参照〕 次に、実施例により本発明を具体的に説明する
が、特定の反応例を示すにすぎないこれらの実施
例によつて本発明は限定的に解釈されるものでな
い。 実施例 1 1,2―エポキシ―3―ブテン350mg(5.0ミリ
モル)とアリルトリメチル錫1.22g(6.0ミリモ
ル)とを、塩化メチレン30ml中1,2―エポキシ
―3―ブテンと等モル量の三フツ化ホウ素ジエチ
ルエーテラート〔BF3・O(C2H52〕の存在下に
−78℃で1時間反応させ、その後1時間を要して
反応温度を−10℃まで上昇させた。反応後、反応
溶液に水を加え、有機層と水層とに分離し、水層
を20mlのジエチルエーテルで2回抽出した。有機
層を合し、15mlの水で2回洗滌したのち、無水硫
酸マグネシウム上で乾燥した。ガスクロマトグラ
フイー(カラム10%―Ucon oil LB550、内部標
準n―ヘプタノール)によれば収率は91%であ
り、標品と比較した結果、異性体比は>99.5:<
0.5であることが判明した。有機層をロータリ―
エバポレーターで濃縮したのち、その残渣をシリ
カゲルクロマトグラフイー(展開溶媒:ヘキサン
―ジエチルエーテル混合溶媒)に付することによ
り、Rf0.10(シリカゲルTLC、展開溶媒:ベンゼ
ン)の画分より3―(ヒドロキシメチル)―1,
5―ヘキサジエンを得た(収量448mg、収率80
%)。この生成物について測定した核磁気共鳴ス
ペクトルおよび赤外線吸収スペクトルは次のとお
りであつた。 1H―NMR δTMS CCl42.16(br.m,4H,CHCH2
andOH),3.46(d,2H,J=6Hz,C
2OH),4.9〜6.0(m,6H,olefinic H) IR(neat)3350(vs,OH),3080(m),2910
(m),1635(s,C=C),990and910cm-1
(s,CH=CH2) 実施例 2 三フツ化ホウ素ジエチルエーテラートの代りに
塩化アルミニウムを用いる以外は実施例1と同様
にして反応を行い、3―ヒドロキシメチル―1,
5―ヘキサジエンを収率52%で得た。ヘプター
2,6―ジエノールの生成は認められなかつた。 実施例3〜9 塩化メチレン15mlに表1に示す不飽和エポキシ
化合物3ミリモルと所定量の有機錫化合物を加
え、得られた溶液中に−78℃で三フツ化ホウ素ジ
エチルエーテラート3ミリモルを加えて1時間反
応させたのち、反応温度を0.5時間を要してゆつ
くりと−10℃まで(実施例9では0℃まで)上昇
させた。反応終了後、実施例1と同様の後処理お
よび精製を行うことにより目的とする生成物を単
離した。生成物の純度はガスクロマトグラフイー
(GC)により決定し、構造の同定はNMRおよび
IRにより行つた。結果をまとめて表1に示す。
[Formula] represents a hydrocarbon group in which n is an integer of 2 or more, such as geranylmethyl, farnesylmethyl, geranylgeranylmethyl, solanesylmethyl, decaprenylmethyl, and the like. In the above formula, n is 12
The following integers are preferable. R6 and R7
is optionally selected from alkyl groups, alkenyl groups, and hydrogen atoms as mentioned for R 5 . In the present invention, the reaction between the unsaturated epoxy compound and the organotin compound is carried out by bringing the two into contact in the presence of boron trifluoride, boron trifluoride etherate (e.g. diethyl etherate) or aluminum chloride as a catalyst. However, from the viewpoint of reaction selectivity, the reaction temperature is preferably a relatively low temperature such as 0 to -80°C. Although the reaction solvent is not essential, it is preferable to use one that does not participate in the reaction from the viewpoint of selectivity; for example, methylene chloride, carbon tetrachloride, chloroform, etc. can be used. The ratio of the unsaturated epoxy compound represented by the general formula () to the organic tin compound represented by the general formula () is not strictly limited, but a range of 0.2 to 5 moles of the latter per 1 mole of the former is appropriate. The order of charging the reactants and catalysts can be arbitrarily selected, but for example, in a reaction using boron trifluoride etherate as a catalyst, an unsaturated epoxy compound represented by the general formula () and an organic tin represented by the general formula () are used. The yield is generally high when boron trifluoride etherate is added dropwise to a mixed solution with the compound. The organotin compound represented by the general formula () used in the present invention is, for example, the general formula () as shown below.
It can be prepared by reacting an organic halide represented by the formula () with a lithium tin compound represented by the general formula (). Note that the lithium tin compound represented by the general formula () can be obtained, for example, by the following reaction (i), (ii), or (iii). (i) HSnR 8 R 9 R 10 +C 4 H 9 Li→LiSnR 8 R 9 R 10 (ii) (R 8 R 9 R 10 Sn) 2 +C 4 H 9 Li→LiSnR 8 R 9 R 10 (iii) R 8 R 9 R 10 SnX + Li → LiSnR 8 R 9 R 10 Alternatively, as shown below, by reacting an organomagnesium halide represented by the general formula () with an organotin halide represented by the general formula (). An organotin compound represented by the general formula () can be prepared. In each of the above formulas, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined above, and X represents a halogen atom. Further, the unsaturated epoxy compound represented by the general formula () used in the present invention is prepared, for example, by the following reaction. (1) Reaction of diene and peracid (In the formula, R represents a hydrocarbon group) [For example, JK Crandall et al., J.Org.
Chem., 33 , 423 (1968) and N. Heap et
al., J.Chem.Soc., (B), 164 (1966)] (2) Reaction of sulfur and α,β-unsaturated aldehydes [For example, EJCorey et al., J.Amer.Chem.
Soc., 87 , 1353 (1965) and A. Merz et al.,
Angew.Chem.Internat.Edit., 12 , 845 (1973)
Reference] Next, the present invention will be specifically explained with reference to Examples, but the present invention should not be construed as being limited by these Examples, which merely show specific reaction examples. Example 1 350 mg (5.0 mmol) of 1,2-epoxy-3-butene and 1.22 g (6.0 mmol) of allyltrimethyltin were added to an equimolar amount of 1,2-epoxy-3-butene in 30 ml of methylene chloride. The reaction was carried out at -78°C for 1 hour in the presence of boron diethyl etherate [BF 3 .O(C 2 H 5 ) 2 ], and then the reaction temperature was raised to -10°C over a period of 1 hour. After the reaction, water was added to the reaction solution to separate it into an organic layer and an aqueous layer, and the aqueous layer was extracted twice with 20 ml of diethyl ether. The organic layers were combined, washed twice with 15 ml of water, and then dried over anhydrous magnesium sulfate. According to gas chromatography (column 10% - Ucon oil LB550, internal standard n-heptanol), the yield was 91%, and as a result of comparison with the standard, the isomer ratio was >99.5:<
It turned out to be 0.5. Rotary organic layer
After concentrating with an evaporator, the residue was subjected to silica gel chromatography (developing solvent: hexane-diethyl ether mixed solvent), and the 3-(hydroxy) methyl)-1,
5-hexadiene was obtained (yield 448 mg, yield 80
%). The nuclear magnetic resonance spectrum and infrared absorption spectrum measured for this product were as follows. 1 H―NMR δ TMS CCl4 2.16 (br.m, 4H, CHCH 2
andOH), 3.46 (d, 2H, J=6Hz, C H
2 OH), 4.9-6.0 (m, 6H, olefinic H) IR (neat) 3350 (vs, OH), 3080 (m), 2910
(m), 1635 (s, C=C), 990and910cm -1
(s, CH=CH 2 ) Example 2 The reaction was carried out in the same manner as in Example 1 except that aluminum chloride was used instead of boron trifluoride diethyl etherate, and 3-hydroxymethyl-1,
5-hexadiene was obtained with a yield of 52%. No formation of hepta-2,6-dienol was observed. Examples 3 to 9 3 mmol of the unsaturated epoxy compound shown in Table 1 and a predetermined amount of an organic tin compound were added to 15 ml of methylene chloride, and 3 mmol of boron trifluoride diethyl etherate was added to the resulting solution at -78°C. After reacting for 1 hour, the reaction temperature was slowly raised to -10°C (0°C in Example 9) over 0.5 hours. After the reaction was completed, the desired product was isolated by performing the same post-treatment and purification as in Example 1. Product purity was determined by gas chromatography (GC) and structural identification by NMR and
This was done through IR. The results are summarized in Table 1.

