JPS634582B2 - - Google Patents

Info

Publication number
JPS634582B2
JPS634582B2 JP55166738A JP16673880A JPS634582B2 JP S634582 B2 JPS634582 B2 JP S634582B2 JP 55166738 A JP55166738 A JP 55166738A JP 16673880 A JP16673880 A JP 16673880A JP S634582 B2 JPS634582 B2 JP S634582B2
Authority
JP
Japan
Prior art keywords
rubber
weight
adhesion
parts
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55166738A
Other languages
Japanese (ja)
Other versions
JPS5792034A (en
Inventor
Yasuhiro Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP55166738A priority Critical patent/JPS5792034A/en
Publication of JPS5792034A publication Critical patent/JPS5792034A/en
Publication of JPS634582B2 publication Critical patent/JPS634582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Tyre Moulding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゴム組成物に関し、詳しくは有機酸コ
バルトおよび比較的多量のイオウを含み、さらに
メタクレゾール樹脂とポリメトキシメチルメラミ
ンとを併せて添加してなり、かつスチールコード
との接着において、未加硫時に吸湿することによ
る加硫後の接着性(以下、未加硫耐水接着性とい
う)、加硫後の吸湿による接着性(以下、加硫後
耐水接着性という)および加硫後の温水吸湿によ
る接着性(以下、加硫後耐温水接着性という)が
高温加硫においても良好であり、しかも破断物性
も良好なゴム組成物に関する。 従来、自動車用タイヤに対する要求が高度にな
るに従つて、スチールタイヤが多く使用されるよ
うになつて来た。スチールタイヤは自動車の操縦
性や安定性、タイヤの摩耗性等に有利であるが、
補強材にスチールコードを用いており、このスチ
ールコードとゴムの間の接着性が製品の品質に重
大な影響を及ぼすため、この良好な接着性を得る
ため、従来種々の技術が開発されて今日に及んで
いる。 タイヤはその製造過程から、製品として市場で
ユーザーに実際に使用され、寿命を全うするまで
種々の環境にさらされるので、そのあらゆる条件
において強固な接着を保持しなくてはならない。
すなわちタイヤの製造時においては加硫時に充分
な接着性(以下、初期接着性という)を有するこ
とが必要であり、さらに未加硫ゴムが吸湿しやす
い環境条件に放置されると未加硫ゴムが吸湿し
て、該ゴムの加硫後の接着が低下するが、このよ
うな条件下でも良好な接着性を保持する必要があ
る。一方加硫時に充分な接着が得られても、タイ
ヤ使用中に空気中の水分がゴム層を通して浸入
し、スチールコード表面まで到達し、接着力が低
下する場合がある。また走行中にタイヤのトレツ
ド面に刺傷や切り傷等の外傷を受けた場合にここ
から水が浸入し、タイヤが走行時に高温になると
浸入した水と熱によつてスチールコードの間隙に
沿つて接着劣化が進行する場合もある。 このようにタイヤにおけるスチールコードとゴ
ムとの接着不良には様々のタイプがあるが、タイ
ヤが使用に耐えるにはこれらの接着性、すなわち
初期接着性、未加硫耐水接着性、加硫後耐水接着
性および加硫後耐温水接着性の全てが良好でなく
てはならず、従来技術においてはその各々を個別
的に満足させる技術は知られているが、すべてを
同時に満足させることは困難であつた。 特にスチールタイヤが多量に使用されるように
なつて来てから、スチールタイヤは増産の傾向を
強めているが、タイヤの生産性を左右するのは、
加硫工程であり、この工程を短かくする程生産性
は高くなるが、このためには、短時間加硫するた
めに高温で加硫することになる。ところが従来ス
チールコードとの接着性が良好として好んで用い
られている有機酸のコバルト塩を含むゴム組成物
は加硫温度が高くなる程、上記した未加硫耐水接
着性、加硫後耐水接着性、加硫後耐温水接着性の
いずれもが大幅に低下する傾向があつた。 またスチールタイヤのスチールコード被覆ゴム
は非常に硬いスチールコードを被覆するので硬い
(高硬度、高モジユラス)ゴムを使用することが
好ましい。このような硬いゴムを得るためにはイ
オウ多量配合、カーボンブラツク多量配合のゴム
組成物を用いることが多いが、このようなゴム組
成物は加硫後の硬度、モジユラスは高くなるが、
引張強さ、破断伸びが低下するという欠点があつ
た。 本発明はスチールコードとの初期接着性、未加
硫耐水接着性、加硫後耐水接着性および加硫後耐
