JPS6345893B2 - - Google Patents

Info

Publication number
JPS6345893B2
JPS6345893B2 JP58071517A JP7151783A JPS6345893B2 JP S6345893 B2 JPS6345893 B2 JP S6345893B2 JP 58071517 A JP58071517 A JP 58071517A JP 7151783 A JP7151783 A JP 7151783A JP S6345893 B2 JPS6345893 B2 JP S6345893B2
Authority
JP
Japan
Prior art keywords
coil
joint
seam
heating
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58071517A
Other languages
Japanese (ja)
Other versions
JPS59197328A (en
Inventor
Kazuhisa Ishibashi
Hideo Kurashima
Hisakazu Yasumuro
Michio Watanabe
Tsuneo Imatani
Kazuo Taira
Seishichi Kobayashi
Hiroshi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP7151783A priority Critical patent/JPS59197328A/en
Publication of JPS59197328A publication Critical patent/JPS59197328A/en
Publication of JPS6345893B2 publication Critical patent/JPS6345893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2684Cans or tins having circumferential side seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱接着による継目を有する金属容器
の製法に関し、より詳細には接着用の樹脂層を介
して係合された容器素材両端縁部を高周波誘導加
熱コイルで効率良く且つ選択的に加熱して、熱接
着による継目を形成させることから成る金属容器
の製法に関する。 高周波誘導加熱は金属素材の加熱に広く使用さ
れている加熱手段であり、接着罐等の熱接着によ
る継目を有する金属容器の製造にも広く使用され
ている加熱手段である。只、高周波誘導加熱コイ
ルからの高周波磁界は金属素材で遮断されるた
め、従来の技術においては、容器素材の端部に施
された樹脂接着剤を、重ね合せに先立つて高周波
誘導加熱し、溶融された接着剤層を介して両端部
を重ね合せ、最後に重ね合せ部を冷却下にバンピ
ングして継目を形成させる方法や、樹脂接着剤層
を介して係合された容器素材の両端部の外側を高
周波誘導加熱し、外側からの伝熱によつて両端部
の熱接着を行う方法が採用されている。 しかしながら、前者の方法は、継目がストレー
トに軸方向に延びているラツプ・サイド・シーム
罐のように、両端部を重ね合せ方向に押圧して熱
接着を行う場合には好都合に適用できるとして
も、夫々が金属素材の絞り加工或いは絞り−しご
き加工で形成されたカツプ状成形体から成る上部
体と下部体とを、それらの周状の開放端部で接着
剤を介して嵌合させて容器を形成させる場合に
は、嵌合時の軸方向の押圧力により溶融接着剤層
が継目外にはみ出し、或いは開放端部に傷が発生
するため、適用することが困難である。 また、後者の方法は、継目の内側となる端部
は、外側の端部で高周波磁界が遮断されるため、
熱伝導によつてのみ加熱されるだけであり、しか
も両端部間に介在する接着剤層は金属に比べれば
熱伝導性に著しく乏しいから、加熱接着に著しく
長い時間を必要とすると共に、この接合すべき部
分では、外側の端部が高温で内側の端部が低温と
いう温度勾配が必らず形成されて、均一な加熱が
困難になるという欠陥を生ずる。特に金属素材の
材質がスチールなどの強磁性体の場合には、内側
となる端部は加熱されにくい。 従つて、本発明の目的は、接着用の樹脂層を介
して係合された容器素材の両端縁部を、高周波誘
導加熱によつて外側の端部からも内側の端部から
も同時に、効率よく、しかも選択的に加熱するこ
とが可能な方法を提供するにある。 本発明の他の目的は、熱接着による継目を有す
る金属容器を製造するに際して、継目となるべき
係合された両端部間に位置する熱接着剤を極めて
短時間の内に高周波誘導加熱できる方法を提供す
るにある。 本発明の更に他の目的は、間に接着剤層が介在
する素材の両端部の各々を任意の温度に選択的に
加熱できる方法を提供するにある。 本発明の更に他の目的は、夫々が金属製の無継
目カツプ状成形体から成る上部体と下部体とを、
それの周状の開放端部同志で接着剤層を介して嵌
合させ、この接着剤層を嵌合部の外側から高周波
誘導加熱により効率良く且つ選択的に加熱し得る
方法を提供するにある。 本発明によれば、金属を含む容器素材の両端部
を樹脂の熱接着による継目を介して接合すること
から成る容器の製法において、熱接着性の樹脂層
を介して両端部が係合され且つ局部的に両端部が
実質上電気絶縁関係にある継目となるべき部分
と、少なくとも1個の周状の高周波誘導加熱コイ
ルとを、継目となるべき部分が該コイルのほぼ中
央に位置し、一方の端部に連なる素材と他方の端
部に連なる素材とが夫々電流の向きが反対のコイ
ル部分と対面し、且つ継目となるべき部分の巾を
d、コイルの最内周の継目巾方向の間隔をD、コ
イルの最内周の継目長手方向の間隔をL、コイル
と継目との径方向の間隔をtとしたとき、下記式 8d≧D≧d 20d≧L≧d t<D が満足される位置関係で配置し、高周波誘導加熱
コイルに通電し、前記両端部の各々を通るうず電
流を誘導して継目となるべき両端部を選択的に加
熱することを特徴とする金属容器の製法が提供さ
れる。 本発明は、既に指摘した通り、夫々が金属製の
無継目カツプ状成形体から成る上部体と下部体と
を、それの周状の開放端部同志で接着剤層を介し
て嵌合させ、この接着剤層を嵌合部の外側から高
周波誘導加熱により効率良く選択的に加熱して、
周状の側面継目を備えたピン状の金属容器を製造
するのに特に有用である。従つて、本発明をこの
容器を例にとつて以下に説明するが、本発明は勿
論この場合にのみ限定されるものでない。 本発明による金属製ビンの一例を示す第1図に
おいてこのビンは、例えば錫メツキ鋼板等の金属
製の無継目カツプ状成形体から成る下部体1と、
金属製の無継目カツプ状成形体から成る上部体2
とから成つており、これらのカツプ状成形体は、
開放端部3と開放端部4とが重ね合せ接合され
て、周状の側面継目5を形成することにより容器
の形に一体化されている。 この具体例において、下部体1は金属素材の高
度の絞り−しごき加工で形成された背の高い薄肉
側壁部6と実質上しごき加工を受けていない厚肉
