JPS6346035B2 - - Google Patents

Info

Publication number
JPS6346035B2
JPS6346035B2 JP58112636A JP11263683A JPS6346035B2 JP S6346035 B2 JPS6346035 B2 JP S6346035B2 JP 58112636 A JP58112636 A JP 58112636A JP 11263683 A JP11263683 A JP 11263683A JP S6346035 B2 JPS6346035 B2 JP S6346035B2
Authority
JP
Japan
Prior art keywords
slurry
ceramic
dimensional network
network structure
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58112636A
Other languages
Japanese (ja)
Other versions
JPS6011281A (en
Inventor
Etsuo Sugyama
Atsumi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARAA KOGYO KK
Original Assignee
KYATARAA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARAA KOGYO KK filed Critical KYATARAA KOGYO KK
Priority to JP58112636A priority Critical patent/JPS6011281A/en
Publication of JPS6011281A publication Critical patent/JPS6011281A/en
Publication of JPS6346035B2 publication Critical patent/JPS6346035B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は触媒担体あるいは、各種フイルター
材として注目を沿びているセラミツク材料からな
り、内部連通空間を有する三次元網状のセル構造
を有するセラミツク三次元網状構造物及びその製
造方法に関するものである。 とりわけこの発明は、自動車排ガス処理用触媒
担体等に用いるコージエライト製三次元網状構造
物及びその製造方法、とくに耐熱衝撃性に優れ、
かつ高強度、低圧力損失であるコージエライト製
三次元網状構造物及びその製造方法に関するもの
である。 自動車排ガス処理用触媒担体として、とりわけ
デイーゼルエンジンパテイキユレート(粉塵)捕
集用フイルター材としてコージエライト製三次元
網状構造物は最適であり、近年脚光を沿びてい
る。かかる担体又はフイルター材として、自動車
に装着して使用する場合、以下のような特性が特
に重要となる。第1の特性は、耐熱衝撃性に優れ
ていること、第2の特性は機械的強度が大きいこ
と及び第3の特性は圧力損失が小さいことであ
る。 従来、この種の目的及び特性を達成するため
に、セラミツク三次元網状構造物フイルターの他
にハニカムフイルターが提案されているが、本発
明者らの中の一人は、ハニカムフイルターより劣
つているセラミツク三次元網状構造物フイルター
の機械的強度を向上させる方法を開発して、すで
に提案し、この種の目的の使用に耐え得る強度を
実現したが、この発明は、これに加え強度を低下
させることなく、より低圧力損失かつ耐熱衝撃性
の向上を実現し得るセラミツク三次元網状構造
物、とくにコージエライト製三次元網状構造物及
びその製造方法を提供することを目的とする。し
かして、この発明の構造物は、コアーと外部表面
の全ての骨格が連続し、かつ骨格の太さが該面に
向つて外側にいくに従い太くなつていくものであ
ることを特徴とする。また、この発明のセラミツ
ク三次元網状構造物の製造方法は、三次元網状の
セル構造を持つ有機多孔体の外部表面に現われて
いる三次元網状の骨格に、セラミツク泥漿を噴霧
状にして付着させてから、その構造物をセラミツ
ク泥漿中へ浸漬し、余剰の泥漿を除去し、しかる
のち乾燥させてなる工程をくり返し、かくて得ら
れた構造物の外部表面に現われている三次元網状
構造の骨格に対し、セラミツク泥漿を噴霧状にし
て付着せしめ、さらに焼結させることを特徴とす
る。 この発明方法に用いるセラミツク泥漿として
は、コージエライト泥漿、アルミナ泥漿、ムライ
ト泥漿、チタン酸アルミ泥漿等がある。この中で
とくにコージエライト泥漿が最もよく用いられる
が、このコージエライト泥漿を調製するには、水
酸化アルミニウム、滑石及び粘土からなる組成物
を混合、混練し、さらに乾燥した原料粉末と、こ
の原料粉末を焼成したのち粉砕した結晶系がすべ
てコージエライトであるコージエライト粉末とを
適当な割合で混合し、あらかじめポリビニールア
ルコールのような有機粘結剤と界面活性剤とを溶
解した水に、上記の混合物を分散させることによ
りおこなう。 上述のようにして調製したコージエライト泥漿
等のセラミツク泥漿を噴霧状にして、三次元網状
構造のウレタンフオームのような有機多孔体の外
部表面の骨格に付着させる。しかるのち、有機多
孔体をこの泥漿中に浸漬し、泥漿を有機多孔体の
表面に付着させたのち、余剰の泥漿を除去し、さ
らに乾燥するという一連の工程を繰り返すと図に
示すコアー1が得られる。つぎに、このコアー1
の外表面へこの泥漿を噴霧状にして付着させる。
このようにして、有機多孔体にコージエライト泥
漿を付着せしめたものをついで乾燥、焼結させる
と、有機多孔体が消失するとともに、コージエラ
イト製三次元網状構造物が得られる。 この発明方法においては、上記のコアー1のカ
サ密度が0.25g/cm3〜0.45g/cm3の範囲となるよ
うに泥漿のコーテイングをおこなえば、低圧力損
失で高強度の構造物が得られる。なお、はじめに
有機多孔体の外部表面に噴霧状にして付着せしめ
る量は、0.05〜0.30g/cm2が好適である。次に泥
漿への漬浸、余剰泥漿の除去及び乾燥の一連の工
程を数回繰り返すと、図に示す所望の重量のコア
ー1が得られる。なお、はじめに有機多孔体の外
部表面に噴霧状にして付着させる場合、外部表面
のうち、通風に関与しない側面2のみに噴霧状に
して付着させてもよい。つぎに、外部表面のう
ち、コアー1の通風に関与しない側面2へ泥漿を
付着させるが、その量は、0.3g/cm2未満とする
ことが好ましい。なお側面2への泥漿の付着は必
ずしも噴霧状にしておこなわなくてもよいが、噴
霧状にしておこなうと、耐熱衝撃性の点で、より
効果的である。さらに、外部表面のうち、コアー