温水接着性のすべてが良好で、しかも高温加硫に
おいてもこれらの接着性が良好で、また高硬度で
破断物性のすぐれたゴム組成物を提供することを
目的とし、特にスチールタイヤのスチールコード
被覆ゴムとして利用される。 本発明者はスチールコードとゴムとの接着性お
よび被覆ゴムの物性を研究した結果、通常よく用
いられる有機酸コバルト系イオウ多量配合のゴム
組成物に、さらにメタクレゾール樹脂とホルムア
ルデヒド供与体であるポリメトキシメチルメラミ
ンを併用して加えると種々の接着性を全て良好に
し、しかも高温加硫してもこれらの接着性が良好
であり、かつ破断伸び等の破断物性を低下させず
に硬度を大幅に上昇させることを見出し本発明に
到達した。 すなわち、本発明のゴム組成物は、 原料ゴム100重量部に対して、 (1) 有機酸コバルト塩をコバルト元素含有量とし
て0.1〜0.5重量部、 (2) メタクレゾール樹脂1〜10重量部、 (3) ポリメトキシメチルメラミン0.5〜10重量部
および (4) イオウ3〜10重量部 を含有することを特徴とするもので、該ゴム組成
物が上記目的を満足するのである。 前記したように、通常、スチールコード被覆ゴ
ムとしてよく用いられる有機酸コバルト塩を含む
ゴム組成物は高温加硫、特に170℃を超える温度
で加硫すると未加硫耐水接着性、加硫後耐水接着
性および加硫後耐温水接着性のいずれもが低下す
る。これに対してメタクレゾール樹脂ポリメトキ
シメチルメラミンの各々を単独で加えると、これ
らの接着性は改善されるが両者を併用すると相乗
効果を発揮してさらに高いレベルに達する。この
場合メタクレゾール樹脂単独で接着性を改良する
ためには多量配合せねばならず、加硫ゴムの発熱
性が増大し不利になる。一方、ポリメトキシメチ
ルメラミン単独で接着性を改良するために多量配
合すると加硫が遅れる、加硫ゴムの破断物性が低
下する等の不利な点が生ずる。これに対して両者
を併用するとそれぞれ少ない量で接着性を改良す
ることが出来る。しかもこの効果は低温加硫はも
とより高温加硫でよりいつそう効果が大きい。こ
の場合ゴム工業でタツキフアイアー等によく用い
られるアルキルフエノール樹脂全般が有効なので
はなく、アルキルフエノール樹脂の中でもメタク
レゾール樹脂のみに有効な効果である。 また一般に加硫ゴムはその硬度およびモジユラ
スが高くなると破断伸びが低下する傾向にあり、
破断強度としては小さくなるが、メタクレゾール
樹脂は硬度を上昇させ破断伸びも上昇させる。一
方、ポリメトキシメチルメラミンは硬度を上昇さ
せるが破断伸びは低下する。したがつて両者を併
用すると硬度をさらに上昇させポリメトキシメチ
ルメラミン添加による破断伸びの低下をメタクレ
ゾール樹脂によつて防ぐことが出来るため破断物
性を低下させずに硬度を上昇させることが出来
る。この物性に関しても通常ゴム工業でよくタツ
キフアイアー等に用いられるアルキルフエノール
樹脂全般に有効なのではなく、メタクレゾール樹
脂においてのみ見られる特有の現象である。 本発明で用いるメタクレゾール樹脂はメタクレ
ゾールとホルマリンもしくはパラホルムアルデヒ
ドを酸触媒下で反応させたもので、メタクレゾー
ル単位で2〜6核体のノボラツク型樹脂で、軟化
点80〜120℃であり、例えば住友化学社製スミカ
ノール610である。またポリメトキシメチルメラ
ミンはヘキサメトキシメチルメラミン等のホルマ
リン供与体のメラミン誘導体であり、例えばアメ
リカンサイアナミド社製のサイレツツ(cyrez)
963である。またポリメチロールメラミンでも有
効である。 また本発明で用いられるメタクレゾール樹脂は
原料ゴム100重量部に対して1〜10重量部好まし
くは2〜6重量部である。1重量部より少ない量
では効果は少なく、10重量部を超える量を加える
と加硫ゴムの発熱性が高くなり好ましくない。一
方ポリメトキシメチルメラミンは原料ゴム100重
量部に対して0.5〜10重量部好ましくは1〜6重
量部である。0.5重量部より少ない量では効果は
少なく、10重量部を超える量を加えると破断伸び
の低下が大きく、しかも加硫が遅れる等の不利な
点が生ずる。 本発明で使用する原料ゴムは天然ゴム(NR)
もしくはポリイソプレンゴム(IR)が好ましい
が、NRもしくはIRの50重量部以下をポリブタジ
エンゴム(BR)もしくはスチレンブタジエンゴ
ム(SBR)におきかえることも可能である。 また本発明で用いる有機酸コバルトは好ましく
はナフテン酸コバルトもしくはステアリン酸コバ
ルト、オクチル酸コバルトおよびオレイン酸コバ
ルトなどの炭素数5〜20の直鎖状もしくは分岐の
ある鎖状のモノカルボン酸等のコバルト塩であ
る。 ここで使用する有機酸コバルトはゴム100重量
部に対してCo元素含有量として0.1〜0.6重量部、
好ましくは0.2〜0.4重量部使用するのがよい。し
たがつて例えばCo含有率10%のナフテン酸コバ
ルトを使用する場合にはゴム100重量部に対して
ナフテン酸コバルト1〜6重量部、好ましくは2
〜4重量部がよい。ゴム100重量部に対してCo含
有量が0.1重量部より少ない量では配合効果は少
なく、0.6重量部を超える量でも配合効果は少な
くなる。 またイオウ量は3〜10重量部である。3重量部
より少ない量では添加効果は少なく10重量部を超
える量を加えると未加硫ゴム表面にイオウがブル