の底部7とから成るカツプであり、一方上部体2
も下部体と同様の成形で形成された背の高い薄肉
側壁部8と上壁9とから成るカツプである。上部
体2の側壁部8の高さは、継目5の巾と等しい
か、或いは継目巾よりも若干大きい範囲内にあ
る。また上部体2の上壁9は上に凸のテーパー面
をなしており、その中央には内容物の充填用乃至
は取出し用の注ぎ口10が形成されている。 第1図に示す具体例では、下部体1の開放端部
3はそれに近接した部分でのネツクイン加工によ
り、それ以外の胴壁部に比して小径となるように
絞られており、より大径の上部体開放端部4内に
嵌挿される。下部体開放端部3の外面と上部体開
放端部4の内面との間には熱接着性の接着剤層1
1が設けられ、下部体と上部体との接合、固着が
行われている。接着剤11の一部は継目5からは
み出して、継目の内側に位置する金属素材切断端
縁12に対する被覆層13を形成していることが
耐腐食性の点で望ましい。 上述した構造の金属製容器においては、上部体
2に極めて小さい注ぎ口10が形成されているの
みであり、従つて、上部体2と下部体1とを嵌合
させた後では、この嵌合組立体の内部に格別の加
熱機構等を挿入することは事実上不可能であり、
従つて嵌合部の加熱は外部からの加熱のみが可能
であることが了解されよう。 本発明によれば、この嵌合部の外側に高周波誘
導加熱コイルを特定の仕組で位置させて通電を行
うことにより、外側に位置する開放端部4のみな
らず、内側に位置する開放端部3をも効率良く且
つ選択的に加熱し、接着を著しく短時間の内に行
い得るものである。 本発明における高周波誘導加熱コイルの配置及
び原理を説明するための第2図、第3図及び第4
図において、継目となるべき部分5aにおいて
は、両端部3及び4は接着剤層11aを介して嵌
合により機械的に係合されており、しかもこの両
端部3及び4は接着剤層11aにより局部的に実
質上電気絶縁関係となつている。本明細書におい
て、局部的に実質上電気絶縁関係とは、これらが
完全な電気絶縁関係にある場合は勿論のこと、後
に詳述する如く、一部で電気的短絡を生じている
としても、両端部3及び4にまたがるうず電流が
生じないような電気絶縁関係をも包含する。 この継目となるべき部分5aの外側に全体とし
て14で示す高周波誘導加熱コイルを以下に示す
位置関係で配置する。この図面に示す具体例で
は、コイル14は全体としてうず巻状の形状を有
している。このコイル14にあつては、第2図に
示す如く、下方コイル部分15においては、一定
時点において、上→下垂直方向に電流が流れ、一
方上方コイル部分16においては、同時点におい
て下→上垂直方向に電流が流れる構造となつてい
る。 本発明においては、継目となるべき部分5a
は、このコイル14のほぼ中央に位置し、しかも
内側の開放端部3に連なる側壁部6は下方コイル
部分15と、また外側の開放端部8は上方コイル
部分16と夫々対面するように、コイル14を位
置させる。また、第2図に示す通り、継目となる
べき部分5aの巾、即ちラツプ巾をd、コイル1
4の最内周ループの継目巾方向の間隔をD、コイ
ル14の最内周のループの継目長手方向の間隔を
L、コイル14と継目となるべき部分5aとの径
方向の間隔をtとしたとき、下記式 8d≧D≧d ………(1) 特に 4d≧D≧d ………(1a) 20d≧L≧d ………(2) 特に 10d≧L≧d ………(2a) 及び t<D ………(3) 特に t<1/2D ………(3a) が満足される位置関係となるようにする。 上述した位置関係において、高周波誘導加熱コ
イル14に高周波電流を通電すると、コイル部分
15に対面した側壁部6では該コイル部分の電流
方向とは逆向きでしかも開放端部3の部分を同方
向となるように通るうず電流17が誘導される。
同様にコイル部分16に対面した側壁部8では該
コイル部分の電流方向とは逆向きでしかも開放端
部4の部分を同方向となるように通るうず電流1
8が誘導される。このうず電流17及び18は
夫々、側壁部6及び8の部分では電流密度が低
く、開放端部3及び4の部分では電流密度が高く
なるように誘導され、この結果として、外側に位
置する開放端部4は勿論のこと、内側に位置する
開放端部3も強く加熱される。 本発明によれば、この際、前記(1)乃至(3)式、特
に前記(1a)乃至(3a)式が成立つように、コ
イル14と継目となるべき部分5aとを配置する
ことにより、側壁部6及び8の部分をあまり加熱
することなく、両開放端部3及び4を集中的に且
つ選択的に加熱することが可能となるものであ
る。 一般に、高周波誘導加熱にあつては、コイルと
金属素材との電磁結合の程度が強い程、誘導され
るうず電流の量も多くなる傾向があり、このよう
な見地からはコイル14の面積を大きくとつた方
が加熱効率が高くなると信じられる。しかしなが
ら、本発明者等の研究によると、このような大面
積の高周波誘導加熱コイルを用いると、確かに全
体としての加熱効率は向上するものの、継目とな
るべき両端部3及び4のみならず、これら両端部
から離れた側壁部6及び8の部分もかなり加熱さ
れることがわかつた。 これに対して、本発明においては、前記式(1)、
(2)及び(3)から明らかな通り、コイル14の下方コ
イル部分15及び上方コイル部分16とを、継目
となるべき部分5aに近接させ、素材に誘導され
るうず電流を可及的に小さい径のものとすること
により、継目となるべき両端部の集中的且つ選択
的加熱が可能となつたものである。 この事実は、第5図及び第6図を参照すること
により明白となる。即ち、ブリキ製で継目の巾(d)
が5mm、継目の外径が64mmの第1図に示す形状の
罐について、第5図の場合は、 D=15mm、L=15mm、t=3mm の高周波誘導加熱コイル、第6図の場合は、 D=15mm、L=110mm、t=3mm の高周波誘導加熱コイルを用いて、高周波入力電
力を一定にして、0.3秒間加熱した時の継目の内
側端部の端縁から下方向の温度分布を示す。この
結果から、本発明範囲外の配置で誘導加熱を行つ
た場合(第6図)では、継目となるべき端部以外
に、側壁部もかなり広い領域にわたつて端部より
高い温度に加熱され、しかも端部の所定温度(約
220℃)への加熱にも比較的長時間を要するのに
対して、本発明の範囲内の配置で誘導加熱を行う
と、側壁部の温度上昇を比較的低いレベルに抑制
しつつ、端部を集中的且つ選択的に急速に加熱し
得ることが理解される。上述した傾向は、下部体
のみならず、上部体、即ち継目の外側の端縁より
も上方に離れた部分についても全く同様に認めら
れる。 さらに、コイルの最内周の継目巾方向の間隔D
が本発明の範囲外の加熱コイルの場合でも、コイ
ル部分と電磁結合している側壁部が著しく加熱さ
れ、継目となるべき部分が加熱されにくいという
傾向が認められる。さらに、コイルと継目との径
方向の間隔tは、大きくする程加熱コイルと継目
との電磁結合は弱まり、効率が低下する傾向にあ
り、間隔tがコイルの最内周の継目方向の間隔D
以上になつた場合、過大な高周波入力電力を与え
ないと継目となるべき部分は加熱されないことが
認められる。 さらに、コイルの最内周の間隔DおよびLを継