1の通風に関与する端面3へ泥漿を噴霧状にして
付着させるが、その付着量は、0.04g/cm2〜0.1
g/cm2の範囲にあることが好適である。なお、図
の矢印は、通風の方向を示す。 以上、詳述したように、この発明のように、構
造物の外部表面に、あらかじめ、所定量のコージ
エライト泥漿のようなセラミツク泥漿を噴霧状に
して付着させ、しかる後に、この泥漿への浸漬、
余剰泥漿の除去、及び乾燥の工程を繰り返す間
に、三次元網状構造物の骨格が外部表面に向つて
外側にいくに従い、太くなる構造物を得ることが
できる。したがつて、図に示すコアー1と外部表
面の全ての骨格が連続し、かつ骨格の太さが外側
にいくに従い、太くなる構造物とすることができ
て、従来品の強度をそこなうことなく、より低圧
力損失でかつ優れた耐熱衝撃性を有するセラミツ
ク三次元網状構造物を得ることができる。 また、この発明では、あらかじめ噴霧状にして
有機多孔体の外部表面に泥漿を付着させることに
より最終的に通風に関与しない側面2を形成させ
る時に、コアー1と側面2との接合部位の強化を
はかることができて、通風に関与する実質部位の
軽量化を強度の低下なしに実現し、その結果とし
て低圧力損失で、かつ耐熱衝撃性の向上したセラ
ミツク三次元網状構造物とすることができる。な
お、この発明の構造物は、側面2が連続面とな
り、気体のふき抜けを防止する構造となつている
ことも、その特長の一つである。 実施例 1 水酸化アルミニウムを17重量%、滑石を37重量
%及び粘土を46重量%とり、混合、混練し、さら
に乾燥した原料粉末10重量部と、この原料粉末を
1410℃の温度で5時間焼成したのち、平均粒径が
10ミクロンとなるまで粉砕した結晶系がすべてコ
ージエライトであるコージエライト粉末90重量部
とを混合し、あらかじめ有機粘結剤としてのポリ
ビニルアルコールと界面活性剤とを溶解した水
に、上記の混合物をよく分散させてコージエライ
ト泥漿を調製した。この泥漿を有機多孔体として
の三次元網状のウレタンフオーム(メツシユ数は
公称 #13を使用)の外部表面のうち、通風に関
与しない側面2へ噴霧状にして単位面積(cm2)当
り0.09〜0.11gを付着せしめた。さらに、この泥
漿中にウレタンフオームを浸漬し、全骨格表面へ
泥漿を付着せしめ、しかるのちに遠心力を利用し
て余剰の泥漿を除去したのち乾燥した。この泥漿
への浸漬、除去及び乾燥の工程を4〜6回繰り返
し、カサ密度0.29〜0.34g/cm3(最終焼成工程後
の重量と幾何学的体積から算出)の図に示すコア
ー1を得た。つぎに、コアー1の外部表面のうち
の通風に関与しない側面2に、側面2の単位面積
(cm2)当り、0.1〜0.13gの泥漿を部分浸漬により
塗布し、さらに噴霧状にして0.025〜0.05gの泥
漿を付着させた。つぎにコアー1の外部表面のう
ちの通風に関与する端面3に単位面積(cm2)当り
0.045〜0.060gの前記泥漿を噴霧状にして端面骨
格に目づまりしないように付着させ乾燥後、1400
℃の温度で5時間焼結するとウレタンフオームが
焼失するとともに、全体のカサ密度が0.40g/cm3
のコージエライト製三次元網状構造物が得られ
た。 以上のセラミツク三次元網状構造物について、
直径93mm、高さ66mmのセラミツク三次元網状構造
物フイルターを試作し、このフイルターにつき、
圧力損失、アイソスタテイツク強度及び耐熱衝撃
性の特性について測定し、その結果を下表に示し
た。 ここに、耐熱衝撃性の測定方法は、所定温度の
電気炉内にフイルターを入れ、20分処理してから
室温(20〜30℃)で放冷(約1時間)するという
操作を550℃の温度から始め、各温度でこの操作
を2回繰り返して実施し、50℃間隔で順次処理温
度を上昇させ、フイルターの打音が清音から濁音
へと変化した時点の温度を亀裂発生温度として評
価し、その後外部表面への亀裂が生じ、その進行
と共にその亀裂を開裂する方向に力が加わり、破
壊したときの温度を破壊温度として評価した。 比較例 1 三次元網状のウレタンフオームの外部表面のう
ち通風に関与しない側面2へ最初に噴霧状にして
付着せしめる工程を実施しなかつた以外は実施例
1と同様にして全体のカサ密度が0.44g/cm3であ
るコージエライト製三次元網状構造物を得た。た
だし、泥漿への浸漬、除去及び乾燥の工程を繰り
返して得られるコアー1のカサ密度は0.29〜0.34
g/cm3、その後に側面2に部分浸漬により付着せ
しめる泥漿は、単位面積(cm2)当り0.18〜0.23g
及び噴霧状にして側面2に付着せしめる泥漿は、
単位面積(cm2)当り0.08〜0.12gであつた。さら
に端面3への付着量は、実施例1と同一量であつ
た。この三次元網状構造物につき実施例1と同様
にして、その特性を測定し、その結果を下表に示
した。 実施例 2 最初に側面2へ噴霧状にして付着せしめる泥漿
を単位面積(cm2)当り0.14〜0.16gとし、コアー
1を得た後の側面2への部分浸漬により付着せし
める泥漿を0.07〜0.10gとした以外は実施例1と
同様にして全体のカサ密度が0.38g/cm3のコージ
エライト製三次元網状構造物を得た。この三次元
網状構造物につき実施例1と同様にしてその特性
を測定し、その結果を下表に示した。 実施例 3 最初に側面2へ噴霧状にして付着せしめる泥漿
を単位面積(cm2)当り、0.04〜0.06gとしてコア
ー1を得た後の側面2への部分浸漬により付着せ
しめる泥漿を0.18〜0.20gとし、さらに噴霧状に
して付着せしめる泥漿を、0.07〜0.10gとした以
外は実施例1と同様にして全体のカサ密度が0.44
g/cm3のコージエライト製三次元網状構造物を得
た。この三次元網状構造物につき実施例1と同様
にしてその特性を測定し、その結果を下表に示し
た。 実施例 4 コアー1を得た後の側面2への付着を全て噴霧
状にして付着させる他は、実施例1と同様にし
て、全体のカサ密度が0.38g/cm3のコージエライ
ト製三次元網状構造物を得た。ただし、この噴霧
状にして付着せしめた泥漿は、単位面積(cm2)当
り0.12〜0.16gであつた。この三次元網状構造物
につき実施例1と同様にしてその特性を測定し、
その結果を下表に示した。