ームして加工上の障害となる。 以下、実施例および比較例で本発明を具体的に
説明する。ゴム組成物の作成および接着試験は下
記の方法に従つて行い、また破断物性はJIS3号ダ
ンベルを打抜きJIS―K―6301に準拠して測定し、
硬度はJIS Aで測定した。なお表中、配合はすべ
て重量部とする。 ゴム組成物の作成 表の配合に従いイオウ、加硫促進剤、ポリメイ
トキシメチルメラミン以外の配合剤および原料ゴ
ムをバンバリー型ミキサーで混合したマスターバ
ツチに上記残りの配合剤をオープンロールで加え
て作つた。 接着性試験 <初期接着性> 12.5mm間隔で平行に並べた黄銅メツキスチール
コード(3+9+15構造)の両側からゴム組成物
をコーチイングして埋め込み幅25mmにしたフアブ
リツクを160℃×20分、170℃×15分加硫して試験
サンプルとしてASTM―D2229に準拠してワイ
ヤーを引抜きその時の引抜力(指数)とゴム被覆
率(%)で評価した。 <未加硫耐水接着性> 未加硫時の吸湿による耐水接着性は上記フアブ
リツクを未加硫時に温度30℃、相対湿度86%雰囲
気に2週間放置した後、160℃×20分、170℃×15
分で加硫して試験サンプルとし、初期接着性と同
様にワイヤーを引抜き評価した。 <加硫後耐水接着性> 加硫後ゴム中を水分が浸透し、スチールコード
に到達して起こる接着劣化は加硫後の引抜用サン
プルを70℃×96%RH中に2週間放置したのち引
抜き評価した。 <加硫後耐温水接着性> 外傷より侵入する水分によつて起こる接着劣化
は手抜用サンプルの下端ワイヤーを切断して70℃
温水中に浸漬し2週間放置後引抜き評価した。 これらの接着性の評価および物性の評価を併せ
て表に示す。
The present invention relates to a rubber composition, and more specifically, it contains an organic acid cobalt and a relatively large amount of sulfur, and further contains a meta-cresol resin and polymethoxymethylmelamine, and has no additives in adhesion to a steel cord. Post-vulcanization adhesion due to moisture absorption during curing (hereinafter referred to as unvulcanized water-resistant adhesion), adhesion due to moisture absorption after vulcanization (hereinafter referred to as post-vulcanization water-resistant adhesion), and hot water moisture absorption after vulcanization. The present invention relates to a rubber composition that has good adhesion (hereinafter referred to as post-vulcanization hot water resistant adhesion) even during high-temperature vulcanization and also has good physical properties at break. BACKGROUND OF THE INVENTION Conventionally, as demands for automobile tires have become more sophisticated, steel tires have come into widespread use. Steel tires are advantageous in terms of vehicle maneuverability, stability, and tire wear resistance, but
Steel cords are used as reinforcing materials, and the adhesion between the steel cords and rubber has a significant impact on the quality of the product, so in order to obtain this good adhesion, various technologies have been developed to date. It extends to Tires are exposed to various environments from the manufacturing process to when they are actually used by users in the market and throughout their lifespan, so they must maintain strong adhesion under all conditions.