【表】 参考例 1 実施例8の方法で得られた3,3―ジメチル―
2―イソプロペニル―4―ペンテノール154mgを
アルゴン雰囲気下に190〜195℃で2時間加熱反応
させ、ゲラニオール(E/Z=58/42)を定量的
に得た。このもののGC―保持時間およびNMR
スペクトルが市販の標品のものと一致したことに
よりゲラニオールの構造を確認した。 参考例 2 実施例5におけると同様の方法で得られた3,
7―ジメチル―2―イソプロペニル―3―ビニル
―6―オクテノールを常法に従いピリジン存在下
で無水酢酸と反応させることによりエステル化し
た。このエステル100mgを参考例1と同様に加熱
下に反応させ、フアルネソールの酢酸エステルを
95mg得た。このものはGC―分析の結果、4種の
異性体の混合物であることがわかつた。このもの
の構造はIRスペクトルおよびNMRスペクトルが
市販の標品のものと一致したことで確認された。
[Table] Reference example 1 3,3-dimethyl obtained by the method of Example 8
154 mg of 2-isopropenyl-4-pentenol was heated and reacted at 190 to 195° C. for 2 hours in an argon atmosphere to quantitatively obtain geraniol (E/Z=58/42). GC of this - retention time and NMR
The structure of geraniol was confirmed because the spectrum matched that of a commercially available standard product. Reference Example 2 3, obtained by the same method as in Example 5,
7-Dimethyl-2-isopropenyl-3-vinyl-6-octenol was esterified by reacting it with acetic anhydride in the presence of pyridine according to a conventional method. 100 mg of this ester was reacted under heating in the same manner as in Reference Example 1, and the acetate ester of falnesol was
I got 95 mg. As a result of GC analysis, this substance was found to be a mixture of four isomers. The structure of this product was confirmed as its IR and NMR spectra matched those of the commercially available specimen.