目となるべき部分の巾dに近ずける程、継目とな
るべき端部を集中的かつ選択的に急速に加熱する
という効果は、上部体および下部体の材質が非磁
性体(例えばアルミ)のものに比べ、強磁性体
(例えばスチール)のものに対して、特に顕著で
あることが認められる。 本発明において、前述した配置をとることによ
り、端部の集中的且つ選択的加熱が可能となる理
由は未だ解明されるに至つていない。しかしなが
ら、本発明者等はこの理由を次のように推定して
いる。即ち、継目となるべき重ね合せ端部におい
て誘導されるうず電流の電流密度を高めれば高め
る程、端部のより集中的且つ選択的加熱が可能と
なるものと認められるが、本発明の加熱コイルの
配置では、継目となるべき部分に近接させてコイ
ルの最内周ループを設けているため、誘導される
うず電流が端部を通る比率を高め、これにより端
部の電流密度を高めることが可能となること、及
びコイルにより誘導されるうず電流には、コイル
に沿つて誘導された後端部を通つて戻るうず電流
と、コイルに沿つて誘導された端部とは反対側の
部分を通つて戻るうず電流とがあると考えられる
が、本発明においては、D及びLの値を前述した
小さい範囲としたことにより、コイルの曲率が大
きくなり、従つて前者のうず電流当りの後者のう
ず電流の比率が減少していることがその原因と考
えられる。 この効果は、上部体および下部体の材質が非磁
性体の場合よりも強磁性体の場合の方が顕著であ
り、その理由は端部を通る電流通路のインダクタ
ンスが強磁性体の場合には大きくなるので、端部
を通る電流が少ないためであると思われる。 本発明において、コイルの寸法及び配置を、コ
イル最内周の寸法D及びLのみで規定し得るのは
次の理由によるものである。即ち、素材中のうず
電流は、コイルの電流に伴なつて誘導されるもの
であるが、コイルの曲率が小さい程、うず電流の
曲率も小さくなり、電気抵抗も小さくなるため、
より大きな電流が誘導されることになる。かくし
て、コイル14がうず巻コイルのように多数回周
回されたコイルの場合にも、誘導加熱に最も有効
に作用するのは最内周のものであり、かかる見地
からは、本発明においては、最内周コイルの寸法
を規定しているのである。 前述したD及びLの値が本発明の範囲を越えた
場合には、第6図に関して説明した通り、端部の
集中的且つ選択的加熱が困難となる傾向があり、
またDの値がdよりも小さいと、内側端部をも所
定温度に加熱するという本発明の目的が達成し難
くなる。 コイル14と端部5aとの間隔tは、コイルと
素材との電磁結合に関連するものであり、このt
の値が前記範囲を越えると、効率の良い加熱が困
難となる。 本発明において、加熱コイル14としては、第
2乃至4図に示すうず巻型のものはワン・ターン
であつてもよい。また、第2図に示す通り、コイ
ル14と素材との電磁結合を強めるために、フエ
ライト等の磁性材料コア19を用いることもでき
る。 第2乃至4図に示すうず巻型のコイルを用いる
と、その巻数を変えることによつて共振周波数を
広範囲に変化させることができ、またそのインダ
クタンスを増加させることによつて、用いるコン
デンサーの容量を比較的小さいものとすることが
できる。 本発明においては、前述した寸法及び配置のコ
イルを用いることにより、高周波誘導加熱操作
を、トラブルなしに安定に行い得るという作業性
の上の利点もある。前述した上部体と下部体とか
ら成り且つ周状の継目を有する容器の製法では、
両端部間に電気絶縁性の接着剤樹脂が介在してい
るとしても、例えば上部体のカツトエツジが下部
体の側壁のいつくかの点で接触して電気的短絡を
生じている場合が生じ得る。この場合、もしも2
つの短絡位置を介して上部体と下部体とを通るう
ず電流が誘導されると、この短絡位置で火花放電
を生じ、塗料の焦げ等を生じて外観不良の原因と
なり、更には火花放電位置近傍の温度が低下する
という欠点を生じる。本発明によれば、前述した
構成によりうず電流の発生領域が比較的狭い領域
に限定されるため、2つの短絡位置を通るうず電
流発生の確率が著しく小さいものに抑制され、安
定した誘導加熱操作が可能となる。 本発明においては、加熱コイル14は周方向に
比較的小さい寸法を有することから、このものを
継目周方向に多数個配置して一層端時間での加熱
を行うことができる。例えば、円周状の嵌合部の
周囲を実質上覆うように多数個の高周波誘導加熱
コイルを配置し、上下部体の嵌合物を静止させて
誘導加熱を行う方法、1個乃至は複数個の高周波
誘導加熱コイルを配置し、上下体の嵌合物を回転
させながら誘導加熱する方法等が適宜使用され
る。 コイルに通電する高周波電流は、この種の誘導
加熱に使用されているものは全て使用でき、例え
ば一般的に言つて、10KHz乃至500KHzの高周波
が好適に使用される。加熱コイルへの入力は、容
器の大きさや要求される温度や加熱時間によつて
も相違し、一概に規定できないが、本発明によれ
ば、前記条件を採用することにより、それ以外の
場合に比してかなり短時間での加熱が可能となる
ことは、前記第6図の説明から明白であろう。 本発明によれば、外側となる端部と内側となる
端部とを等しい温度となるように加熱することも
できるし、またこれらの温度が互いに異なるよう
に加熱することもできる。 本発明において、接着剤層としては、熱により
溶融乃至は軟化され、或いは活性化されて接着性
を示すものは全て使用され、例えばポリエステル
系、ポリアミド系、酸変性ポリオレフイン系等の
熱可塑性樹脂接着剤が有利に使用されるが、勿論
これらに限定されない。 容器用素材としては、アルミニウム等の軽金属
や、ブリキ、テイン・フリー・スチール、その他
の各種表面処理鋼板、ブラツクプレート等の金属
を含む素材は全て使用され、これらの素材は各種
塗料で塗装されたものであつても何等差支えな
い。また、この素材は金属箔とプラスチツクフイ
ルムとのラミネートであつてもよく、このプラス
チツクフイルムがヒートシール性を示す場合に
は、これを接着剤層として使用し得ることは当然
である。 本発明は、上述した円周状の継目を有する容器
の製造に好適に適用されるが、例えば第7図に示
す通り、一枚の素材22を円筒状に成形し、その
両端縁部22a,22bを接着剤層11を介して
ロツクシーム接合する用途にも有利に使用でき、
また、蓋の周囲と胴のフランジとを熱接着剤を介
してヒートシールする用途にも有利に使用でき
る。 本発明を次の例で説明する。 実施例 素材厚0.3mmの錫メツキ鋼板を120mm径の円板に
打抜き、常法に従い絞りポンチと絞りダイスの間
で内径が85mmのカツプ状に成形した。 次いで、このカツプ状成形物を再絞り工程に賦
した後、直径66.10mmのしごきポンチとしごきダ
イスとを用いてしごき加工した。 次いで、この下部体の内外面を脱脂洗浄後、常
法の表面処理(りん酸系)を行ない、エポキシ系
塗料で内外面の塗装、焼付を行なつた後、ネツク
イン加工を行なつた(ネツクイン部外径:63.35
mm)。次いで、厚さ60μm、巾6mmのポリエステ
ル接着剤テープ(軟化点178℃)を下部体の外側
開放端部に高周波誘導加熱を用いて開放端より
1.0mmはみ出して貼着後、はみ出したテープの部