In other words, when manufacturing tires, it is necessary to have sufficient adhesion during vulcanization (hereinafter referred to as initial adhesion), and furthermore, if unvulcanized rubber is left in an environment where it tends to absorb moisture, unvulcanized rubber will deteriorate. absorbs moisture, reducing the adhesion of the rubber after vulcanization, but it is necessary to maintain good adhesion even under such conditions. On the other hand, even if sufficient adhesion is obtained during vulcanization, moisture in the air may penetrate through the rubber layer during use of the tire and reach the surface of the steel cord, reducing adhesive strength. In addition, if the tire's tread surface receives a puncture wound or cut while driving, water will infiltrate from this area, and when the tire becomes hot while driving, the infiltrated water and heat will cause the steel cords to bond along the gaps. In some cases, deterioration progresses. As described above, there are various types of poor adhesion between steel cord and rubber in tires, but in order for a tire to withstand use, these adhesion properties, namely initial adhesion, unvulcanized water resistant adhesion, and post vulcanized water resistant Adhesion and hot water resistance after vulcanization must all be good, and although techniques to satisfy each of these individually are known in the prior art, it is difficult to satisfy them all at the same time. It was hot. Especially since steel tires have come to be used in large quantities, there has been a growing trend towards increased production of steel tires, but the factors that influence tire productivity are:
This is a vulcanization process, and the shorter this process, the higher the productivity, but in order to achieve this, vulcanization must be performed at a high temperature for a short period of time. However, in rubber compositions containing cobalt salts of organic acids, which have traditionally been used because of their good adhesion to steel cords, the higher the vulcanization temperature, the lower the above-mentioned unvulcanized water-resistant adhesion and post-vulcanized water-resistant adhesion. There was a tendency for both the adhesiveness and hot water resistance after vulcanization to decrease significantly. Further, since the steel cord coating rubber of a steel tire covers a very hard steel cord, it is preferable to use hard (high hardness, high modulus) rubber. In order to obtain such hard rubber, a rubber composition containing a large amount of sulfur and a large amount of carbon black is often used, but such rubber compositions have high hardness and modulus after vulcanization, but
The drawback was that the tensile strength and elongation at break were reduced. The present invention has good initial adhesion to steel cord, unvulcanized water resistant adhesion, post vulcanized water resistant adhesion, and post vulcanized hot water resistant adhesion, and these adhesion properties are also good during high temperature vulcanization. The present invention also aims to provide a rubber composition with high hardness and excellent properties at break, which is particularly useful as a rubber for covering steel cords in steel tires. As a result of researching the adhesion between steel cords and rubber and the physical properties of coated rubber, the present inventor has developed a rubber composition containing a large amount of organic acid cobalt-based sulfur, which is commonly used. When added in combination with methoxymethyl melamine, all types of adhesive properties are improved, and these adhesive properties remain good even during high-temperature vulcanization, and the hardness is significantly increased without decreasing physical properties at break such as elongation at break. The present invention has been achieved by discovering that this can be increased. That is, the rubber composition of the present invention contains, based on 100 parts by weight of raw rubber, (1) 0.1 to 0.5 parts by weight of organic acid cobalt salt as cobalt element content, (2) 1 to 10 parts by weight of metacresol resin, (3) 0.5 to 10 parts by weight of polymethoxymethylmelamine and (4) 3 to 10 parts by weight of sulfur, the rubber composition satisfies the above object. As mentioned above, rubber compositions containing organic acid cobalt salts, which are commonly used as steel cord coating rubber, are vulcanized at high temperatures, especially at temperatures exceeding 170°C, resulting in unvulcanized water resistant adhesion and post vulcanized water resistant adhesive properties. Both adhesion and hot water resistance after vulcanization are reduced. On the other hand, when each of the meta-cresol resin and polymethoxymethyl melamine is added alone, these adhesive properties are improved, but when both are used in combination, a synergistic effect is exhibited and an even higher level is reached. In this case, in order to improve the adhesion using the metacresol resin alone, a large amount must be added, which is disadvantageous because the heat generation property of the vulcanized rubber increases. On the other hand, if a large amount of polymethoxymethylmelamine is used alone to improve adhesion, there will be disadvantages such as delayed vulcanization and deterioration of the physical properties at break of the vulcanized rubber. On the other hand, when both are used in combination, adhesion can be improved with a small amount of each. Moreover, this effect is greater not only in low-temperature vulcanization but also in high-temperature vulcanization. In this case, not all alkylphenol resins commonly used in the rubber industry for tackifiers and the like are effective, but among alkylphenol resins, only metacresol resin is effective. Additionally, as the hardness and modulus of vulcanized rubber increases, the elongation at break tends to decrease.