The present invention relates to a ceramic three-dimensional network structure, which is made of a ceramic material that is attracting attention as a catalyst carrier or various filter materials, and has a three-dimensional network cell structure with internal communication spaces, and a method for manufacturing the same. In particular, the present invention provides a three-dimensional network structure made of cordierite used as a catalyst carrier for automobile exhaust gas treatment, and a method for producing the same, which has particularly excellent thermal shock resistance,
The present invention also relates to a three-dimensional network structure made of cordierite that has high strength and low pressure loss, and a method for producing the same. Three-dimensional network structures made of cordierite are most suitable as catalyst carriers for automobile exhaust gas treatment, especially as filter materials for collecting particulate matter in diesel engines, and have been attracting attention in recent years. When used as such a carrier or filter material in an automobile, the following properties are particularly important. The first property is excellent thermal shock resistance, the second property is high mechanical strength, and the third property is low pressure loss. Conventionally, honeycomb filters have been proposed in addition to ceramic three-dimensional network structure filters to achieve this type of purpose and characteristics, but one of the present inventors has proposed a ceramic filter that is inferior to honeycomb filters. A method for improving the mechanical strength of a three-dimensional network structure filter has been developed and proposed, and a strength sufficient to withstand use for this type of purpose has been achieved.In addition, the present invention provides a method for reducing the strength. It is an object of the present invention to provide a three-dimensional ceramic network structure, in particular a three-dimensional network structure made of cordierite, which can realize lower pressure loss and improved thermal shock resistance, and a method for manufacturing the same. Thus, the structure of the present invention is characterized in that all the skeletons on the core and the external surface are continuous, and the thickness of the skeleton becomes thicker as it goes outward toward the surface. Furthermore, the method for producing a ceramic three-dimensional network structure of the present invention involves spraying and adhering ceramic slurry to the three-dimensional network skeleton appearing on the external surface of an organic porous body having a three-dimensional network cell structure. After that, the structure is immersed in ceramic slurry, the excess slurry is removed, and the process of drying is repeated to form a three-dimensional network structure appearing on the external surface of the structure thus obtained. It is characterized by spraying ceramic slurry onto the skeleton, adhering it to the skeleton, and then sintering it. Ceramic slurries used in the method of this invention include cordierite slurry, alumina slurry, mullite slurry, and aluminum titanate slurry. Among these, cordierite slurry is most often used. To prepare this cordierite