分を前記開放端部の端縁及びこれに続く内面側を
包み包むように内方に折り曲げ、この接着剤テー
プを開放端部内外面に加熱融着させた。 一方、上部体は予めエポキシ系塗料を両面に施
した素材厚0.23mmの錫メツキ鋼板を96mm径の円板
に打抜き、常法のプレス加工によつて成形を行な
い上壁に注ぎ口を設けた。(上部体内径63.37mm)
次いで、接着剤テープが施された下部体と前記上
部体とを開放端同志で重ね合せ部が5mmになるよ
うに嵌合した後、以下に示す加熱コイルによつて
高周波加熱工程そしてこれと同一ステーシヨンに
於て冷却工程を施して嵌合部の接着剤を溶融、冷
却固化させて接合を行い、接合金属容器を作製し
た。本例における加熱コイル、加熱工程、冷却工
程を詳述する。 加熱コイルの形状は、第2図乃至第4図で示さ
れるうず巻型コイルであり、コイルに使用される
導体の径は4mmφで、上部体と下部体とに電磁結
合している加熱コイルの巻数は3ターンである。
同コイルの最内周のDおよびLは15mmである。 加熱工程では加熱コイルは、加熱コイルと継目
との径方向との間隔を3mmに、かつ加熱コイルの
中央を継目の中央より2mm上方になるように配置
され、被加熱部材を加熱時間内に10回転するよう
に回転させつつ、150KHzの高周波発振器により
4KWの入力で、0.3秒間加熱したところ外側端部
および内側端部の温度はどちらも220℃であつた。
加熱終了と同時に冷却工程では、圧縮エアーノズ
ル(元圧5Kg/cm2)を用いて冷却したところ、
1.5秒間で嵌合部は接着剤が固化する温度140℃以
下になつた。 比較例 1 上部体、下部体を実施例と同じ方法で作成し、
実施例と同様に上部体と下部体とを嵌合した後、
加熱コイルの最内周の継目巾方向の間隔D、加熱
コイルと継目との径方向の間隔Tの何れかを本発
明の範囲外に設定して加熱コイルを配置し、嵌合
部の高周波加熱を行つた。 嵌合部の温度を、実施例と同様に220℃にする
ために必要な高周波入力電力及び時間を、加熱コ
イルの配置関係とともに、第1表に示す。 更に、実施例において、嵌合部の温度を220℃
に加熱した時の効率を100%とし、この効率に対
しての各比較例の効率を同じく第1表に示す。 これら比較例においては、側壁部の温度は嵌合
部温度よりも高温度となり、加熱終了後に圧縮エ
アーノズルによる冷却を行つたが、嵌合部の温度
が接着剤の固化する温度以下になるのに5秒以上
の時間を要した。
The present invention relates to a method for manufacturing a metal container having a seam formed by thermal bonding, and more specifically to a method for efficiently and selectively heating both edges of a container material, which are engaged through an adhesive resin layer, using a high-frequency induction heating coil. The present invention relates to a method for manufacturing a metal container, which comprises forming a seam by thermal bonding. High-frequency induction heating is a heating means that is widely used for heating metal materials, and is also a heating means that is widely used for manufacturing metal containers such as adhesive cans that have seams formed by thermal bonding. However, the high-frequency magnetic field from the high-frequency induction heating coil is blocked by the metal material, so in conventional technology, the resin adhesive applied to the edge of the container material is melted by high-frequency induction heating prior to stacking. There is a method of overlapping both ends of the container material through a resin adhesive layer, and finally bumping the overlapping part while cooling to form a seam. A method is adopted in which the outside is heated by high-frequency induction, and both ends are thermally bonded by heat transfer from the outside. However, although the former method can be conveniently applied when thermal bonding is performed by pressing both ends in the overlapping direction, such as in lap side seam cans where the seam extends straight in the axial direction, , an upper body and a lower body, each consisting of a cup-shaped molded body formed by drawing or drawing-ironing a metal material, are fitted at their circumferential open ends via an adhesive to form a container. In this case, it is difficult to apply because the axial pressing force at the time of fitting causes the molten adhesive layer to protrude outside the joint or cause damage to the open end. In addition, in the latter method, the high-frequency magnetic field is blocked at the inner end of the seam and the outer end.