Although the breaking strength is low, metacresol resin increases hardness and elongation at break. On the other hand, polymethoxymethylmelamine increases hardness but decreases elongation at break. Therefore, when both are used in combination, the hardness can be further increased and the decrease in elongation at break due to the addition of polymethoxymethylmelamine can be prevented by the meta-cresol resin, so the hardness can be increased without reducing the physical properties at break. Regarding this physical property, it is not effective for all alkylphenol resins that are commonly used in the rubber industry for tackifiers, etc., but is a unique phenomenon observed only in meta-cresol resins. The metacresol resin used in the present invention is obtained by reacting metacresol with formalin or paraformaldehyde under an acid catalyst, and is a novolak type resin with 2 to 6 nuclei in the metacresol unit, and has a softening point of 80 to 120 ° C. For example, Sumikanol 610 manufactured by Sumitomo Chemical Co., Ltd. Polymethoxymethylmelamine is a melamine derivative of a formalin donor such as hexamethoxymethylmelamine, such as Cyrez manufactured by American Cyanamid.
It is 963. Polymethylolmelamine is also effective. Further, the metacresol resin used in the present invention is used in an amount of 1 to 10 parts by weight, preferably 2 to 6 parts by weight, based on 100 parts by weight of the raw material rubber. If the amount is less than 1 part by weight, the effect will be small, and if it is added in an amount exceeding 10 parts by weight, the heat generation property of the vulcanized rubber will increase, which is not preferable. On the other hand, polymethoxymethylmelamine is used in an amount of 0.5 to 10 parts by weight, preferably 1 to 6 parts by weight, per 100 parts by weight of raw rubber. If the amount is less than 0.5 parts by weight, the effect will be small, and if the amount is more than 10 parts by weight, there will be disadvantages such as a large decrease in elongation at break and a delay in vulcanization. The raw rubber used in this invention is natural rubber (NR)
Alternatively, polyisoprene rubber (IR) is preferred, but it is also possible to replace 50 parts by weight or less of NR or IR with polybutadiene rubber (BR) or styrene-butadiene rubber (SBR). The organic acid cobalt used in the present invention is preferably cobalt such as a linear or branched monocarboxylic acid having 5 to 20 carbon atoms, such as cobalt naphthenate, cobalt stearate, cobalt octylate, and cobalt oleate. It's salt. The organic acid cobalt used here has a Co element content of 0.1 to 0.6 parts by weight per 100 parts by weight of rubber.
It is preferable to use 0.2 to 0.4 parts by weight. Therefore, for example, when cobalt naphthenate with a Co content of 10% is used, 1 to 6 parts by weight, preferably 2 parts by weight of cobalt naphthenate per 100 parts by weight of rubber.
~4 parts by weight is preferable. If the Co content is less than 0.1 part by weight based on 100 parts by weight of rubber, the blending effect will be small, and if it exceeds 0.6 part by weight, the blending effect will be small. Further, the amount of sulfur is 3 to 10 parts by weight. If the amount is less than 3 parts by weight, the effect of the addition will be small, and if it is added in an amount exceeding 10 parts by weight, sulfur will bloom on the surface of the unvulcanized rubber, causing a problem in processing. The present invention will be specifically explained below using Examples and Comparative Examples. The preparation of the rubber composition and the adhesion test were performed according to the following method, and the physical properties at break were measured by punching out a JIS No. 3 dumbbell in accordance with JIS-K-6301.