slurry, a composition consisting of aluminum hydroxide, talc, and clay is mixed and kneaded, and then dried raw material powder and this raw material powder are mixed. Fired and crushed cordierite powder whose crystalline system is all cordierite is mixed in an appropriate ratio, and the above mixture is dispersed in water in which an organic binder such as polyvinyl alcohol and a surfactant have been dissolved in advance. This is done by letting Ceramic slurry such as cordierite slurry prepared as described above is atomized and adhered to the outer surface skeleton of an organic porous body such as a urethane foam having a three-dimensional network structure. After that, the organic porous material is immersed in this slurry, the slurry is adhered to the surface of the organic porous material, the excess slurry is removed, and the series of steps of further drying is repeated, resulting in the core 1 shown in the figure. can get. Next, this core 1
This slurry is sprayed and applied to the outer surface of the machine.
When the cordierite slurry adhered to the organic porous body is then dried and sintered in this manner, the organic porous body disappears and a three-dimensional network structure made of cordierite is obtained. In the method of this invention, if the slurry is coated so that the bulk density of the core 1 is in the range of 0.25 g/cm 3 to 0.45 g/cm 3 , a structure with low pressure loss and high strength can be obtained. . Note that the amount to be sprayed and attached to the external surface of the organic porous body at first is preferably 0.05 to 0.30 g/cm 2 . Next, by repeating the series of steps of immersion in slurry, removal of excess slurry, and drying several times, a core 1 having the desired weight shown in the figure is obtained. In addition, when it is first applied in the form of a spray to the external surface of the organic porous body, it may be applied in the form of a spray only to the side surface 2 of the external surface that is not involved in ventilation. Next, a slurry is applied to the side surface 2 of the outer surface of the core 1 that does not participate in ventilation, but the amount thereof is preferably less than 0.3 g/cm 2 . Although the slurry does not necessarily have to be applied to the side surface 2 in the form of a spray, it is more effective in terms of thermal shock resistance if it is applied in the form of a spray. Furthermore, among the external surfaces, a slurry is sprayed to adhere to the end face 3 of the core 1 which is involved in ventilation, and the amount of the slurry applied is 0.04 g/cm 2 to 0.1
It is suitable that it is in the range of g/cm 2 . Note that the arrow in the figure indicates the direction of ventilation. As described in detail above, according to the present invention, a predetermined amount of ceramic slurry such as cordierite slurry is applied in advance to the external surface of a structure in the form of a spray, and then immersed in this slurry.