It is heated only by thermal conduction, and the adhesive layer interposed between the two ends has significantly poorer thermal conductivity than metal, so it takes a significantly longer time for heat bonding, and the bonding A temperature gradient is inevitably formed where the outer edge is hot and the inner edge is cold, resulting in the defect that uniform heating becomes difficult. In particular, when the metal material is a ferromagnetic material such as steel, the inner end portion is difficult to heat. Therefore, an object of the present invention is to efficiently heat both edges of a container material, which are engaged through an adhesive resin layer, simultaneously from the outer edge and the inner edge by high-frequency induction heating. The object of the present invention is to provide a method that enables efficient and selective heating. Another object of the present invention is a method for producing a metal container having a thermally bonded seam by high-frequency induction heating of the thermal adhesive located between the engaged ends to form the seam within an extremely short time. is to provide. Still another object of the present invention is to provide a method that can selectively heat both ends of a material with an adhesive layer interposed therebetween to a desired temperature. Still another object of the present invention is to provide an upper body and a lower body each consisting of a seamless cup-shaped molded body made of metal.
To provide a method in which the circumferential open ends of these are fitted together through an adhesive layer, and the adhesive layer can be efficiently and selectively heated from outside the fitted part by high-frequency induction heating. . According to the present invention, in a method for manufacturing a container that includes joining both ends of a container material containing metal through a seam formed by thermally bonding resin, the both ends are engaged through a layer of thermally adhesive resin, and At least one circumferential high-frequency induction heating coil is connected to a portion to be a joint whose ends are substantially electrically insulated locally, and the portion to be a joint is located approximately at the center of the coil, while one The width of the part where the material connected to one end of the coil and the material connected to the other end face the coil part where the direction of current is opposite and should be a joint is d, and the width of the joint width of the innermost circumference of the coil is d. When the distance is D, the distance in the longitudinal direction of the joints on the innermost circumference of the coil is L, and the distance in the radial direction between the coil and the joint is t, the following formulas 8d≧D≧d 20d≧L≧d t<D are satisfied. A method for producing a metal container, characterized in that the metal container is placed in a positional relationship such that the metal container is placed in a positional relationship, and the high-frequency induction heating coil is energized to induce an eddy current passing through each of the ends to selectively heat both ends to be a seam. is provided. As already pointed out, the present invention has an upper body and a lower body each made of a seamless cup-shaped molded body made of metal, and the circumferential open ends of the upper body and the lower body are fitted together via an adhesive layer, This adhesive layer is efficiently and selectively heated from the outside of the mating part using high-frequency induction heating.
It is particularly useful for producing pin-shaped metal containers with circumferential side seams. Therefore, the present invention will be explained below using this container as an example, but the present invention is of course not limited to this case. In FIG. 1 showing an example of a metal bottle according to the present invention, this bottle includes a lower body 1 made of a seamless cup-shaped molded body made of metal such as a tin-plated steel plate,
Upper body 2 consisting of a seamless cup-shaped molded body made of metal
These cup-shaped molded bodies are made up of
The open end portions 3 and 4 are overlapped and joined to form a circumferential side seam 5, thereby integrating the shape of the container. In this embodiment, the lower body 1 is a cup consisting of a tall thin side wall 6 formed by highly drawn and ironed metal material and a thick bottom 7 that has not been substantially ironed; On the other hand, upper body 2
This is a cup consisting of a tall thin side wall portion 8 and an upper wall 9 formed by the same molding as the lower body. The height of the side wall portion 8 of the upper body 2 is within a range that is equal to or slightly larger than the width of the joint 5. The upper wall 9 of the upper body 2 has an upwardly convex tapered surface, and a spout 10 for filling or taking out the contents is formed in the center thereof. In the specific example shown in FIG. 1, the open end 3 of the lower body 1 is narrowed to a smaller diameter than the rest of the body wall by neck-in processing in the vicinity of the open end 3. The upper body open end 4 of the diameter is inserted into the upper body open end 4 of the diameter. A thermal adhesive layer 1 is provided between the outer surface of the open end portion 3 of the lower body and the inner surface of the open end portion 4 of the upper body.
1 is provided to join and fix the lower body and the upper body. From the viewpoint of corrosion resistance, it is desirable that a portion of the adhesive 11 protrudes from the seam 5 and forms a coating layer 13 for the cut edge 12 of the metal material located inside the seam. In the metal container having the above-described structure, only an extremely small spout 10 is formed in the upper body 2, and therefore, after the upper body 2 and the lower body 1 are fitted together, this fitting is difficult. It is virtually impossible to insert a special heating mechanism etc. inside the assembly;
Therefore, it will be understood that the fitting portion can only be heated from the outside. According to the present invention, by arranging a high-frequency induction heating coil on the outside of this fitting part using a specific mechanism and energizing it, not only the open end 4 located on the outside but also the open end located on the inside can be heated. 3 can be heated efficiently and selectively, and bonding can be performed within a very short time. 2, 3 and 4 for explaining the arrangement and principle of the high frequency induction heating coil in the present invention.
In the figure, in a portion 5a that should become a seam, both ends 3 and 4 are mechanically engaged by fitting through an adhesive layer 11a, and furthermore, these ends 3 and 4 are connected by an adhesive layer 11a. There is a substantially electrically insulating relationship locally. In this specification, the term "substantially electrically insulating locally" refers not only to cases where these are in a completely electrically insulating relationship, but also to cases where an electrical short circuit occurs in some parts, as will be explained in detail later. It also includes an electrically insulating relationship such that eddy currents across both ends 3 and 4 do not occur. A high-frequency induction heating coil, generally designated 14, is arranged outside the portion 5a that is to become the seam in the positional relationship shown below. In the embodiment shown in this figure, the coil 14 has an overall spiral shape. In this coil 14, as shown in FIG. 2, current flows in the vertical direction from top to bottom at a certain point in the lower coil portion 15, while in the upper coil portion 16, current flows from bottom to top at the same point in time. The structure is such that current flows vertically. In the present invention, the portion 5a that should become a seam
is located approximately at the center of this coil 14, and the side wall portion 6 connected to the inner open end portion 3 faces the lower coil portion 15, and the outer open end portion 8 faces the upper coil portion 16, respectively. Position the coil 14. In addition, as shown in FIG.