Hardness was measured according to JIS A. In the table, all formulations are in parts by weight. Preparation of Rubber Composition According to the formulation in the table, sulfur, vulcanization accelerator, compounding ingredients other than polymate xymethyl melamine, and raw rubber were mixed in a Banbury type mixer, and the remaining compounding ingredients were added to a masterbatch using an open roll. Adhesion test <Initial adhesion> Brass-plated steel cords (3+9+15 structure) arranged in parallel at 12.5 mm intervals were coated with a rubber composition on both sides to make the embedded width 25 mm, and the fabric was heated at 160°C for 20 minutes at 170°C. After vulcanization for 15 minutes, the wire was pulled out as a test sample in accordance with ASTM-D2229 and evaluated based on the pulling force (index) and rubber coverage (%). <Unvulcanized water-resistant adhesion> The water-resistant adhesion due to moisture absorption during unvulcanization is determined by leaving the above fabric uncured in an atmosphere of 30°C and 86% relative humidity for two weeks, then testing at 160°C for 20 minutes at 170°C. ×15
A test sample was prepared by vulcanization for 1 minute, and the wire was pulled out and evaluated in the same manner as the initial adhesion. <Water-resistant adhesion after vulcanization> Adhesion deterioration caused by moisture permeating through the rubber after vulcanization and reaching the steel cord can be confirmed by leaving the sample for drawing after vulcanization at 70℃ x 96% RH for two weeks. A pullout evaluation was performed. <Hot water resistant adhesion after vulcanization> Adhesive deterioration caused by moisture entering from external injury can be measured by cutting the lower end wire of the cut sample at 70°C.
It was immersed in warm water and left for two weeks, then pulled out and evaluated. Evaluations of these adhesive properties and physical properties are also shown in the table.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例1〜6および比較例1〜9 天然ゴム100重量部にナフテン酸コバルト3重
量部およびイオウを7重量部配合した系であり、
比較例2〜5はこの系のゴム組成物にメタクレゾ
ール樹脂を加えたものである。この結果から160
℃×20分加硫ではメタクレゾール樹脂とともに硬
度(JIA A)が上昇し、破断伸びが上昇し、引
張強さがやや低下する。これに対して比較例6〜
9ではヘキサメトキシメチルメラミン(以下、
HMMと略する)を加えたものであるが、HMM
の量とともに硬度が上昇するが、破断伸び、引張
強さとともに低下する傾向にある。 一方、比較例2〜9の接着性は初期接着性では
160℃×20分、170℃×15分とも接着良好である
が、170℃×15分の方が少し引抜力が低下する。
比較例2〜5から明らかなようにメタクレゾール
樹脂の増加に伴い、いずれの耐水接着性も向上す
る。また、比較例6〜9においてHMMの量の増
加に伴い、接着性、特に加硫後の耐温水接着性が
改善される。 実施例1〜6はメタクレゾール樹脂とHMMを
併用した系であるが、両者の量の増加と共に硬
度、100%モジユラスともに上昇し、メタクレゾ
ール樹脂を多く含む系では破断伸びの低下はほと
んどない。 一方、接着性はメタクレゾール樹脂および
HMMの増量と共に耐水接着性、特に加硫後耐水
接着性、加硫後耐温水接着性が高いレベルに達す
る。例えば比較例5および実施例2,3,5はメ
タクレゾール樹脂6重量部配合でのHMMの添加
効果を示すが、HMMの増量と共に特に170℃×
15分加硫において引抜力もゴム被覆率も上昇す
る。この効果は比較例3および実施例1,4のメ
タクレゾール樹脂2重量部配合したものよりも大
きい。このことからメタクレゾール樹脂とHMM
の間に相剰効果が認められる。 実施例7〜10および比較例10〜12 天然ゴム70重量部とイソプレンゴム30重量部と
からなる原料ゴムにステアリン酸コバルト2.5重
量部およびイオウ6重量部を加えた系であるが、
この系においてもメタクレゾール樹脂とHMMと
を配合した相剰効果は認められた。 実施例11および比較例13〜18 天然ゴム100重量部にナフテン酸コバルト3重
量部およびイオウ4重量部を加えた系であるが、
この系においてもメタクレゾール樹脂とHMMと
を配合した相剰効果は認められる(実施例11)。
しかし、比較例15,16のごとくメタクレゾール樹
脂に代えて一般的なアルキルフエノール樹脂であ
るt―ブチルフエノール/ホルムアルデヒド樹脂
を配合したもの、あるいはこれに加えてHMMを
配合したものは加硫後耐水接着性、加硫後耐温水
接着性が不良である。比較例17,18はHMMに代
えて一般的ホルマリン供与体であるヘキサメチレ
ンテトラミンを使用した例であるが、未加硫耐水
接着性および加硫後耐水接着性が極めて不良であ
る。 以上説明したように本発明のゴム組成物は有機
酸コバルトおよび比較的多量のイオウを含むゴム
組成物系にメタクレゾール樹脂およびポリメトキ
シメチルメラミンを加えたことにより破断物性を
低下させずに硬度を上昇させ、しかも各々の接着
性、すなわち初期接着性、未加硫耐水接着性、加
硫後耐水接着性および加硫後耐温水接着性が良好
で、特に高温加硫においてもこれらの接着性を損
わないゴム組成物であるから、スチールコード被
覆ゴムとして好ましく用いられる。
[Table] Examples 1 to 6 and Comparative Examples 1 to 9 A system in which 100 parts by weight of natural rubber was blended with 3 parts by weight of cobalt naphthenate and 7 parts by weight of sulfur.