While repeating the steps of removing excess slurry and drying, a structure can be obtained in which the skeleton of the three-dimensional network structure becomes thicker as it goes outward toward the external surface. Therefore, it is possible to create a structure in which the core 1 shown in the figure and all the skeletons on the external surface are continuous, and the thickness of the skeleton becomes thicker toward the outside without sacrificing the strength of the conventional product. , a ceramic three-dimensional network structure having lower pressure loss and excellent thermal shock resistance can be obtained. In addition, in this invention, when the side surface 2 that does not participate in ventilation is finally formed by spraying the slurry in advance and attaching it to the external surface of the organic porous material, the joint portion between the core 1 and the side surface 2 is strengthened. It is possible to reduce the weight of the substantial parts involved in ventilation without reducing strength, and as a result, it is possible to create a three-dimensional ceramic network structure with low pressure loss and improved thermal shock resistance. . Note that one of the features of the structure of the present invention is that the side surface 2 is a continuous surface and has a structure that prevents gas from escaping. Example 1 17% by weight of aluminum hydroxide, 37% by weight of talc, and 46% by weight of clay were mixed, kneaded, and dried, and 10 parts by weight of the raw material powder was added.
After firing at a temperature of 1410℃ for 5 hours, the average particle size
Mix 90 parts by weight of cordierite powder whose crystalline system is all cordierite, crushed to a size of 10 microns, and thoroughly disperse the above mixture in water in which polyvinyl alcohol as an organic binder and a surfactant have been dissolved in advance. A cordierite slurry was prepared. This slurry is sprayed onto the side 2, which does not participate in ventilation, of the external surface of the three-dimensional mesh urethane foam (nominal mesh number used is #13) as an organic porous body, at a rate of 0.09 to 0.09 per unit area (cm 2 ). 0.11g was deposited. Further, urethane foam was immersed in this slurry to adhere the slurry to the entire skeleton surface, and then the excess slurry was removed using centrifugal force and then dried. The steps of immersion in the slurry, removal, and drying were repeated 4 to 6 times to obtain the core 1 shown in the figure with a bulk density of 0.29 to 0.34 g/cm 3 (calculated from the weight and geometric volume after the final firing step). Ta. Next, 0.1 to 0.13 g of slurry is applied per unit area (cm 2 ) of the side surface 2 to the side surface 2 of the external surface of the core 1 that is not involved in ventilation by partial immersion, and then 0.025 to 0.025 g is applied in the form of a spray. 0.05g of slurry was deposited. Next, on the end surface 3 of the outer surface of the core 1, which is involved in ventilation, per unit area (cm 2 )
0.045 to 0.060 g of the slurry was sprayed and adhered to the end face skeleton without clogging, and after drying,
When sintered for 5 hours at a temperature of °C, the urethane foam is burnt out and the overall bulk density is 0.40g/ cm3.
A three-dimensional network structure made of cordierite was obtained. Regarding the above ceramic three-dimensional network structure,
We prototyped a ceramic three-dimensional network structure filter with a diameter of 93 mm and a height of 66 mm.