Claims (1)

【特許請求の範囲】 1 一般式 (式中R1およびR4は独立に水素原子もしくは
低級アルキル基を表わすかまたは一緒になつて低
級アルキレン基を表わし、R2およびR3は独立に
水素原子または低級アルキル基を表わす)で示さ
れる不飽和エポキシ化合物と一般式 〔式中R5は水素原子、アルキル基、アルケニ
ル基または式【式】 で示される基を表わし、ここでnは2以上の整数
を表わし、R6およびR7は独立に水素原子、アル
キル基またはアルケニル基を表わし、R8、R9
よびR10は独立に低級アルキル基または置換され
ていてもよいフエニル基を表わす〕で示される有
機錫化合物とを三フツ化ホウ素、三フツ化ホウ素
エーテラートまたは塩化アルミニウムの存在下で
反応させ、一般式 (式中R1、R2、R3、R4、R5、R6およびR7は前
記定義である)で示される不飽和アルコール類を
得ることを特徴とする不飽和アルコール類の製造
方法。
[Claims] 1. General formula (In the formula, R 1 and R 4 independently represent a hydrogen atom or a lower alkyl group, or together represent a lower alkylene group, and R 2 and R 3 independently represent a hydrogen atom or a lower alkyl group.) Unsaturated epoxy compounds and general formula [In the formula, R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, or a group represented by the formula [Formula], where n represents an integer of 2 or more, and R 6 and R 7 independently represent a hydrogen atom, an alkyl group, or an alkenyl group, and R 8 , R 9 and R 10 independently represent a lower alkyl group or an optionally substituted phenyl group] and boron trifluoride, boron trifluoride etherate. or reacted in the presence of aluminum chloride, the general formula A method for producing unsaturated alcohols, characterized by obtaining unsaturated alcohols represented by the formula (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above) .
JP8619680A 1980-06-24 1980-06-24 Production of unsaturated alcohol Granted JPS5711930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8619680A JPS5711930A (en) 1980-06-24 1980-06-24 Production of unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8619680A JPS5711930A (en) 1980-06-24 1980-06-24 Production of unsaturated alcohol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7480087A Division JPS6322041A (en) 1987-03-27 1987-03-27 Production of allyl type alcohol

Publications (2)

Publication Number Publication Date
JPS5711930A JPS5711930A (en) 1982-01-21
JPS6345375B2 true JPS6345375B2 (en) 1988-09-09

Family

ID=13880020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8619680A Granted JPS5711930A (en) 1980-06-24 1980-06-24 Production of unsaturated alcohol