Comparative Examples 2 to 5 were obtained by adding meta-cresol resin to this type of rubber composition. 160 from this result
When vulcanized at ℃ for 20 minutes, the hardness (JIA A) increases along with the meta-cresol resin, the elongation at break increases, and the tensile strength slightly decreases. On the other hand, comparative example 6~
9, hexamethoxymethylmelamine (hereinafter referred to as
(abbreviated as HMM), but HMM
The hardness increases with the amount of carbon, but tends to decrease with the elongation at break and tensile strength. On the other hand, the adhesion of Comparative Examples 2 to 9 is based on the initial adhesion.
Adhesion was good for both 160°C x 20 minutes and 170°C x 15 minutes, but the pull-out force was slightly lower at 170°C x 15 minutes.
As is clear from Comparative Examples 2 to 5, as the amount of meta-cresol resin increases, the water-resistant adhesive properties of all of them improve. Furthermore, in Comparative Examples 6 to 9, as the amount of HMM increases, the adhesiveness, especially the hot water resistant adhesiveness after vulcanization, is improved. Examples 1 to 6 are systems in which metacresol resin and HMM are used in combination, and as the amounts of both increase, both hardness and 100% modulus increase, and in systems containing a large amount of metacresol resin, there is almost no decrease in elongation at break. On the other hand, the adhesion is determined by metacresol resin and
As the amount of HMM increases, water-resistant adhesion, especially water-resistant adhesion after vulcanization, and hot water-resistant adhesion after vulcanization reach a high level. For example, Comparative Example 5 and Examples 2, 3, and 5 show the effect of adding HMM when compounding 6 parts by weight of metacresol resin, but as the amount of HMM increases, especially at 170°C
Both pullout force and rubber coverage increase after 15 minutes of vulcanization. This effect is greater than that of Comparative Example 3 and Examples 1 and 4 in which 2 parts by weight of the metacresol resin was blended. From this, metacresol resin and HMM
There is a mutual effect between the two. Examples 7 to 10 and Comparative Examples 10 to 12 A system in which 2.5 parts by weight of cobalt stearate and 6 parts by weight of sulfur were added to raw rubber consisting of 70 parts by weight of natural rubber and 30 parts by weight of isoprene rubber.
In this system as well, the mutual effect of blending metacresol resin and HMM was observed. Example 11 and Comparative Examples 13 to 18 A system in which 3 parts by weight of cobalt naphthenate and 4 parts by weight of sulfur were added to 100 parts by weight of natural rubber.
In this system as well, the mutual effect of blending metacresol resin and HMM is observed (Example 11).
However, as shown in Comparative Examples 15 and 16, products containing t-butylphenol/formaldehyde resin, which is a general alkylphenol resin, instead of metacresol resin, or those containing HMM in addition to this, are water resistant after vulcanization. Adhesion and hot water resistance after vulcanization are poor. Comparative Examples 17 and 18 are examples in which hexamethylenetetramine, a general formalin donor, is used in place of HMM, but the unvulcanized water-resistant adhesion and post-vulcanized water-resistant adhesion are extremely poor. As explained above, the rubber composition of the present invention has improved hardness without reducing physical properties at break by adding metacresol resin and polymethoxymethylmelamine to a rubber composition system containing organic acid cobalt and a relatively large amount of sulfur. In addition, each adhesive property, namely initial adhesion, unvulcanized water resistant adhesion, post vulcanized water resistant adhesion, and post vulcanized hot water resistant adhesion, is good, and these adhesion properties are particularly good even during high temperature vulcanization. Since it is a rubber composition that does not cause damage, it is preferably used as a steel cord coating rubber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は170℃×15分加硫の加硫後の耐水接着
性におよぼすメタクレゾール樹脂およびヘキサメ
トキシメチルメラミンHMMの影響(ゴム被覆
率)を示すグラフ、並びに第2図は170℃×15分
加硫の加硫後の耐温水接着性におよぼすメタクレ
ゾール樹脂およびヘキサメトキシメチルメラミン
HMMの影響(ゴム被覆率)を示すグラフであ
る。
Figure 1 is a graph showing the influence (rubber coverage) of metacresol resin and hexamethoxymethylmelamine HMM on water-resistant adhesion after vulcanization at 170°C x 15 minutes, and Figure 2 is a graph showing the influence (rubber coverage) of 15 minutes at 170°C. Meta-cresol resin and hexamethoxymethyl melamine affect hot water-resistant adhesion after vulcanization
It is a graph showing the influence of HMM (rubber coverage).