The properties of pressure drop, isostatic strength and thermal shock resistance were measured and the results are shown in the table below. Here, the method for measuring thermal shock resistance is to place the filter in an electric furnace at a predetermined temperature, treat it for 20 minutes, and then let it cool (about 1 hour) at room temperature (20-30℃). Starting from the same temperature, this operation was repeated twice at each temperature, and the treatment temperature was increased sequentially at 50°C intervals, and the temperature at which the filter sound changed from a clear sound to a dull sound was evaluated as the crack initiation temperature. After that, a crack appeared on the external surface, and as the crack progressed, a force was applied in the direction of rupturing the crack, and the temperature at which the crack broke was evaluated as the breaking temperature. Comparative Example 1 The overall bulk density was 0.44 in the same manner as in Example 1, except that the step of first spraying and adhering to the side surface 2, which does not participate in ventilation, of the external surface of the three-dimensional reticulated urethane foam was not carried out. A three-dimensional network structure made of cordierite with a weight of g/cm 3 was obtained. However, the bulk density of core 1 obtained by repeating the steps of immersion in slurry, removal, and drying is 0.29 to 0.34.
g/cm 3 , and the slurry that is then applied to the side surface 2 by partial immersion is 0.18 to 0.23 g per unit area (cm 2 ).
And the slurry that is sprayed and attached to the side surface 2 is
The amount was 0.08 to 0.12 g per unit area (cm 2 ). Further, the amount of adhesion to the end surface 3 was the same as in Example 1. The properties of this three-dimensional network structure were measured in the same manner as in Example 1, and the results are shown in the table below. Example 2 The slurry that is first sprayed and attached to the side surface 2 is 0.14 to 0.16 g per unit area (cm 2 ), and the slurry that is attached by partial immersion to the side surface 2 after obtaining the core 1 is 0.07 to 0.10 g. A three-dimensional network structure made of cordierite having an overall bulk density of 0.38 g/cm 3 was obtained in the same manner as in Example 1, except that the total bulk density was 0.38 g/cm 3 . The properties of this three-dimensional network structure were measured in the same manner as in Example 1, and the results are shown in the table below. Example 3 First, the slurry that is sprayed and attached to the side surface 2 is set at 0.04 to 0.06 g per unit area (cm 2 ), and after obtaining the core 1, the slurry that is attached to the side surface 2 by partial immersion is 0.18 to 0.20 g. Example 1 was carried out in the same manner as in Example 1, except that the slurry to be sprayed and attached was changed to 0.07 to 0.10 g, and the overall bulk density was 0.44.
A three-dimensional cordierite network structure of g/cm 3 was obtained. The properties of this three-dimensional network structure were measured in the same manner as in Example 1, and the results are shown in the table below. Example 4 A three-dimensional network made of cordierite with an overall bulk density of 0.38 g/cm 3 was prepared in the same manner as in Example 1, except that all the adhesion to the side surface 2 after obtaining the core 1 was done in the form of a spray. Obtained a structure. However, the amount of the slurry deposited in the form of a spray was 0.12 to 0.16 g per unit area (cm 2 ). The properties of this three-dimensional network structure were measured in the same manner as in Example 1,
The results are shown in the table below.

【表】 表に示す実施例1と比較例1の結果を比較する
と、この発明の方法における、あらかじめ三次元
網状のセル構造を持つ有機多孔体の外部表面に現
われている三次元網状の骨格に、セラミツク泥漿
を噴霧状にして付着させることが、セラミツク三
次元網状構造物の強度を殆んど低下させることな
く、圧力損失を低下させ、かつ耐熱衝撃性にも良
好な効果を付与せしめをことに対して有効である
ことが明白である。 このことは、この基材に対して、デイーゼルパ
テイキユレートのトラツプ率を向上させる手段又
は燃焼除去を効率的に行なうための触媒貴金属等
の担持に必要な、たとえばγ−アルミナ等のコー
テイングを実施する場合に、そのコート量を増す
ことが可能となることを助ける役割をはたすもの
である。すなわち、圧力損失の上限が、車両に搭
載の際の燃料費低下の点から決定された場合、そ
れに対応するためには、従来、このγ−アルミナ
等のコート量が制限されざるを得ない状況が生じ