4, the distance in the joint width direction between the innermost loops of the coil 14 is D, the distance in the joint longitudinal direction between the innermost loops of the coil 14 is L, and the radial distance between the coil 14 and the portion 5a that should be the joint is t. Then, the following formula 8d≧D≧d ………(1) Especially 4d≧D≧d ………(1a) 20d≧L≧d ………(2) Especially 10d≧L≧d ………(2a ) and t<D (3) In particular, the positional relationship should be such that t<1/2D (3a) is satisfied. In the above-mentioned positional relationship, when high-frequency current is applied to the high-frequency induction heating coil 14, the current direction in the side wall portion 6 facing the coil portion 15 is opposite to that of the coil portion, and the open end portion 3 is in the same direction. An eddy current 17 is induced that passes as follows.
Similarly, in the side wall portion 8 facing the coil portion 16, an eddy current 1 passes through the open end portion 4 in the opposite direction to the current direction in the coil portion but in the same direction.
8 is induced. These eddy currents 17 and 18 are induced to have a low current density in the region of the side walls 6 and 8 and a high current density in the region of the open ends 3 and 4, respectively, so that the outer Not only the end portion 4 but also the open end portion 3 located inside is heated strongly. According to the present invention, in this case, by arranging the coil 14 and the portion 5a to be the joint so that the above-mentioned equations (1) to (3), especially the above-mentioned equations (1a) to (3a), hold true. , it becomes possible to intensively and selectively heat both open ends 3 and 4 without heating the side wall portions 6 and 8 much. Generally, in high-frequency induction heating, the stronger the degree of electromagnetic coupling between the coil and the metal material, the more the amount of induced eddy current tends to increase.From this point of view, it is recommended to increase the area of the coil 14. It is believed that the heating efficiency will be higher if it is heated. However, according to research conducted by the present inventors, although the use of such a large-area high-frequency induction heating coil certainly improves the overall heating efficiency, It has been found that portions of the side walls 6 and 8 remote from these ends are also heated considerably. On the other hand, in the present invention, the above formula (1),
As is clear from (2) and (3), the lower coil portion 15 and upper coil portion 16 of the coil 14 are placed close to the joint portion 5a to minimize the eddy current induced in the material. By making the diameter of the joint larger, it is possible to intensively and selectively heat both ends of the joint. This fact becomes clear by referring to FIGS. 5 and 6. In other words, it is made of tin and the width of the seam (d)
For a can of the shape shown in Figure 1 with a diameter of 5 mm and an outer diameter of the seam of 64 mm, in Figure 5, a high-frequency induction heating coil with D = 15 mm, L = 15 mm, and T = 3 mm, and in Figure 6, Using a high-frequency induction heating coil with D = 15 mm, L = 110 mm, and T = 3 mm, the temperature distribution downward from the inner edge of the seam is measured when heating is performed for 0.3 seconds with the high-frequency input power kept constant. show. From this result, when induction heating is performed in an arrangement outside the scope of the present invention (Fig. 6), in addition to the edges where the seams should be formed, the side walls are also heated to a higher temperature than the edges over a fairly wide area. , and at a predetermined temperature at the end (approximately
220°C), whereas induction heating with the arrangement within the scope of the present invention suppresses the temperature rise in the sidewalls to a relatively low level while heating the edges. It is understood that the heating can be focused and selectively heated rapidly. The above-mentioned tendency is observed not only in the lower part but also in the upper part, that is, the part located above the outer edge of the seam. Furthermore, the distance D in the seam width direction of the innermost circumference of the coil
Even in the case of a heating coil that is outside the scope of the present invention, there is a tendency that the side wall portion that is electromagnetically coupled to the coil portion is heated significantly, and the portion that should be the joint is difficult to heat. Furthermore, as the distance t in the radial direction between the coil and the seam increases, the electromagnetic coupling between the heating coil and the seam weakens, and the efficiency tends to decrease.
In the above case, it is recognized that the part that should become a seam will not be heated unless excessive high-frequency input power is applied. Furthermore, as the distances D and L between the innermost circumferences of the coils are brought closer to the width d of the part to be a seam, the effect of intensively and selectively rapidly heating the end part to be a seam increases. This is particularly noticeable when the material of the lower body is ferromagnetic (for example, steel) compared to non-magnetic (for example, aluminum). In the present invention, the reason why intensive and selective heating of the ends is made possible by adopting the above-described arrangement has not yet been elucidated. However, the present inventors estimate the reason for this as follows. In other words, it is recognized that the higher the current density of the eddy current induced at the overlapping ends that should become a seam, the more intensive and selective heating of the ends becomes possible. In this arrangement, the innermost loop of the coil is placed close to the joint, which increases the proportion of induced eddy current passing through the end, thereby increasing the current density at the end. The eddy currents induced by the coil include eddy currents that are induced along the coil and return through the rear end, and eddy currents that are induced along the coil and return through the end opposite the end that was induced along the coil. However, in the present invention, by setting the values of D and L to the small ranges mentioned above, the curvature of the coil becomes large, and therefore, the eddy current of the latter increases per eddy current of the former. This is thought to be due to a decrease in the eddy current ratio. This effect is more pronounced when the upper and lower body materials are ferromagnetic than when they are non-magnetic, because the inductance of the current path through the ends is ferromagnetic. This seems to be due to the fact that the current passing through the end is small because the size is large. In the present invention, the dimensions and arrangement of the coil can be defined only by the dimensions D and L of the innermost circumference of the coil for the following reason. In other words, the eddy current in the material is induced by the current in the coil, but the smaller the curvature of the coil, the smaller the curvature of the eddy current and the smaller the electrical resistance.
A larger current will be induced. Thus, even if the coil 14 is a coil that has been wound many times, such as a spiral wound coil, the innermost one acts most effectively on induction heating, and from this point of view, in the present invention, This defines the dimensions of the innermost coil. If the above-mentioned values of D and L exceed the range of the present invention, as explained with reference to FIG. 6, it tends to be difficult to intensively and selectively heat the ends.