Claims (1)

【特許請求の範囲】 1 原料ゴム100重量部に対して、 (1) 有機酸コバルト塩をコバルト元素含有量とし
て0.1〜0.6重量部、 (2) メタクレゾール樹脂1〜10重量部、 (3) ポリメトキシメチルメラミン0.5〜10重量部
および (4) イオウ3〜10重量部 を含有することを特徴とする加硫後金属材との接
着性が良好なゴム組成物。
[Claims] 1. For 100 parts by weight of raw rubber, (1) 0.1 to 0.6 parts by weight of organic acid cobalt salt as cobalt element content, (2) 1 to 10 parts by weight of metacresol resin, (3) A rubber composition having good adhesion to metal materials after vulcanization, characterized by containing 0.5 to 10 parts by weight of polymethoxymethylmelamine and (4) 3 to 10 parts by weight of sulfur.
JP55166738A 1980-11-28 1980-11-28 Rubber composition Granted JPS5792034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55166738A JPS5792034A (en) 1980-11-28 1980-11-28 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55166738A JPS5792034A (en) 1980-11-28 1980-11-28 Rubber composition

Publications (2)

Publication Number Publication Date
JPS5792034A JPS5792034A (en) 1982-06-08
JPS634582B2 true JPS634582B2 (en) 1988-01-29

Family

ID=15836828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55166738A Granted JPS5792034A (en) 1980-11-28 1980-11-28 Rubber composition

Country Status (1)

Country Link
JP (1) JPS5792034A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038444A (en) * 1983-08-10 1985-02-28 Sumitomo Rubber Ind Ltd Adhesive rubber composition
JPS6042440A (en) * 1983-08-18 1985-03-06 Sumitomo Rubber Ind Ltd Rubber composition for bonding steel cord
JP4647947B2 (en) * 2004-07-16 2011-03-09 住友ゴム工業株式会社 Rubber composition for covering carcass fiber cord and carcass fiber cord coated thereby

Also Published As

Publication number Publication date
JPS5792034A (en) 1982-06-08

Similar Documents

Publication Publication Date Title
JP4431618B2 (en) Rubber composition for covering tire cord
JP6532768B2 (en) Steel cord-rubber complex
JP4587826B2 (en) Rubber composition for belt layer steel cord and steel cord coated thereby
US7201944B2 (en) Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention with bright steel
JP5459047B2 (en) Adhesive rubber composition and pneumatic tire using the same
KR101225240B1 (en) Novolak resins and rubber compositions comprising the same
JP5079243B2 (en) Rubber composition and pneumatic tire
JP6755984B2 (en) Steel cord-rubber composite and its manufacturing method
JP4394978B2 (en) Rubber composition for belt layer steel cord and steel cord coated thereby
JP2019105022A (en) Steel cord-rubber composite and method for manufacturing the same
JP3116239B2 (en) Rubber composition
JPH0439340A (en) Rubber composition
JP2003082586A (en) Rubber composition for coating tire cord
JP5458508B2 (en) Adhesive rubber composition
JPS634582B2 (en)
CA1247822A (en) Method for improved metal adhesion and metal adhesion retention
CA1249096A (en) Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention
JPS6042440A (en) Rubber composition for bonding steel cord
JPH11181149A (en) Rubber composition for metal composition material
CA1216113A (en) Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention
JP2004018687A (en) Rubber composition
JP3894626B2 (en) Rubber composition for tire
JP7354509B2 (en) Rubber composition for covering steel cords and pneumatic tires
JP2021130752A (en) Selection method of sulfur and rubber composition for adhering metal
JPS6254345B2 (en)