たが、上記に示すようにγ−アルミナのコート量
をこの発明においては増大することができるので
ある。 又、実施例1と実施例2、3の結果を比較する
と明らかなように、最初に噴霧状にして付着せし
める量は、単位面積(cm2)当り、実施例1のよう
に0.09〜0.11gが最適であることがわかる。すな
わち、実施例2に示すように、これより多い量を
付着させると、圧力損失低下への効果及び耐熱衝
撃性への効果は同等でありながら、強度が若干低
下すること、及び実施例3に示すように、これよ
り少い量を付着させると、圧力損失低下の効果及
び耐熱衝撃性向上の効果が共に少ないことが明ら
かである。 つぎに、実施例4で示されるように、コアー1
を形成した後に、通風に関与しない側面2へ全て
噴霧状にして付着せしめることにより耐熱衝撃性
が一層良好になることが明白である。 又、上記の実施例にはないが、上記に示すコア
ー1のカサ密度の範囲及び、コアー1の側面2及
び端面3へ付着せしめる単位面積当りの泥漿の重
量範囲は、全て圧力損失、強度及び耐熱衝撃性の
三つの特性を、相互に補いあうための好適範囲で
あつて、この範囲内で種々の組み合せが考えられ
るが、いずれの範囲についても、この好適範囲内
であれば、三つの特性のいずれもが自動車排気ガ
ス処理用触媒担体として使用する場合にすぐれた
ものとなり、また、とりわけデイーゼルエンジン
パテイキユレート捕集用フイルター材として使用
する場合には、三つの特性についての要求特性に
合致することを確認してある。
[Table] Comparing the results of Example 1 and Comparative Example 1 shown in the table, it is found that in the method of this invention, the three-dimensional network skeleton that appears on the external surface of the organic porous material having a three-dimensional network cell structure By applying the ceramic slurry in the form of a spray, it is possible to reduce pressure loss and provide good thermal shock resistance without substantially reducing the strength of the ceramic three-dimensional network structure. It is clear that it is effective against This means that coatings such as γ-alumina are applied to this base material, which is necessary to improve the trapping rate of diesel particulate or to support catalyst precious metals for efficient combustion removal. It plays a role in helping to increase the amount of coating when the coating is applied. In other words, if the upper limit of pressure loss is determined from the viewpoint of reducing fuel costs when installed in a vehicle, in order to cope with it, the amount of coating of γ-alumina etc. has conventionally been forced to be limited. However, as shown above, the coating amount of γ-alumina can be increased in the present invention. Furthermore, as is clear from comparing the results of Example 1 and Examples 2 and 3, the amount initially sprayed and deposited was 0.09 to 0.11 g per unit area (cm 2 ) as in Example 1. is found to be optimal. That is, as shown in Example 2, if a larger amount is deposited, the effect on pressure loss reduction and the effect on thermal shock resistance are the same, but the strength is slightly reduced, and as shown in Example 3. As shown, it is clear that if a smaller amount is deposited, both the effect of reducing pressure loss and the effect of improving thermal shock resistance will be small. Next, as shown in Example 4, core 1
It is clear that the thermal shock resistance can be further improved by spraying and adhering the material to the side surface 2 which does not participate in ventilation after forming the material. Although not included in the above embodiments, the range of the bulk density of the core 1 and the weight range of the slurry per unit area attached to the side surfaces 2 and end surfaces 3 of the core 1 shown above are all based on pressure loss, strength, and This is a suitable range for the three properties of thermal shock resistance to complement each other, and various combinations can be considered within this range, but for any range, as long as the three properties are within this suitable range, the three properties All of these are excellent when used as catalyst carriers for automobile exhaust gas treatment, and especially when used as filter materials for collecting particulate matter in diesel engines, they meet the required properties for the three properties. I have confirmed that it will.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明の実施例及び比較例で示すセラ
ミツク三次元網状構造物フイルターの各部位の名
称を説明するための概略図である。 1……セラミツク三次元網状構造物のコアー、
2……セラミツク三次元網状構造物コアーの側
面、3……セラミツク三次元網状構造物コアーの
端面。
The figure is a schematic diagram for explaining the names of each part of the ceramic three-dimensional network structure filter shown in Examples and Comparative Examples of the present invention. 1... Core of ceramic three-dimensional network structure,
2... Side face of the ceramic three-dimensional network structure core, 3... End face of the ceramic three-dimensional network structure core.