Furthermore, if the value of D is smaller than d, it becomes difficult to achieve the objective of the present invention, which is to heat the inner end portion to a predetermined temperature as well. The distance t between the coil 14 and the end portion 5a is related to electromagnetic coupling between the coil and the material, and this t
If the value exceeds the above range, efficient heating becomes difficult. In the present invention, the heating coil 14 may be a one-turn type instead of the spiral type shown in FIGS. 2 to 4. Further, as shown in FIG. 2, a magnetic material core 19 such as ferrite may be used to strengthen the electromagnetic coupling between the coil 14 and the material. By using the spiral-wound coil shown in Figures 2 to 4, the resonant frequency can be varied over a wide range by changing the number of turns, and by increasing the inductance, the capacitance of the capacitor used can be changed. can be made relatively small. The present invention also has the advantage of workability in that by using the coils having the dimensions and arrangement described above, high frequency induction heating operations can be performed stably without any trouble. In the method for manufacturing a container consisting of an upper body and a lower body and having a circumferential seam as described above,
Even if an electrically insulating adhesive resin is interposed between both ends, for example, the cut edges of the upper body may come into contact with the side walls of the lower body at some points, causing an electrical short circuit. In this case, if 2
When an eddy current is induced through the upper body and the lower body through two short-circuit positions, a spark discharge occurs at this short-circuit position, causing burnt paint, etc., resulting in poor appearance, and furthermore, near the spark discharge position. The disadvantage is that the temperature of the According to the present invention, the above-described configuration limits the generation area of eddy current to a relatively narrow area, so the probability of generation of eddy current passing through two short-circuit positions is suppressed to a significantly small value, resulting in stable induction heating operation. becomes possible. In the present invention, since the heating coil 14 has a relatively small dimension in the circumferential direction, a large number of heating coils 14 can be arranged in the circumferential direction of the seam to perform heating even more quickly. For example, a method in which a large number of high-frequency induction heating coils are arranged so as to substantially cover the periphery of a circumferential fitting part, and induction heating is performed while the fitted objects of the upper and lower bodies are stationary; A method of arranging several high-frequency induction heating coils and inductively heating the fitted object of the upper and lower bodies while rotating is used as appropriate. Any high frequency current used in this type of induction heating can be used as the high frequency current to be applied to the coil, and generally speaking, a high frequency of 10 KHz to 500 KHz is preferably used. The input to the heating coil varies depending on the size of the container, the required temperature and heating time, and cannot be absolutely specified, but according to the present invention, by adopting the above conditions, it can be applied in other cases. It will be clear from the description of FIG. 6 above that heating can be done in a relatively short time. According to the present invention, the outer end and the inner end can be heated to the same temperature, or they can be heated to different temperatures. In the present invention, any material that exhibits adhesive properties by being melted, softened, or activated by heat may be used as the adhesive layer, such as thermoplastic resin adhesives such as polyester, polyamide, and acid-modified polyolefin. Agents are advantageously used, but are of course not limited thereto. All materials used for containers include light metals such as aluminum, tinplate, stain-free steel, and other metal-containing materials such as various surface-treated steel plates and black plates, and these materials are coated with various paints. It doesn't matter if it's something. Further, this material may be a laminate of metal foil and plastic film, and if the plastic film exhibits heat-sealing properties, it is natural that it can be used as the adhesive layer. The present invention is suitably applied to manufacturing a container having the above-mentioned circumferential seam. For example, as shown in FIG. 22b can also be advantageously used for lock seam bonding through the adhesive layer 11,
It can also be advantageously used for heat-sealing the periphery of the lid and the flange of the body using a thermal adhesive. The invention is illustrated by the following example. Example A tin-plated steel plate with a material thickness of 0.3 mm was punched into a disc with a diameter of 120 mm, and formed into a cup shape with an inner diameter of 85 mm between a drawing punch and a drawing die according to a conventional method. Next, this cup-shaped molded product was subjected to a re-drawing process, and then ironed using a 66.10 mm diameter ironing punch and ironing die. Next, the inner and outer surfaces of this lower body were degreased and washed, then subjected to a conventional surface treatment (phosphoric acid), and the inner and outer surfaces were painted and baked with epoxy paint, followed by a netzin finish (netzin finish). Outside diameter: 63.35
mm). Next, a polyester adhesive tape (softening point: 178°C) with a thickness of 60 μm and a width of 6 mm is applied to the outer open end of the lower body using high-frequency induction heating.
After adhering with 1.0 mm sticking out, bend the protruding part of the tape inward so as to wrap around the edge of the open end and the inner surface following this, and heat and fuse this adhesive tape to the inner and outer surfaces of the open end. Ta. On the other hand, for the upper body, a 0.23 mm thick tin-plated steel plate with epoxy paint applied on both sides was punched out into a 96 mm diameter disc, which was then formed using conventional press processing, and a spout was provided on the top wall. . (Upper body diameter 63.37mm)
Next, the lower body on which the adhesive tape was applied and the upper body were fitted with their open ends so that the overlapping portion was 5 mm, and then subjected to a high-frequency heating process using the heating coil shown below and the same process as above. A cooling process was performed at the station to melt the adhesive at the fitting portion, cool and solidify the bonding process, and produce a bonded metal container. The heating coil, heating process, and cooling process in this example will be explained in detail. The shape of the heating coil is a spiral coil as shown in Figures 2 to 4. The diameter of the conductor used in the coil is 4 mmφ, and the heating coil is electromagnetically coupled to the upper and lower bodies. The number of turns is 3 turns.
The innermost circumference D and L of the coil are 15 mm. In the heating process, the heating coil is arranged so that the distance between the heating coil and the seam in the radial direction is 3 mm, and the center of the heating coil is 2 mm above the center of the seam. While rotating as if rotating, a 150KHz high frequency oscillator
When heated for 0.3 seconds with a 4KW input, the temperature at both the outer and inner ends was 220°C.
Simultaneously with the completion of heating, in the cooling process, cooling was performed using a compressed air nozzle (original pressure 5Kg/cm 2 ).
In 1.5 seconds, the temperature at the fitted part reached 140°C, the temperature at which the adhesive solidifies. Comparative Example 1 An upper body and a lower body were created in the same manner as in the example,
After fitting the upper body and lower body in the same manner as in the example,
The heating coil is arranged with either the interval D in the seam width direction of the innermost circumference of the heating coil or the radial interval T between the heating coil and the seam set outside the range of the present invention, and high-frequency heating of the fitting part is performed. I went there. Table 1 shows the high-frequency input power and time required to bring the temperature of the fitting part to 220° C. as in the example, along with the arrangement of the heating coils. Furthermore, in the example, the temperature of the fitting part was set to 220°C.