Country Status (1)

Country Link
JP (1) JPS5711930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148847A1 (en) * 2019-01-17 2020-07-23 株式会社北川鉄工所 Pallet clamp
TWI784122B (en) * 2019-01-21 2022-11-21 日商北川鐵工所股份有限公司 pallet clip

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087773A (en) * 1990-04-23 1992-02-11 Syracuse University Selective tellurium-mediated synthesis of optically active E- or Z-allyl alcohols from optically active epoxy alcohols
US5243096A (en) * 1990-06-14 1993-09-07 Asahi Denka Kogyo K.K. Optically active pentane derivatives and intermediates thereof, and process for manufacturing same
JPH0449269A (en) * 1990-06-14 1992-02-18 Asahi Denka Kogyo Kk Optically active pentane derivative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148847A1 (en) * 2019-01-17 2020-07-23 株式会社北川鉄工所 Pallet clamp
KR20210107859A (en) * 2019-01-17 2021-09-01 가부시키가이샤 기타가와 뎃꼬쇼 pallet clamp
US11541510B2 (en) 2019-01-17 2023-01-03 Kitagawa Ironworks Co., Ltd. Pallet clamp
TWI784122B (en) * 2019-01-21 2022-11-21 日商北川鐵工所股份有限公司 pallet clip

Also Published As

Publication number Publication date
JPS5711930A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
Uenishi et al. Dramatic rate enhancement of Suzuki diene synthesis. Its application to palytoxin synthesis
Kluge et al. Prostaglandins. X. Synthesis of prostaglandin models and prostaglandins by conjugage addition of a functionalized organocopper reagent
Zweifel et al. Allenic zinc reagents. A remarkably regio-and diastereoselective synthesis of 2-substituted homopropargylic alcohols
Barton et al. Bis (trimethylsilyl)-, trimethylsilyltrimethylgermyl-, and bis (trimethylgermyl) diazomethane. Synthesis and chemistry of quantitative silene and germene precursors
Breitholle et al. Total synthesis of (.+-.)-cedrol and (.+-.)-cedrene via an intramolecular Diels-Alder reaction
Yamaguchi et al. A ring opening reaction of oxetanes with lithium acetylides promoted by boron trifluoride etherate
EP0022162B1 (en) Process for producing disubstituted 4-hydroxycyclopentenones; monosubstituted cyclopentendiones and 4-hydroxycyclopentenones
Strobach et al. Synthesis of 1-fluorocycloalkenes
Suzuki et al. Three-component coupling synthesis of prostaglandins: The aldol route.
Woodbury et al. Formation of the lithium enolate of N, N-dimethyl-2-trimethylsilylacetamide. Reaction with carbonyl compounds and epoxides
JPS6345375B2 (en)
Arai et al. Oxidative Generation of 1-Nitroalkyl Radicals and Their Addition Reaction to Olefins.
Corey et al. Total synthesis of C22-prostanoids in the E and F series based on docosahexaenoic acid
Schlessinger et al. A new protocol for the diastereoselective formation of lactones from either achiral or chiral vinylogous urethanes
Miyoshi et al. Synthesis of alkyl phenyl selenides by the reaction of phenyl trimethylsilyl selenide with acetates and lactones.
Miller et al. A stereospecific synthesis of hydroxyl-differentiated (E)-and (Z)-1, 4-enediols
Tolstikov et al. A new method for the synthesis of vinyl-and di-allenes assisted by organoaluminium compounds
Inoue et al. Trimethylgermylation of ketones
KIMURA et al. Synthesis of dl-dehydroiridodiol
Marfat et al. Iterative construction of trisubstituted olefin units. Short, stereoselective synthesis of the codling moth constituent,(2Z, 6Z)-7-methyl-3-propyl-2, 6-decadien-1-ol
US4060691A (en) 7-{3-Hydroxy-2-[4-hydroxy-4-(lower alkyl)-trans-1-octen-1-yl]-5-oxocyclopent-1-yl}heptanoic acids and esters
Torisawa et al. AN IMPROVED ROUTE TO (+)-9 (O)-METHANO-Δ6 (9α)-PROSTAGLANDIN-I1 (ISOCARBACYCLIN)
JPS6346055B2 (en)
US4052434A (en) Prostaglandin intermediates
US4922032A (en) Process for the preparation of optically active 2-methyl-1,2-hexanediols