Claims (1)

【特許請求の範囲】 1 コアーと外部表面の全ての骨格が連続し、か
つ骨格の太さが該面に向つて外側にいくに従い太
くなることを特徴とするセラミツク三次元網状構
造物。 2 三次元網状のセル構造を持つ有機多孔体の外
部表面に現われている三次元網状の骨格に、セラ
ミツク泥漿を噴霧状にして付着させてから、その
構造物をセラミツク泥漿中へ浸漬し、余剰の泥漿
を除去し、しかるのち乾燥させてなる工程を繰り
返し、かくて得られた構造物の外部表面に現われ
ている三次元網状構造の骨格に対し、セラミツク
泥漿を噴霧状にして付着せしめ、さらに焼結させ
ることを特徴とするセラミツク三次元網状構造物
の製造方法。 3 セラミツク泥漿が、コージエライト泥漿であ
る特許請求の範囲第2項記載のセラミツク三次元
網状構造物の製造方法。
[Scope of Claims] 1. A three-dimensional ceramic network structure characterized in that all the skeletons of the core and the external surface are continuous, and the thickness of the skeleton becomes thicker as it goes outward toward the surface. 2. Ceramic slurry is sprayed and adhered to the three-dimensional network skeleton appearing on the external surface of an organic porous material having a three-dimensional network cell structure, and then the structure is immersed in the ceramic slurry to remove the excess. The process of removing the slurry and then drying it is repeated, and the ceramic slurry is sprayed and adhered to the skeleton of the three-dimensional network structure that appears on the external surface of the structure obtained in this way, and then A method for manufacturing a ceramic three-dimensional network structure, characterized by sintering it. 3. The method for producing a three-dimensional ceramic network structure according to claim 2, wherein the ceramic slurry is cordierite slurry.
JP58112636A 1983-06-24 1983-06-24 Ceramic three dimentional network structure and manufacture Granted JPS6011281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58112636A JPS6011281A (en) 1983-06-24 1983-06-24 Ceramic three dimentional network structure and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58112636A JPS6011281A (en) 1983-06-24 1983-06-24 Ceramic three dimentional network structure and manufacture

Publications (2)

Publication Number Publication Date
JPS6011281A JPS6011281A (en) 1985-01-21
JPS6346035B2 true JPS6346035B2 (en) 1988-09-13

Family

ID=14591681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58112636A Granted JPS6011281A (en) 1983-06-24 1983-06-24 Ceramic three dimentional network structure and manufacture

Country Status (1)

Country Link
JP (1) JPS6011281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033933U (en) * 1989-05-31 1991-01-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141682A (en) * 1984-12-12 1986-06-28 東芝セラミツクス株式会社 Ceramic foam and manufacture
JPH0239877A (en) * 1988-07-29 1990-02-08 Kirin Brewery Co Ltd Bioreactor containing open-cell ceramic carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033933U (en) * 1989-05-31 1991-01-16

Also Published As

Publication number Publication date
JPS6011281A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
EP0450899B1 (en) Method of producing porous ceramic filter, using cordierite composition including talc and silica powders
JP2580121B2 (en) Monolithic catalyst carrier and method for producing the same
KR940000869B1 (en) Preparation of monolithic catalyst supports having an integrated high surface area phase
JP4870657B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP4266103B2 (en) Method for producing porous ceramic body
US7179316B2 (en) Cordierite filters with reduced pressure drop
JP2002201082A (en) Honeycomb structured body and method of manufacturing the same
US7541006B2 (en) Honeycomb structured body
JP2002519186A (en) Diesel exhaust filter
WO2006041174A1 (en) Ceramic honeycomb structure
EP1808228A1 (en) Honeycomb structure, method for production thereof and exhaust gas purification device
CN107489493B (en) Honeycomb filter
JP2010502547A (en) Cordierite honeycomb body having high strength and substantially no microcrack and manufacturing method
JP2013158678A (en) Exhaust gas purifying filter and method of manufacturing the same
JP5096978B2 (en) Honeycomb catalyst body
JP2010214335A (en) Method for manufacturing honeycomb filter, and honeycomb filter
JP7289813B2 (en) CERAMIC POROUS BODY, MANUFACTURING METHOD THEREOF, AND FILTER FOR DUST COLLECTION
JP2011098337A (en) Honeycomb filter
US20210300767A1 (en) Method for manufacturing honeycomb structure containing silicon carbide
WO2011042991A1 (en) Honeycomb filter
CN111747751A (en) Ceramic porous body, method for producing same, and filter for dust collection
WO2011042992A1 (en) Honeycomb filter
JP3612943B2 (en) Manufacturing method of exhaust gas filter
US7258825B2 (en) Method for manufacturing a ceramic foam
JP2012102003A (en) Aluminum titanate honeycomb structure