The efficiency when heated to is 100%, and the efficiency of each comparative example relative to this efficiency is also shown in Table 1. In these comparative examples, the temperature of the side wall was higher than the temperature of the mating part, and cooling was performed using a compressed air nozzle after heating, but the temperature of the mating part did not drop below the temperature at which the adhesive solidified. It took more than 5 seconds.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の金属製ビンの一例を示す側
断面図、第2図乃至第4図は、本発明における高
周波誘導加熱コイルの配置を示す図、第5図及び
第6図は、軸方向距離と加熱温度との関係を示す
線図、第7図は、本発明の適用の一例を示す図で
ある。 1は下部体、2は上部体、3及び4は開放端
部、5は周状の側面継目、6は薄肉側壁部、7は
厚肉底部、8は薄肉側壁部、9は上壁、10は注
ぎ口、11は接着剤層、12は金属素材切断端
縁、13は被覆層、14は高周波誘導加熱コイ
ル、15は下方コイル部分、16は上方コイル部
分、17及び18はうず電流、22は金属素材を
示す。
FIG. 1 is a side sectional view showing an example of a metal bottle of the present invention, FIGS. 2 to 4 are views showing the arrangement of high frequency induction heating coils in the present invention, and FIGS. 5 and 6 are FIG. 7, a diagram showing the relationship between axial distance and heating temperature, is a diagram showing an example of application of the present invention. 1 is a lower body, 2 is an upper body, 3 and 4 are open ends, 5 is a circumferential side seam, 6 is a thin side wall, 7 is a thick bottom, 8 is a thin side wall, 9 is an upper wall, 10 1 is a spout, 11 is an adhesive layer, 12 is a cut edge of a metal material, 13 is a coating layer, 14 is a high-frequency induction heating coil, 15 is a lower coil portion, 16 is an upper coil portion, 17 and 18 are eddy currents, 22 indicates a metal material.

Claims (1)

【特許請求の範囲】 1 金属を含む容器素材の両端部を樹脂の熱接着
による継目を介して接合することから成る容器の
製法において、 熱接着性の樹脂層を介して両端部が係合され且
つ局部的に両端部が実質上電気絶縁関係にある継
目となるべき部分と少なくとも1個の周状の高周
波誘導加熱コイルとを、継目となるべき部分が該
コイルのほぼ中央に位置し、一方の端部に連なる
素材と他方の端部に連なる素材とが夫々電流の向
きが反対のコイル部分と対面し、且つ継目となる
べき部分の巾をd、コイルの最内周の継目巾方向
の間隔をD、コイル最内周の継目長さ方向の間隔
をL、コイルと継目との径方向の間隔をtとした
とき、下記式 8d≧D≧d 20d≧L≧d t<D が満足される位置関係で配置し、高周波誘導加熱
コイルに通電し、前記両端部の各々を通るうず電
流を誘導して継目となるべき両端部を選択的に加
熱することを特徴とする金属容器の製法。
[Scope of Claims] 1. A method for manufacturing a container that involves joining both ends of a container material containing metal through a seam formed by thermally bonding resin, wherein both ends are engaged through a layer of thermally adhesive resin. and at least one circumferential high-frequency induction heating coil with a portion to be a joint whose ends are substantially electrically insulated locally, the portion to be a joint is located approximately at the center of the coil, and one The width of the part where the material connected to one end of the coil and the material connected to the other end face the coil part where the direction of current is opposite and should be a joint is d, and the width of the joint width of the innermost circumference of the coil is d. When the interval is D, the interval in the longitudinal direction of the joint on the innermost circumference of the coil is L, and the radial interval between the coil and the joint is t, the following formulas 8d≧D≧d 20d≧L≧d t<D are satisfied. A method for manufacturing a metal container, characterized in that the metal container is placed in a positional relationship such that the metal container is placed in a positional relationship, and the high-frequency induction heating coil is energized to induce an eddy current passing through each of the ends to selectively heat both ends to be a seam. .
JP7151783A 1983-04-25 1983-04-25 Manufacture of metallic vessel having joint by heat bonding Granted JPS59197328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151783A JPS59197328A (en) 1983-04-25 1983-04-25 Manufacture of metallic vessel having joint by heat bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151783A JPS59197328A (en) 1983-04-25 1983-04-25 Manufacture of metallic vessel having joint by heat bonding

Publications (2)

Publication Number Publication Date
JPS59197328A JPS59197328A (en) 1984-11-08
JPS6345893B2 true JPS6345893B2 (en) 1988-09-12

Family

ID=13462981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151783A Granted JPS59197328A (en) 1983-04-25 1983-04-25 Manufacture of metallic vessel having joint by heat bonding

Country Status (1)

Country Link
JP (1) JPS59197328A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224829A (en) * 1985-07-24 1987-02-02 Kishimoto Akira Apparatus for manufacturing peripherally seamed metallic vessel
JP5986779B2 (en) * 2012-03-30 2016-09-06 大和製罐株式会社 Heating apparatus and method for manufacturing can

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728641A (en) * 1980-07-25 1982-02-16 Nippon Alum Mfg Co Ltd:The Manufacture of thin metallic pressure resisting container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728641A (en) * 1980-07-25 1982-02-16 Nippon Alum Mfg Co Ltd:The Manufacture of thin metallic pressure resisting container

Also Published As

Publication number Publication date
JPS59197328A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US3367808A (en) Method and apparatus for uniting articles
US3461014A (en) Magnetic induction method for heat-sealing and bonding predetermined sealing areas
US3727022A (en) Electromagnetic heating and sealing
US3462336A (en) Induction heating process
US5013878A (en) Induction heat sealing lap-seamed containers to non-metallic closures
JPS6345893B2 (en)
KR890002575B1 (en) Process for preparation of metal vessels
US4303032A (en) Process for forming can bodies
JPH0239339B2 (en)
CA1229211A (en) Method of and device for welding cover to container body
JPH029893B2 (en)
JPH0218974B2 (en)
CA3092732C (en) Method of manufacturing a can lid composed of a composite material
US3313906A (en) Welding method
JPS6021133A (en) Production of adhered can for opening by winding
JPS6323341Y2 (en)
JPH06156487A (en) Double-walled container made of synthetic resin and manufacture of the same
JPS6220673B2 (en)
JPS6215296B2 (en)
JPH0232924A (en) Device for seaming can lid
JPS631711B2 (en)
JPS6158294B2 (en)
JPH0329662B2 (en)
JPH07156272A (en) Method for fusion-bonding plastic molding
JPS581668A (en) Sealed vessel for high-frequency induction heating sealing